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We congratulate the authors on a timely survey of horseshoe priors and their applications.
Horseshoe priors have been analysed and applied in so many communities; one of the key con-
tributions of this survey is that it succinctly reviews and synthesises our statistical understanding
of these priors to date. By highlighting work on models employing non-Gaussian noise, nonlin-
ear, and compositional structure, the survey underscores the utility of the horseshoe distribution
in contexts well beyond its traditional application in linear models with Gaussian noise.

The authors also review various computational approaches that have been developed to per-
form approximate inference under this model. In this discussion, we take the opportunity to
further elaborate on the many computational issues faced in working with such priors, espe-
cially for large, overparameterised models trained with large amounts of data. A Bayesian
neural network (BNN) is a canonical example of models of this class. Beyond identifiability,
overparameterisation can cause BNNs to fit the data poorly (see illustration in ; Ghosh et al.,
2019). The strong shrinkage towards zero provided by the horseshoe and related global–local
priors are particularly attractive for BNNs: by identifying a subset of unshrunk parameters and
strongly shrinking others, they alleviate issues stemming from overparameterisation.

However, in addition to having many parameters, these neural models are typically used in
settings where the datasets are quite large, making approximate Bayesian inference challenging.
While Hamiltonian Monte Carlo (HMC), an MCMC algorithm that exploits gradient infor-
mation to propose likely configuration of parameters, remains the gold standard for posterior
inference, it requires a Metropolis–Hastings correction to decide whether to accept a proposal.
Both the statistic required for the correction and the gradient required for the proposal depend
on all data and are prohibitively expensive to compute for typical datasets used for training
neural networks.

As a result, much recent effort has focused on developing variational approximations to
the intractable posterior. Variational inference approximates an intractable posterior p.� j
fxi ; yig

n
iD1/ with a tractable alternative q.� j �/ by minimising the Kullback–Leibler diver-

gence, KL.q.� j �/jjp.� j fxi ; yigniD1// with respect to the variational free parameters, �. This
is equivalent to minimising the variational free energy, F.�/,

F.�/ D �Eq.� j �/lnp.�/C ln
nX

iD1

p.yi j xi ; �/ �HŒq.� j �/�; (1)
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where HŒq.� j �/� denotes the entropy of the distribution, q.� j �/. For large n, one can obtain
a noisy but unbiased estimate of the gradient of the variational free energy F.�/ by replacing
the sum over all n data points with a sum over a smaller number of indices and appropriately
scaling the prior and entropy terms (Hoffman et al., 2013). In the case of BNNs, the expecta-
tions in Equation (1) have no closed form; in practice, these are approximated with Monte Carlo
expectations. Given unbiased gradients, stochastic gradient descent approaches are invoked
to minimise F.�/. The full procedure is sometimes referred to as being doubly stochastic
owing to the two sources of stochasticity—data subsampling and the Monte Carlo expectation
estimate—and is black box in the sense that it is largely agnostic about the particulars of the
model p.x; y; �/.

Doubly stochastic variational inference has been popular for inference in BNNs(Blundell
et al., 2015) and has also been used for learning BNNs with horseshoe priors(Ghosh &
Doshi-Velez, 2017; Ghosh et al., 2019). The so-called “reparameterization trick” employed
in these papers refers to a particular procedure for computing Monte Carlo gradients of
F.�/(Mohamed et al., 2019). For horseshoe BNNs, we are interested in the posterior over the
network weights and their respective scales. These parameters tend to be strongly correlated,
with small scales resulting in strongly shrunk weights while larger scales allow the correspond-
ing weights to escape unshrunk. These interactions induce challenging posterior geometries
that are difficult to reliably sample or approximate. Adopting alternate noncentred parameteri-
sations of the model help alleviate some of these difficulties. The reparameterisation trick and
the noncentred parameterisation constitute two orthogonal improvements—one allows for scal-
able inference by differentiating through Monte Carlo samples while the other improves the
quality of the inference.

Different choices of variational families provide interesting trade-offs between modelling
the interactions that occur in horseshoe BNN posteriors and computation. Restricting the vari-
ational posterior over these quantities to Gaussian and log-normal families while ignoring
correlations between them allows us to develop a computationally convenient instance of doubly
stochastic variational inference. One can further reduce computation at the expense of accu-
racy by fixing the variances and optimising only the means of the variational Gaussians over
weights (as done in ; Ghosh & Doshi-Velez, 2017). It is also possible to retain more of the pos-
terior structure in the variational approximation. For example, in Ghosh et al. (2019), we found
that modelling correlations among weights in a network’s layer as well as between weights and
their respective scales provided both stronger shrinkage and better calibrated predictions, at the
expense of increased computation.

One could imagine exploring variational approximations at more extreme ends of the
computation-accuracy spectrum. For instance, a fully factorised approximation that employs
fixed variance distributions over both weights and scales could be used. However, we do not
find such approximations very attractive. First, it is common to place (group) horseshoe priors
over network units (see ; Ghosh & Doshi-Velez, 2017; Ghosh et al., 2019) rather than over indi-
vidual weights. The scale parameters thus only grow linearly with the width of a layer; tying
parameters of their variational approximations provide only a modest computational benefit.
Moreover, empirically we find such approximations to be quite inaccurate. At the other end
of the spectrum, one could use approximating families that do not factorise even across layers
in a network. While jointly modelling the weight parameters is computationally infeasible for
all but the smallest networks, using a distribution over scales that does not factorise within or
across layers may be feasible. It remains to be seen whether such elaborate variational families
indeed yield better approximate posteriors or succumb to optimisation challenges.
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Apart from these trade-offs, moving beyond unimodal Gaussian approximations, exploring
alternate auxiliary variable representations of the horseshoe distribution, and developing algo-
rithms for capturing posterior multimodality are all likely to be useful for better characterising
the posterior. Recent advances in stochastic MCMC algorithms(Ma et al., 2015) constitute
another promising direction, but would need to overcome difficulties stemming from challeng-
ing posterior geometries exhibited by the horseshoe distribution and multimodality exhibited
by BNNs.

References

Blundell, C., Cornebise, J., Kavukcuoglu, K. & Wierstra, D. (2015). Weight Uncertainty in Neural Networks. In
Proceedings of the 32nd International Conference on Machine Learning (ICML-15). Lille, France, pp. 1613–1622.

Ghosh, S. & Doshi-Velez, F. (2017). Model Selection in Bayesian Neural Networks via Horseshoe Priors. NIPS Work.
Bay. D. Learn.

Ghosh, S., Jiayu, Y. & Finale D.-V. (2019). Model selection in Bayesian neural networks via horseshoe priors. J. Mach.
Learn. Res., 20(182), 1-46.

Hoffman, M.D., Blei, D.M., Wang, C. & Paisley, J. (2013). Stochastic variational inference. J. Mach. Learn. Res.,
14(1), 1303–1347.

Ma, Y.-A., Chen, T. & Fox, E. (2015). A complete recipe for stochastic gradient MCMC. In Advances in Neural
Information Processing Systems. Montreal, Quebec, Canada, pp. 2917–2925.

Mohamed, S., Rosca, M., Figurnov, M. & Mnih, A. (2019). Monte Carlo gradient estimation in machine learning.
arXiv preprint arXiv:1906.10652.

[Received January 2020, accepted March 2020]

International Statistical Review (2020), 0, 0, 1–3
© 2020 The Authors. International Statistical Review © 2020 International Statistical Institute.


	Discussion

