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Guidelines for reinforcement learning in 
healthcare
In this Comment, we provide guidelines for reinforcement learning for decisions about patient treatment  
that we hope will accelerate the rate at which observational cohorts can inform healthcare practice in a safe,  
risk-conscious manner.
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From sepsis warning systems to 
identifying subtle disease signals in 
medical images, artificial intelligence 

(AI) is poised to transform healthcare for 
the better1. However, AI is not a panacea, 
and if used improperly, these systems can 
replicate bad practices rather than  
improve them.

Reinforcement learning (RL) is a subfield 
of AI that provides tools to optimize 
sequences of decisions for long-term 
outcomes. For example, faced with a patient 
with sepsis, the intensivist must decide if and 
when to initiate and adjust treatments such 
as antibiotics, intravenous fluids, vasopressor 
agents, and mechanical ventilation. Each 
choice affects the patient’s survival at the 
end of the hospital stay, the quality of the 
patient’s life upon recovery, and so on. 
While the RL approaches currently used 
to optimize treatment sequences vary, 
they all fall into a common framework. 
RL algorithms take as input sequences of 
interactions (called histories) between the 
decision maker and their environment. 
At every decision point, the RL algorithm 
chooses an action according to its policy and 
receives new observations and immediate 
outcomes (often called rewards).

In the context of healthcare, RL has been 
applied to optimizing antiretroviral therapy 
in HIV2, tailoring antiepilepsy drugs for 
seizure control3, and determining the best 
approach to managing sepsis4. In contrast 
with more common uses of AI, such as 
one-time predictions, the output (or the 
decision) of a RL system affects both the 
patient’s future health and future treatment 
options5. As a result, long-term effects are 
harder to estimate (Fig. 1).

To illustrate the potential pitfalls 
in reinforcement learning, we use the 
example of sepsis management, for which 
there remains wide variability in the way 
clinicians make decisions. In the context 
of sepsis, a history may include a patient’s 
vital signs and laboratory tests. The 

actions are all the treatments available 
to the clinician, including medications 
and interventions. The rewards require 
clinician input: they should represent the 
achievement of desirable tasks, such as 
stabilization of vital signs or survival at 
the end of the stay. By weighing different 
rewards, a RL algorithm could be designed 
to target short-term outcomes, such as 
liberation from mechanical ventilation, 
or longer-term outcomes, such as 
prevention of permanent organ damage. 
Note that defining short-term goals is 
not straightforward since ideal sepsis 
resuscitation targets remain elusive6.

We discuss three key questions that 
should be considered when reading an RL 
study. These questions uncover limitations 
when making quantitative performance 

claims about RL-learned algorithms from 
observational data.

Is the AI given access to all variables 
that influence decision making?
A clinician could not be expected to 
make good decisions about a patient’s 
vasopressor medication dosing without 
knowing about the patient’s comorbid 
cardiac condition as well as what has 
transpired in the last 24 hours, and neither 
can an AI. To estimate the quality of a 
new treatment policy based on historical 
data, it is vital to take into account any 
information that was used by clinicians 
in their decision making—failing to 
do so may result in estimates that are 
confounded by spurious correlation. For 
example, severely sick septic patients may 
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Fig. 1 | Sequential decision-making tasks. To perform sequential decision making, such as for sepsis 
management, treatment-effect estimation must be solved at a grand scale—every possible combination 
of interventions could be considered to find an optimal treatment policy. The diagram shows the scale 
of such a problem with only three distinct decisions. Blue and red people denote positive and negative 
outcomes, respectively. Credit: Debbie Maizels/Springer Nature
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receive fluids earlier than healthier patients 
yet have worse outcomes, which is clearly 
a result of them being sicker in the first 
place. This difference in outcome may lead 
to an analysis that associates earlier fluid 
administration with worse outcomes if 
not properly adjusted for clinical context. 
Adjusting for confounding factors is 
challenging when validating the average 
treatment effect of a single decision7; this 
problem becomes significantly harder 
when decisions are made in sequence. 
Thus, when reading an RL study, it is 
important to be conscientious of possible 
confounding factors, even more so than 
for standard prediction studies, as the 
sequential nature of the problem could 
lead to confounding effects in the long as 
well as short term.

How big was that big data, really?
When evaluating the quality of an RL 
algorithm retrospectively, the choice of 
the proposed treatment policy affects 
the effective sample size. This occurs 
because most approaches for evaluating 
RL policies from observational data weigh 
each patient’s history on the basis of 
whether the clinician decisions match the 
decisions of the policy proposed by the RL 
algorithm8. The reliability (variance) of the 
treatment-quality estimate depends on the 
number of patient histories for which the 
proposed and observed treatment policies 
agree—a quantity known as the effective 
sample size. The possibilities for mismatch 
between the actual decision and the 

proposed decision grow with the number 
of decisions in the patient’s history, and 
thus RL evaluation is especially prone to 
having small effective sample sizes (Fig. 2).

For example, we found that the effective 
sample size for a sepsis management policy 
on a cohort of 3,855 patients was only a 
few dozen9. In general, the effective sample 
size will be larger if the learned policies are 
close to the clinician policies, suggesting 
that RL with observational data will be 
most reliable for refining existing practices 
rather than discovering new treatment 
approaches.

Will the AI behave prospectively  
as intended?
Even if the AI had access to all the important 
variables and the evaluation was perfect, 
errors in problem formulation or data 
processing can lead to poor decisions. 
Simplistic reward functions may neglect 
long-term effects for meaningless gains: for 
example, rewarding only blood pressure 
targets may result in an AI that causes 
long-term harm by excessive dosing of 
vasopressors. Errors in data recording or 
preprocessing may introduce errors in the 
reward signal, misleading the RL algorithm. 
Finally, the learned policy may not work  
well at a different hospital or even in the 
same hospital a year later if treatment 
standards shift.

Thus, it is essential to interrogate 
RL-learned policies to assess whether 
they will behave prospectively as 
intended. An increasing body of work on 

interpretable machine learning enables such 
introspection10.

Toward standard practice
Together, big data and RL provide unique 
opportunities for optimizing treatments in 
healthcare, especially those undertaken in 
sequence. However, to realize this potential, 
caution and due diligence must be exercised 
in their application and evaluation. ❐
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Fig. 2 | Effective sample size in off-policy evaluation. Each dot represents a single patient at each stage of treatment, and its color indicates the patient’s 
characteristics. The more decisions that are performed in sequence, the likelier it is that a new policy disagrees with the one that was learned from. Gray 
decision points indicate disagreement. Use of only samples for which the old policy agrees with the new results in a small effective sample size and a biased 
cohort, as illustrated by the difference in color distribution in the original and final cohort. Credit: Debbie Maizels/Springer Nature
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