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Abstract

Model-based approaches to disease progression are desirable because they poten-1

tially allow one to reason about the future effects of a series of treatment choices2

easily. However, the heterogeneity of treatment choices and response in HIV has3

made it challenging for model-based methods alone to succeed. We present a4

kernelised version of a model-based RL approach which allows us to accurately5

forward-simulate counterfactuals — how well might an alternative treatment have6

worked — to achieve state-of-the-art treatment recommendations.7

1 Introduction8

Model-based reinforcement learning techniques are appealing because they allow us to reason about9

possible future outcomes and events, and use that information to act appropriately in the present: a10

person that knows their future risk of stroke may choose to change their current diet and lifestyle11

to reduce that risk; a person who knows which HIV treatments will lead to future drug resistance12

may choose a different set of therapies. Model-based approaches assess these risks by first building a13

state-space model that captures the underlying process: we may posit that the patient’s underlying14

physiological state s evolves based on actions a, and emits observations o based on some distributions15

p(o|s, a). In contrast, kernel-based approaches assess these risks by finding patients with similar16

histories h; if two histories h and h′ are similar, then perhaps the corresponding patients will17

experience the similar outcomes if they try the same action. However, they tend to fail if an agent18

finds itself in completely new territory as the dynamics of its not-so-near nearest neighbours may give19

a poor indication of what might happen next. Such situations are common when modelling disease20

progression, where there is often a long tail of distinct cases.21

Kernel methods typically perform better in many applications (e.g. [1]) because modelling complex22

dynamical systems such as disease progression is difficult. To retain the benefits of having a model in23

which one can perform true planning and counterfactual reasoning, [8, 4] and [2] present methods for24

incorporating kernels directly into models such as Partially Observable Markov Decision Processes25

(POMDPs). These methods build dynamical systems by predicting next states on the basis of the26

next states of the agent’s current nearest neighbours. However, they tend to fail if an agent finds itself27

in completely new territory — a common situation when modelling disease progression, where long28

tails of distinct cases may exist.29

Recently, [9] used a Mixture-of-Experts (MoE) which switched between policies from a simple30

kernel regression (not a kernelised dynamical model like those above) and policies derived from a31

traditional state-space model learnt on the same data. Applying this model to produce HIV treatment32

recommendations, they found that for outlier patients, decisions based on a simplified model were33

better than incorrectly presuming treatment response would be similar to dissimilar patients. In this34

paper, we build on this idea by introducing the notion of kernelised dynamical switching (KDS).35
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Contributions The work of [9] mixes kernel and model-based approaches on a policy level,36

wherein the mixture-of-experts chooses between therapy policies for a patient. We instead propose37

an approach for combining kernel and model-based approaches on a model level; that is, we switch38

between kernels and model to predict next states for a patient at each particular time point. Thus39

we have a fully model-based system in which we can plan. By smoothly mixing between these40

predictions at each time step, it enables finer-grained modelling of a patient’s possible treatment41

responses, and as a result, leads to more interpretable decisions. On a real cohort of HIV patients, we42

demonstrate that dynamically switching between model and kernel-based predictions significantly43

outperforms previous methods and produces superior treatment policies.44

Related Work While there is little work on directly incorporating kernel-based predictions into45

model-based planning, there are some related threads. The first is combining knowledge from different46

sources. In this vein, Alonso et al. [7] trade off knowledge from both simulations and physical47

experiments by explicitly representing different sources of information and their associated costs48

using an entropy-based search. A related approach in [3] incorporates information from simulations49

as a prior in experiments. Similar efforts based on transfer learning have been proposed, for instance50

[14]. More closely related, are attempts are based on regularising model-based predictions using51

sample rollouts [13] or using kernel Bayes’ rule [12]. However, leveraging kernel predictions and52

model-based learning specifically for simulating counterfactuals in planning is, to our knowledge,53

novel.54

2 Kernelised Dynamic Switching Models55

We introduce the notion of kernelised dynamic switching to leverage predictions of a POMDP model56

and kernel function for simulating counterfactuals in a model-based setting. Given a patient with a57

history ht, we would like to choose the parameters of a POMDP model M and kernel function k(·, ·)58

that allow us to optimise over the predictions of future observations p(ot+1|ht) (and hence rewards).59

We can formulate this in terms of the following loss function:60

L =
∑
s

T∑
t

ps(ot+1|ht)−

φt+1p̂Ms(ot+1|ht) + (1− φt+1)
∑
h′
t

αk(ht, h
′
t)p̂k(ot+1|h′t)

2

.

(1)
Here, ps(ot+1|ht) denotes the true probability of a future observation for a particular patient sequence61

s and history ht. p̂Ms(ot+1|ht) and p̂k(ot+1|h′t) denote the estimates of this probability under both62

the POMDP modelM and through a kernel-based regression respectively. α is a normalising constant.63

The φ parameters trade off the model-based and kernel-based predictions at each forward time step64

for each patient sequence, in order to minimise the loss.65

Optimising the loss function via a multilayer perceptron The loss function in Equation 1 cannot66

be optimised directly since it requires knowledge of the true future observation probability at test67

time — something which we cannot observe. We introduce a surrogate network function φ̂ : θ → R68

to approximate φ. Here, θ denotes the collection of POMDP and kernel parameters, as well as the69

quantile distances between patients in the data set. Our approximate function φ̂ is implemented as a70

multilayer perceptron network and is differentiable. During training time, this allows us to compute71

min
θ

∑
t′

(φt′(θ)− φ̂t′(θ))2 + λ||Ψ(θ)||, (2)

where the true φ parameters are given by the softmax transformation of POMDP observation prob-72

abilities for each patient at each time step, and Ψ(θ) is a regularisation term with strength λ > 0.73

During forward simulation at test time, this is used to predict a suitable φ value for each forward74

time step t′. The future rewards may be computed analogously. In doing so, we can approximately75

optimise the loss function in Equation 1, and trade off the kernel and model-based predictions as76

necessary. The kernelised dynamic switching procedure is shown here as Algorithm 1.77
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Require:
φ̂(·, θ): MLP prediction function, with parameters θ
D = {bt}Nn=1: belief states for each patient at time t
H = {ht}Nn=1: histories of each patient at time t
k(·, ·): kernel parameters
Ω, T,R: POMDP parameters

function KDS(φ̂)
while search depth has not been reached do

Branch on an action at
Predict φ̂ based on Ω, T,R and k(·, ·) and ht, bt
if φ̂ exceeds randomly drawn ε then

Sample ot from POMDP with bt
else Sample ot from nearest neighbours with k(·, ·)
Use the same φ̂ to weight rewards R
Update belief bt according to ot and at
Add ot, at and rt to existing history ht

Backpropagate values up through the search tree to get a∗t
return Updated bt and optimal action a∗t

3 Experiments78

We demonstrate the performance of KDS with a toy example and an application to the HIV therapy79

selection task. In both cases, we compare the performance of KDS against using a kernelised80

planner alone, a POMDP planner, the mixture-of-experts approach described in [9], and a random81

switching policy1. We evaluate our results using two off-policy evaluation methods, namely weighted82

importance sampling (WIS) and doubly-robust off-policy evaluation (DR) [5].83

Toy Example Consider a system that evolves deterministically through 4 states: S1, S2 or S3, and84

finally absorbs in S4. Each agent has a variant that belongs to one of two types: A and B. Agents85

with variants of type A deterministically go through state S2, and agents with variants of type B86

deterministically go through S3. At each stage, there are three actions available: 0, 1 or 2. At each87

time step, the agent observes its variant (which is of one of the two types), as well as its reward. By88

construction, a four-state POMDP cannot learn the optimal policy for this model since the dynamics89

depend on the hidden type of the agent’s variant2. We compare the performance of KDS against the90

aforementioned baselines. Our surrogate network consists of 15 input units and a hidden layer of91

25 units. For the kernelised planning approach, we use a kernel that matches based on the length of92

the agent’s history, action choices, and an observation dependent on the type of variant. We use a93

forward search depth of 4 across all baselines.94

HIV Therapy Selection We make use of a subset of the EuResist database [15] consisting of95

HIV genotype and treatment response data for 32 960 patients, together with their corresponding96

CD4+ and viral load measurements, gender, age, risk group, and the past treatments recorded. The97

database has previously been used to build models such as the therapy alignment model, to predict98

the outcome of a particular therapy [16, 10]. The rewards are specified as in [9]3. We compare KDS99

to the following baselines on a hold-out set of 3 000 patients: (i) the long-term alignment kernel100

based on [1], where the policy chooses a therapy for a patient based on the nearest neighbours with101

the highest long-term reward; (ii) a 20-state POMDP, where the observation space consists of (a)102

binning the values of the viral load using a log scale, (b) 70 mutations that may occur as a result of103

therapy together with a patient’s CD4+ count, gender, risk group. Here, we model time in discrete104

increments of 6 months; (iii) A mixture-of-experts approach which combines POMDP and kernel105

policies from (i) and (ii) using a neural network architecture with a gating layer as in [9]. We perform106

a forward search for therapy choices that optimise outcomes over a 3 year horizon (5 - 6 forward107

1randomly switching between using the POMDP for action selection or using the kernel.
2Further details concerning experimental setup are in the supplement
3See supplement for setup details
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DR WIS
Random –5.84 +− 2.61 –7.79 +− 3.71
Kernel 4.39 +− 1.74 4.86 +− 2.85

POMDP 3.09 +− 1.16 3.84 +− 2.42
MoE 5.62 +− 1.02 5.81 +− 2.37
KDS 6.08 +− 1.14 6.19 +− 1.03

Table 1: Comparison of performances of KDS
vs. baselines for the toy example.

DR WIS
Random –7.31 +− 3.72 –11.48 +− 4.36
Kernel 9.35 +− 2.61 6.42 +− 3.93

POMDP 3.37 +− 2.15 3.86 +− 2.38
MoE 11.52 +− 1.31 12.25 +− 2.01
KDS 12.47 +− 1.38 14.25 +− 1.27

Table 2: Comparison of performances of KDS
vs. baselines for HIV therapy selection.

steps). Our surrogate network here consists of 100 input units and 2 hidden layers of 50 units each.108

Table 2 compares the performance of KDS against the baselines. A higher value indicates a better109

performing treatment policy over the long-term future.110

4 Discussion111

(a) (b) (c)

Figure 1: (a) - (b) Forward simulation of viral load in two sample patients across baselines; (c)
Comparison of log-likelihood across baselines

Combining POMDPs and kernels on a model level produces different policies to mixing on a112

policy level. The results from Tables 1 and 2 show that KDS and MoE produce different policies113

respectively. In both cases, KDS outperforms the MoE approach.114

Dynamically switching between the kernel and POMDP produces the best policy. The results115

from Tables 1 and 2 show that KDS outperforms its competitors and produces policies with higher116

accumulated rewards. Our post-hoc analysis suggests that the kernel based approach tends to be used117

early for predicting outcomes, while the POMDP is used later. One possible explanation for this118

would be that over time, a patient’s treatment history gradually diverges from its nearest neighbours;119

as a result, there may be fewer patients that share similar characteristics and hence fewer action120

choices available from the data itself to consider when planning. This is the point beyond which only121

the POMDP is used for decision-making.122

KDS enables us to forward simulate in a fully model-based setting whilst combining kernel-123

based knowledge, thus leading to policies that can be easily interpreted. In simulating counter-124

factuals we can inspect the results not only in terms of future actions or treatment recommendations,125

but also holistically for the kinds of observations, or mutations and biomarker values we can expect.126

A particular example of this is shown in Figure 1(a)4. In this particular case, we observe that forward127

simulation via KDS enables us to simulate counterfactuals that are closer to the ground truth in128

comparison to the other baselines. A counterexample of this is provided in Figure 1(b), where129

simulation using the KDS policy would produce similar outcomes to the ground truth early on, but130

different outcomes later on. In this instance, the KDS policy is potentially better than the ground truth131

4Additional comparisons with other baselines are provided in the supplement
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policy since it is able sustain a suppressed viral load for longer5. Note that forward simulation of132

observations such as the viral load, cannot be achieved using a MoE approach. Importantly, because133

we can trace through the forward predictions which drive the policies learned, we can assess the134

feasibility of future treatment options more effectively.135
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Supplementary Material178

Toy Example179

Consider a system that evolves deterministically through 4 states: S1, S2 or S3, and finally absorbs180

in S4. Each agent has a variant that belongs to one of two types: A and B. Agents with variants of181

type A deterministically go through state S2, and agents with variants of type B deterministically go182

through S3. At each stage, there are three actions available: 0, 1 or 2. At each time step, the agent183

observes its variant (which is of one of the two types), as well as its reward, which is given by:184

S1


r(a0) = −10

r(a1) = 5

r(a2) = 5

S2


r(a0) = 0

r(a1) = 5

r(a2) = −10

S3


r(a0) = 0

r(a1) = −10

r(a2) = 5

S4 {r = 0185

Thus, the optimal policy for all agents is to initially take either action 1 or 2. Agents with variants of186

type A subsequently transition to S2 where the optimal action is action 1, while agents with variants187

of type B transition to S3 where the optimal action is action 2. Action 0 is safe in states S2 or S3.188

By construction, a four-state POMDP cannot learn the optimal policy for this model because the189

dynamics depend on an additional hidden variable, the type of the agent’s variant. Without the variant190

information, from the POMDP’s perspective, it is equally likely to transition from S1 or S2 starting191

from S0; not knowing where it will end up, it will initially suggest the safe policy of selection action 0192

at the second time-step. For the kernelised planning approach, we use a kernel that matches based on193

the length of the agent’s history, action choices, and an observation dependent on the type of variant.194

Such a choice will lead to optimal policies for agents with common variants. However, agents with195

rare variants will match to some arbitrary other agent, and we can expect the performance of the196

kernelised planner for those agents to be poor. Here, falling back on the POMDP will produce the197

optimal policy. We use a forward search depth of 4 across all baselines.198

HIV Therapy Selection199

(a) (b)

Figure 2: (a) - (b) Forward simulation of viral load in two sample patients across all baselines

We are interested in optimising the therapy choice for a particular patient based on long-term outcomes.200

The rewards in this case are specified by:201

rt =

{−0.7 log Vt + 0.6 log Tt − 0.2|Mt|, if Vt is above detection limits
5 + 0.6 log Tt − 0.2|Mt|, if Vt is below detection limits,

where Vt is the viral load (in copies/mL), Tt is the CD4+ count (in cells/mL), and |Mt| is the number202

of mutations at time t respectively. This function is identical to the reward function presented in [9].203

It penalises instances where a patient’s viral load increases and rewards instances where a patient’s204

CD4+ count increases. It also penalises on the basis of the number of mutations a patient has at205

a particular time, as these may ultimately contribute to resistance and therapy failure. There is a206

bonus for if the viral load is below detectable limits to sustain this over time. The action space in this207

setting consists of the 312 frequently occurring drug combinations in the cohort. Here, we model208
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time in discrete increments of 6 months. We compared the performance of KDS to the baselines209

mentioned in the paper as well as two additional baselines where we set ε from Algorithm 1 to 0.004210

and 0.7 respectively. Figures (2a) and (2b) illustrate forward simulation of the viral loads across all211

the baselines in the two patients described in the paper.212

Reinforcement Learning Background213

Many problems, including therapy selection, involve making a sequence of decisions with long-term214

consequences. The reinforcement learning (RL) framework formalises the sequential decision-making215

process for HIV therapy selection as a series of exchanges between an agent and its environment. At216

each time step, the agent selects an action a and the environment returns observations o as well as an217

immediate reward r. Given a history of length t, ht = {a1, o1, r1 . . . , at, ot, rt}, the agent’s goal is218

to choose the subsequent action to maximise the discounted sum of its expected rewards, E[
∑
t γtrt],219

where γ ∈ [0, 1) trades off between current and future rewards. The decision-making task may220

be formulated as a POMDP [6]. A POMDP m is defined by a finite set of hidden states S (e.g. a221

patient’s true physiological state), actions A and observations O. A transition function T (s′|s, a)222

specifies the probability of transitioning from state s to s′ when taking an action a. Similarly, an223

observation function Ω(o|s, a) specifies the probability of observing o from state s when taking224

action a. The reward function R : S ×A → R specifies the immediate reward that an agent receives225

upon performing an action from a particular state.226

Model-based RL methods learn models of the domain by approximating the dynamics T (s′|s, a) and227

Ω(o|s, a) for each s and a. The model is subsequently used to compute an optimal policy π∗(s, a)228

via planning [11], which may produce further samples from which the model can be further refined.229

The two phases of model learning and planning are typically interleaved repeatedly.230
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