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Abstract

We are often interested in explaining data
through a set of hidden factors or features.
To allow for an unknown number of such hid-
den features, one can use the IBP: a non-
parametric latent feature model that does
not bound the number of active features in
a dataset. However, the IBP assumes that
all latent features are uncorrelated, making
it inadequate for many real-world problems.
We introduce a framework for correlated non-
parametric feature models, generalising the
IBP. We use this framework to generate sev-
eral specific models and demonstrate appli-
cations on real-world datasets.

1 INTRODUCTION

Identifying structure is a common problem in ma-
chine learning. For example, given a set of images,
we may wish to extract the objects that compose
them. Slightly more abstractly, a country’s develop-
ment statistics might depend on its geographic loca-
tion or political system. In the unsupervised setting,
both the identities of the features—that is, if they cor-
respond to objects or locations or some more com-
plex aspect of the data—and assignments of features
to observations are unknown. In many real-world situ-
ations, the number of hidden features is also unknown.

The Indian Buffet Process (Griffiths & Ghahra-
mani, 2005) is an attractive distribution on feature-
assignments because it does not fix the number of hid-
den features realised in a set of observations. While the
number of realised features in a finite dataset is guar-
anteed to be finite, the number of features is expected
to grow with the number of observations. These prop-
erties are realistic in many situations: for example, we
expect to see new objects as we observe more images.

The IBP distribution assumes the observations are ex-
changeable and the features are independent. Recent

work has extended the IBP to include correlated ob-
servations. The phylogenetic IBP (Miller et al., 2008)
uses a tree structure to describe similarities between
observations, and similar observations are likely to
contain similar features. For time series data, the infi-
nite factorial HMM (Van Gael et al., 2009) is an IBP-
like model that encodes that subsequent observations
are likely to share features.

In many scenarios, the latent features are also corre-
lated. For example, suppose observations correspond
to image pixels. Latent features might be objects in
the scene, such as a pen or lamp. Sets of objects—
that is, certain latent features—may generally occur
together: an image with a desk is likely to contain
a pen; an image with a knife is likely to contain
a fork. When modelling correlations, the correlated
topic model (Blei & Lafferty, 2006) directly learns pa-
rameters for a joint distribution. An alternative ap-
proach might just group co-occurring objects as a sin-
gle latent feature and thus avoid the need to model
correlations between features. However, ignoring the
underlying structure could result in less robust infer-
ence if the set of features does not always occur as a
set—for example, if a pen is missing from a particular
desk—and fails to leverage co-occurring features for
inference.

Our approach, however, draws on the hierarchical
structures of sigmoid (Neal, 1992) and deep be-
lief (Hinton et al., 2006; Bengio, 2007) networks, where
correlations reflect a higher layer of structure. For ex-
ample, in the image scenario, being at a table may
explain correlations between knives and forks. In the
nonparametric setting, topic models such as Pachinko
allocation (Li et al., 2007) also use hierarchies to model
correlations. Closest to our interest in nonparametric
feature models is the infinite hierarchical factorial re-
gression (Rai & Daume, 2009). IHFR is a partially-
conditional model that uses an IBP to determine what
features are present and then applies Kingman’s coa-
lescent to model correlations given the active features.
Drawing on the use of hierarchies in topic models and
deep belief nets, we develop a more general frame-



work for unconditional nonparametric correlated fea-
ture models and demonstrate applications to several
real-world datasets.

2 GENERAL FRAMEWORK

Our nonparametric correlated featured model places a
prior over a structure describing the correlations and
cooccurrences among an infinite number of features
and observations. Inference on this infinite structure
is tractable if the prior ensures that a finite set of ob-
servations affects only a finite part of the structure.
More generally, the following properties would be de-
sirable in a nonparametric correlated feature model:

• A finite dataset should be generated by a finite
number of latent features with probability one.

• Features and data should remain exchangeable.

• Correlations should capture motifs, or commonly
occuring sets of features.

The first desideratum requires particular attention if
the hidden features are correlated. The model must
ensure that the correlations do not cause an infinite
number of features to be expressed in any observation.

Let the feature assignment matrix Z be a binary ma-
trix where znk = 1 if feature k is present in observation
n. In our model, Z depends on a set of category as-
signments C and a set of category-feature relations M
(see graphical model in figure 1). The binary category-
assignment matrix C contains cnl = 1 if observation
n is a member of category l. Similarly, mlk = 1 if
feature k is associated with category l. Features be-
come correlated because observations choose features
only through categories, and categories are associated
with sets of features (see figure 2 for a more explicit
illustration). Finally, the data X are produced by the
feature assignments Z and some parameters A.

Formal Description. For each observation, the
generative model first draws one or more categories via
a non-parametric process with hyper-parameter αC .

C ∼ NP1(αC) (1)

where cnl indicates whether category l is active in ob-
servation n. A second nonparametric process with pa-
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Figure 1: Graphical model. Feature assignments Z de-
pend on category assignments C and category-feature
relations M . Data X depend on Z and parameters A
(all hyperparameters omitted for clarity).
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Figure 2: Plate for one observation. Observation n is
generated from a set of categories cnl which in turn se-
lect features znj . The connection matrix M describes
the links between features and categories.
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Figure 3: Cartoon of the matrix product. The function
f describes how feature assignments are derived from
the category matrix C and the connection matrix M .

rameter αM associates categories with features:

M ∼ NP2(αM ) (2)

where mlk indicates whether category l chose feature
k. The processes NP1 and NP2 should ensure that,
with probability one, each observation is associated
with a finite number of categories and each category
is associated with a finite number of features. Finally,
the feature-assignment matrix Z = f(CM), where f is
some (possibly stochastic) function that converts the
matrix product CM element-wise into a set of binary
values. Figure 3 shows a cartoon of this process.1

We summarise sufficient conditions on the binary-
valued function f to ensure a finite set of observations
will contain a finite number of active features below:

Proposition 1. If znk = f(c⊤n mk) and c⊤n mk = 0
implies f(c⊤n mk) = 0, then the number of features in

a finite dataset will be finite with probability one.

Proof. Let L be the number of active categories in
N observations, and let K be the number of active
features in the L categories. The conditions on NP1

ensure L is bounded with probability one. Since L
is bounded, the conditions on NP2 ensure K is also
bounded with probability one. Let C1:N denote the
first N rows of C. Thus the product C1:NM contains
at most NK nonzero values. The second condition on
f ensures that Z1:N has a finite number of non-zero
values with probability one.

1It is possible to add more layers to the hierarchy, but
we believe two layers should suffice for most applications.
Inference also becomes more complex with more layers.



Intuitively, the sufficient conditions imply (1) only the
presence—not the absence–of a category can cause fea-
tures to be present in the data and (2) categories can
only cause the presence of the features associated with
them. These implications are similar to those of the
standard IBP model, where we require only the pres-
ence of a feature has an effect on the observations.

The previous discussion was limited to situations
where C, M , and Z are binary. However, other sparse
processes may be used for C and M , and the output of
f(·) need not be binary as long as f(0) = 0 with prob-
ability one. For example, the infinite gamma-poisson
process (Titsias, 2007) creates a sparse integer-valued
matrix; such a prior may be appropriate if categories
are associated with multiple copies of a feature.

3 SPECIFIC MODELS

Many choices exist for the nonparametric processes
NP1 and NP2 and the function f . Here we describe
nested models that use the Dirichlet Process (DP) and
the Indian Buffet Process as base processes. However,
other models such as the Pitman-Yor Process could
also be used. The DP-IBP model is a factorial ap-
proach to clustering where we expect clusters to share
features. The IBP-IBP models add an additional layer
of sophistication: an observation may be associated
with multiple feature sets, and sets may share features.

The DP and the associated Chinese restaurant pro-
cess (CRP) are a distribution on discrete distributions
which can be used for clustering (for an overview, see
(Teh, 2007)). We represent the CRP in matrix form
by setting cnl = 1 if observation n belongs to clus-
ter l. The IBP (Griffiths & Ghahramani, 2005) is a
feature model in which each observation is associated
with Poisson(α) features. Similar to the DP, a few pop-
ular features are present in most of the observations.
Specifically, given N total observations, the probabil-
ity that observation n contains an active feature k is
rk/N , where rk is the number of observations currently
using feature k. Both the CRP and the IBP are ex-
changeable in the observations and features.

3.1 DP-IBP MODEL

The DP-IBP model draws C from a CRP and M from
an Indian Buffet Process. We let f(c⊤n mk) = c⊤n mk

and thus Z = CM :

C ∼ CRP(αC) (3)

M ∼ IBP(αM )

znk = c⊤n mk

In the context of the Chinese restaurant analogy for
the DP, the DP-IBP corresponds to customers (ob-
servations) sitting at tables associated with combo

meals (categories) instead of single dishes, and differ-
ent combo meals may share specific dishes (features).
As in the DP, the dishes themselves are drawn from
some continuous or discrete base distribution.

Properties. The properties of the DP and IBP en-
sure the DP-IBP will be exchangeable over features
and the observations. The distribution over the num-
ber of features has no closed form, but we can bound
its expectation. The expected number of categories
NC in a DP with N observations is O(αC log(N)).
Given NC , the number of features Nf is distributed as
Poisson(αMHNC

), where HNC
is the harmonic number

corresponding to NC . We apply Jensen’s inequality
to the iterated expectations expression for E[Nf ] to
bound the expected number of features:

E[Nf ] = Ec[Em[Nf |Nc]] (4)

= Ec[αMHNc
]

= Ec[αM log(Nc) + O(1)]

≤ αM log(EC [Nc]) + O(1)

= αM log(O(αC log(N))) + O(1)

= O(log log(N))

Inference. We apply the partial Gibbs sampling
scheme described in (Neal, 2000) to resample the DP
category matrix C. The IBP matrix M can be resam-
pled using the standard equations described in (Grif-
fiths & Ghahramani, 2005). In both cases, the sam-
pling equations have the same general form:

P (mlk|X,Z,C,M−lk, A) (5)

∝ P (mlk|M−lk)P (X|Z,A)P (Z|C,M)

where M−lk denotes the elements of M excluding mlk.
An attractive feature of the DP-IBP model is that
because Z is a deterministic function of C and M ,
the likelihood term P (X|Z,A)P (Z|C,M) reduces to
P (X|C,M,A). Because the data is directly considered
when sampling categories and connections, without Z
as an intermediary, the sampler tends to mix quickly.

Demonstration. We applied the Gibbs sampler to
a synthetic dataset of 700 block images from (Griffiths
& Ghahramani, 2005). The 6x6 pixel images contained
four types of blocks, shown in the lower left quadrant of
figure 4, which always cooccurred in specific combina-
tions (lower right quadrant). We ran 3 chains for 1000
iterations with the DP-IBP model, using a likelihood
model of the form X = ZA + ǫ. The features A had
an exponential prior and ǫ was Gaussian white noise
uncorrelated across observations and dimensions. All
hyperparameters were sampled using vague Gamma
priors.

The top half of figure 4 shows a representative sam-
ple from the inference. The DP-IBP recovers that



the images contain four types of blocks cooccurring
in nine combinations. In particular, the DP-IBP
hierarchy allows the inference to naturally discover
the null-cluster, corresponding to no features being
present, without additional parameters (as required
for IHFR (Rai & Daume, 2009)). The sampler quickly
converges near the true number of features and clus-
ters (figure 5).

Features Found Clusters Found

True Features True Clusters

Figure 4: Sample showing structure found by the DP-
IBP. Both the features and clusters (top row) closely
match the underlying structure (bottom row).
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Figure 5: Evolution of the number of clusters and fea-
tures (dashed lines show true values). The histograms
of posterior over feature and cluster counts were com-
puted from the final 500 samples. The hyperparame-
ters converged in a similar fashion.

3.2 IBP-IBP MODEL

The DP-IBP associates each observation with only one
cluster. However, some situations may naturally con-
tain observations with memberships in multiple cate-
gories. For example, a image of a picnic may contain
typical outdoor elements, such as trees and sky, as well
as food-related objects. A multiple membership model
at the category level would allow an observation to be
part of multiple sets. In the IBP-IBP model, we place
IBP priors on both C and M and set the link function
f to the ‘or’ of the product c⊤n mk:

C ∼ IBP(αC) (6)

M ∼ IBP(αM )

znk = (c⊤n mk) > 0

Properties. The expected number of features in the
IBP-IBP can be bounded similarly to the DP-IBP. The
number of active categories NC in N observations is
distributed as Poisson(αCHN ), so the expected num-
ber of categories is still O(log(N)). Given a number
of categories, the number of features is distributed as
Poisson(αMHNC

). Thus, by equation 4, the expected
number of features is bounded by O(log log(N)). The
distribution of Z is exchangeable in both the features
and observations from the properties of the IBP.

Inference. To Gibbs sample in the IBP-IBP model,
we use the equations of (Griffiths & Ghahramani,
2005) to sample both C and M .

3.3 NOISY-OR IBP-IBP MODEL

The ‘or’ in the IBP-IBP model implies that a feature is
present in an observation if any of its parent categories
are present. This hard constraint may be unrealistic:
for example, kitchen scenes may often contain refrig-
erators, but not always. The noisy-or IBP-IBP uses a
stochastic link function in which

P (znk = 1|C,M) = 1 − qc⊤
n

mk (7)

where q ∈ [0, 1] is the noise parameter (Pearl, 1988).2

An attractive feature of the noisy-or formulation is
that the probability of a feature being present increases
as more of its parent categories become active. For
example, we might expect a scene tagged with both
kitchen and dining categories may be more likely to
contain a table than a scene tagged as only a kitchen.

The noisy-or IBP-IBP is summarised by:

C ∼ IBP(αC) (8)

M ∼ IBP(αM )

znk ∼ Bernoulli(1 − qc⊤
n

mk)

Properties. The noisy-or IBP-IBP inherits its ex-
changeability properties and feature distribution from
the IBP-IBP (the parameter q only scales the expected
number of features by a multiplicative constant). As
q → 0, the noisy-or IBP-IBP reduces to the IBP-IBP.

Inference. Because f is stochastic, the feature as-
signments Z must also be sampled. Given M , C, and
X, the probability that a feature znk = 1 is given by

P (znk = 1|C,M,X,A) ∝ (1 − qc⊤
n

mk)P (xn|zn, A).
(9)

Gibbs sampling C and M is identical to the IBP-IBP
case except the likelihood terms now depend on Z and

2Proposition 1 requires that the noisy-or does not also
leak, that is, P (znk = 1) must be 0 if all the parents cn of
znk are zero.



are generally independent of the data.3 For example,
when resampling mlk,

P (mlk|X,Z,C,M−lk, A) (10)

∝ P (mlk|M−lk)P (X|Z,A)P (Z|C,M)

∝ P (mlk|M−lk)P (Z|C,M)

The constraints of the noisy-or model pose problems
when naively sampling a single element of C or M .
For example, suppose n is the only observation using
category l. According to the IBP prior, Prcnl = 1] =
0. However, if cnl is the only active parent of feature
znk, and znk = 1, then according to the likelihood
P (cnl = 1) = 1. In such situations, cnl and its children
from zn should be sampled jointly.

Another problem arises when all the parents of znk are
inactive but the likelihood P (xn|zn, A) prefers znk = 1.
To set znk = 1, one of znk’s parents must become ac-
tive. However, if znk = 0, znk’s parents are unlikely to
turn on. Jointly sampling znk with its parents resolves
these issues.

Features Found Clusters Found

True Features True Clusters

Figure 6: Sample showing structure found by the
Noisy-Or IBP-IBP. Both the features and clusters (top
row) reflect the underlying structure (bottom row),
but often contain replicas.

Demonstration. We return to the blocks example
of section 3.1, using the same clusters as before. How-
ever, unlike in section 3.1, we allow multiple (often
overlapping) clusters to be present in an observation
when generating the observations. Thus, the obser-
vations used to demonstrate the noisy-or IBP are not

the same as the observations used in section 3.1; they
have significantly more complex structure.

3The exception is when new features are being sampled.

Figure 6 shows the inferred features and clusters for a
typical sample from the inference. The inferred fea-
tures largely match the true features, but they are
more noisy, and features are sometimes repeated. Sim-
ilarly, the inferred clusters contain the true clusters
and some replicas. The ghosted features and replicas
are a common occurrence when sampling in IBP-like
models; they occur when multiple observations pro-
pose similar features. Over time they tend to disap-
pear, but this time can be exponential in the size of
the dataset.4
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Figure 7: Evolution of the number of clusters and fea-
tures. The dashed lines show the true values; the his-
tograms show the posterior over the number of fea-
tures and clusters. As before, the hyperparameters,
given vague priors, converged in a similar fashion.

Figure 7 confirms that the number of features and cat-
egories is often overestimated. The posterior of the
flexible noisy-or has many local optima; even after the
sampler has mixed, many modes must be explored.
However, the replicas do not prevent the noisy-or IBP-
IBP from producing good reconstructions of the data.

4 EXPERIMENTS

We applied the three models of section 3 to five real-
world datasets (table 1). The gene data consisted of
expression levels for 226 genes from 251 subjects (Car-
valho et al., 2008). The UN data consisted of a dense
subset of global development indicators, such as GDP
and literacy rates, from the UN Human Development
Statistics database (UN, 2008). Similarly, the India
dataset consisted of development statistics from In-
dian households (Desai et al., 2005). The joke data
consisted of a dense subset of continuous-valued rat-
ings of various jokes (Goldberg et al., 2001). Finally,
the robot data consisted of hand-annotated image tags
of whether certain objects occurred in images from a
robot-mounted camera (Kollar & Roy, 2009).

Inference was performed using uncollapsed Gibbs sam-
pling on 3 chains for 1000 iterations. Chains for more

4One might introduce Metropolis moves to merge fea-
tures or clusters. However, we find that these moves, while
effective on small problems, have little effect in more com-
plex, higher-dimensional real-world models.
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Figure 8: Negative predictive log-likelihoods (circles) and L2 reconstruction errors (bars) for held-out data from
the real-world datasets. Both metrics have the same scale. Smaller values indicate better performance; note that
models have consistent performance with respect to both predictive log-likelihoods and L2 reconstruction errors
across all datasets.

complex models were initialised with the final sample
outputted by simpler models: the IBP and the DP-IBP
were initialised with the output of the DP, the IBP-
IBP was initialised from the DP-IBP, and the noisy-or
IBP-IBP was initialised from the IBP-IBP. The likeli-
hood model xn = znA+ ǫ, where akd ∼ Exponential(λ)
and the noise ǫ ∼ Normal(0, σ2

n) was used for the
continuous-valued datasets. Under this model, the
conditional posterior on akd was a truncated Gaus-
sian. For the binary robot data, the likelihood was
given by

P (xnd = 1|znd = 1) = 1 − md

P (xnd = 1|znd = 0) = fd

where fd was the probability of a false detection, and
md was the probability of a missed detection. These
simple likelihood models are not necessarily the best
match for complex, real-world data. However, even
these simple models allowed us to find shared struc-
ture in the observations. (For a real application, of
course, one would use an appropriately designed likeli-
hood model.) Finally, all hyperparameters were given
vague priors and sampled during the inference.

Quantitative Evaluation We evaluated inference
quality by holding out approximately 10D Xnd values
during the initial inference. No observation had all of
its dimensions missing, and no dimension had all of its
observations missing. Because models had different

Table 1: Descriptions of data sets.
Dataset N D Description
UN 155 15 Human development statistics

for 155 countries
Joke 500 30 User ratings (continuous) of

30 jokes
Gene 251 226 Expression levels for 226 genes
Robot 750 23 Visual object detections made

by a mobile robot
India 398 14 Socioeconomic statistics for

398 Indian households

priors, inference quality was measured by evaluating
the test log-likelihood and the L2 reconstruction error
of the missing elements (a complete Bayesian model
comparison would require an additional prior over the
model classes). The evaluation metrics were averaged
from the final 50 samples of the 3 chains.

Table 2 and figure 8 compare the reconstruction er-
rors and predictive likelihoods of the three variants
with the standard IBP, which does not model correla-
tions between features, the DP, a flat clustering model.
As we are most interested in feature-based models
(IBP, DP-IBP, IBP-IBP, or noisy-or IBP-IBP), both
the best-performing feature-based model, as well as
the best overall model, are highlighted in bold. Plots
for the hyperparameters are not shown, but the pos-
teriors seemed to converge during the inference.

Table 2: Predictive likelihoods on held-out data
(higher is better). Bold figures indicate the best
feature-based and best overall models for each dataset.
Performance with respect to L2 reconstruction errors
had similar patterns (see figure 8).
Model UN Jokes Gene Robot India
DP -3.5e5 -45.5 -1.2 0.8 -2.0e9

IBP -1.7e5 -58.7 -1.5 0.7 -8.0e9
DPIBP -17.0e5 -44.0 -1.4 0.8 -2.7e9
IBPIBP -25.0e5 -48.6 -1.6 0.8 -3.0e9
noIBPIBP -58.0e5 -45.6 -2.0 0.7 -2.6e9

The structured variants outperformed the standard
IBP in almost all cases. In particular, the DP-IBP usu-
ally had the best performance among the feature-based
models. Its performance was on par with the DP—
a simpler model with a much more robust inference
procedure. (Indeed, we believe that the robustness
of inference in the DP—and the difficulty of inference
in the complex posterior landscapes of the structured
models, is one of the main reasons for the difference in
the models’ performance.) Unlike the flat clusters pro-
vided by the DP, the DP-IBP can provide a structured
representation of the data alongside good quantitative
performance. These more qualitative benefits are ex-



plored in the next section.

Qualitative Examples5 In table 2, we saw DP
clustering had lower error rates than any of the feature-
based models on the UN dataset. However, even in this
case, the structured representation of the correlated
feature models can provide some explanatory power.6

The image in figure 9 shows a representative feature
matrix A from the DP-IBP. Each row in the matrix
corresponds to a development statistic; for visualisa-
tion the values in each row have been scaled to [0, 1],
each column corresponds to a feature.

We see that the first column, with high GDP and
healthcare scores, is what we would expect to find in
highly developed countries. The third column is rep-
resentative of countries with an intermediate level of
development, and the final column, with low GDP and
high tuberculosis rates, has a pattern common in de-
veloping countries. The other columns highlight spe-
cific sets of statistics: column two augments technol-
ogy and education, while column four corresponds to
higher private healthcare spending and higher prison
populations (and always occurs in conjunction with
some other features).

What distinguishes the DP-IBP from simple cluster-
ing is that the features are shared among clusters. The
circles on top of the feature matrix in figure 9 repre-
sent categories or clusters (only 5 of the 15 are shown).
The M matrix is visualised in the links between the
categories and the features. Each column represents
a feature, where the rows are the dimensions of the
data. As with flat clustering, some categories (C2, C5)
only use one feature (that is, connect to only one col-
umn). For example, certain developed nations such as
Canada and Sweden are well characterised by only the
first feature, and developing nations such as Mali and
Niger are characterised by only the final feature.

However, feature sharing allows other categories to use
multiple features. For example, the United States has
high development statistics, like Canada and Sweden,
but it also has, added on, relatively high tuberculosis
rates, private healthcare spending, and prison popula-
tions. Showing what characteristics the United States
shares with other countries is more informative than
simply placing it in its own cluster.

The DP-IBP also found informative clusters in the
robot data. As with the UN dataset, the DP-IBP
was able to do a more sophisticated clustering that
reflected shared elements in the data. Some of the
categories of image tags discovered are listed below:

5We focus on the UN and robot datasets here; examples
from other data sets will be made available online.

6We stress that as we are using unsupervised methods,
the structures found cannot be considered to be discovering
the ‘true’ or ‘real’ structure of dataset. We can only say
that the structures found explain the data.

Figure 9: Part of a DP-IBP sample from the UN data.
The rows in the image correspond to the development
statistics, and columns represent feature vectors. The
top row of circles, with links to various features, are
some of the categories in this sample (there were 15
categories in total). Representative countries are listed
above each category.

C1: hallway, door, trash can, chair, desk,

office, computer, whiteboard

C2: door, trash can, robot, bike,

printer, couch

C3: trash can, monitor, keyboard, book,

robot, pen, plant

C4: hallway, door, trash can

Categories C1 and C4 often occurred singly in the
data, in the form of simple clusters that corresponded
to hallway and office scenes. Categories C2 and C3
often augmented category C1, reflecting office scenes
that also included parts of a printing area (C2) and
close-up views of desk spaces (C3).

5 DISCUSSION

We find in particular that the DP-IBP model, combin-
ing the unbounded number of clusters of a DP mixture
with the nonparametric shared features of an IBP, pro-
vides a promising method for hierarchical hidden rep-
resentations of data. Occupying a regime between pure
clustering and pure feature-based modelling, the DP-
IBP can capture dominant categorical qualities of the
real-world datasets but still discover shared structure



between clusters. It outperforms the standard IBP
because allowing categories to share features lets each
feature use raw evidence from more observations and
thus grow more refined. At the same time, forcing
observations to be associated with only one category
limits the model’s flexibility. Thus, the DP-IBP has
fewer of the identifiability issues common to feature-
based models and produces more relevant categories.

In some situations, the more complex structured mod-
els may have been better matches for the data—for
example, the robot data almost surely contained situ-
ations where multiple categories of noisy features were
present. Here, better inference techniques could have
proved beneficial. Split-merge moves may help accel-
erate mixing, but from a limited set of experiments we
found that the benefits were highly data dependent:
such moves provided some benefit in the toy images
data set, where replica features tended to be a prob-
lem, but proved to be less useful in the more complex
local optima of the real world data. Inference that uses
“soft” assignments—such as variational techniques—
may prove to be more robust to these local optima.

We see an important trade-off when choosing what
kind of nonparametric model to apply. Our work
was initially motivated to create a model for scenar-
ios like the robot data, and thus we desired a gen-
erative process that would explain noisy, multiple-
membership correlated feature models. An interest-
ing question is how one may perform model selec-
tion across different choices of nonparametric priors
within this general framework: while these models per-
form well when the prior reflects the data—such as in
the toy blocks examples—the structure appropriate for
real-world data is much more difficult to ascertain.

6 CONCLUSION

Our probabilistic setting generates models with an un-
bounded number of features and categories and pro-
vides a general framework for modelling a variety of
different types of correlations. The framework can also
model other useful properties such as feature sparsity
(that is, many observations being feature-less). Inter-
esting extensions might include incorporating aspects
of the phylogenetic IBP or infinite factorial HMM to
create models that consider correlations both between
features and also between observations, as well as ex-
ploring methods to model negative correlations. The
work in this paper also provides avenues which could
be used to develop “deep” nonparametric models with
multiple unbounded layers of hidden variables.

In particular, the DP-IBP model, combining nonpara-
metric clustering with the shared features of an IBP,
is a promising method for layered representations of
latent variables. However, given the complexities of
performing inference in these models, more analysis is

needed to study the behaviours these models in real-
world applications and to determine the sensitivities of
the models to various hyper-priors. The work in this
paper is only one step toward achieving more struc-
tured nonparametric models.
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