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1. Introduction
Tensor decomposition methods have recently gained pop-
ularity as ways of performing inference for latent variable
models (Anandkumar et al., 2014). The interest in these
methods is motivated by the fact that they come with theo-
retical global convergence guarantees in the limit of infinite
data (Anandkumar et al., 2012; Arora et al., 2013). However,
a main limitation of these methods is that there is no easy
way to enforce prior information on model parameters to
improve inference when the amount of data is limited.

Previous works attempted to alleviate this drawback by mod-
ifying existing tensor decomposition methods to incorporate
specific constraints such as topic sparsity (Sun et al., 2015)
or incorporate modeling assumptions such as the existence
of anchor words (Arora et al., 2013; Nguyen et al., 2014).
All these methods require an ad-hoc modification of the
algorithms to incorporate the specific structure of the prior
information. Furthermore, many of these methods impose
hard constraints on the learned model, which may be unhelp-
ful or even detrimental when we have a lot of data—framed
in the context of Bayesian intuition, when we have a lot of
data, we want our methods to allow the evidence to over-
whelm our priors.

We propose an alternative approach which addresses both
of these issues. It is easily generalizable to any structure
of prior information on the model parameters, and applies
prior information to inference only when the data is insuf-
ficient. We adopt the common view of Bayesian priors as
representing “pseudo-observations” of artificial data which
biases our learned model parameters towards our prior be-
lief (Bishop, 2006). We apply the tensor decomposition
method described in Anandkumar et al. (2014) to data sets
comprised of the actual data and an artificial set of pseudo-
data. We use automatic differentiation (Baydin et al., 2015;
Maclaurin et al., 2015) to optimize our pseudo-data such
that it minimizes a cost function balancing two terms - one
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for imposing our prior knowledge on the inferred model
parameters, and one for keeping the pseudo-data as similar
as possible to the actual data.

We describe a straightforward way to use our method to
impose arbitrary regularizers on the inferred models, and
demonstrate it for several synthetic and real world examples.

2. Background
Tensor decomposition methods Tensor decomposition
methods (TDM) learn the parameters of a latent variable
model given as a matrix A ∈ RD×K , where D is the dimen-
sionality of the data and K the number of latent variables.
The columns of A could represent the means of Gaussian
mixtures or feature assignment probabilities in topic mod-
els such as Latent Dirichlet Allocation (LDA (Blei et al.,
2003)), in which case A is referred to as the topics matrix.
TDM works by leveraging the relationship between the em-
pirical moments of the data and the latent parameters of the
model. Specifically,A is learned by matching the theoretical
moments of the model,

M2 =

K∑
k=1

βkaka
T
k , (1)

M3 =

K∑
k=1

γkak ⊗ ak ⊗ ak, (2)

with their empirical estimates, which can be computed from
data. Here ak is the kth column of A.

The decomposition itself is performed in two stages. First,
we compute a whitening matrix W such that WTM2W =
I , and use W to project M3 to a RK×K×K tensor which
has an orthogonal decomposition. We then use the tensor
power method to decompose the reduced third order tensor.
(For more details we refer the reader to Anandkumar et al.
(2014)).

Priors and regularization of latent variables Quite of-
ten, we have some knowledge or expectation regarding the
structure of the latent topics that we are trying to learn. In
the Bayesian setting, such prior knowledge is encoded as the
distribution from which the hidden parameters are drawn.
Such priors can be useful to inform us of which learned
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hidden parameters are more likely when data is too limited
to make confident predictions, but would play a smaller roll
in inference as more data is collected.

Alternatively, even without information about the distribu-
tion from which the hidden parameters are drawn, some-
times some characteristics of these parameters can make
them more interpretable, such as sparsity or diversity. In
the absence of enough data to have high confidence in our
learned parameters, we would like to regularize the parame-
ters to at least have these desired characteristics.

3. Pseudo-data for regularization
We wish to impose regularizers in a way which is compatible
with tensor decomposition methods. The challenge in doing
that is due to the fact that tensor decomposition methods
only give a point estimate of the topics, rather than a pos-
terior prediction. In methods such as MAP estimation we
can use an objective function that balances a prediction term
(such as log likelihood of training data) and the prior. For
spectral methods, however, when we modify the inferred
topics to be more consistent with our priors we have no
notion of how much predictive quality we sacrifice.

To solve this problem we draw on the intuition which is
often used when describing Bayesian priors, of viewing the
priors as encoding pseudo-observations which match our
expectation of the data. Given a prior or a regularizer, we
can choose our pseudo-data in a way which will drive the
inferred topics towards a form which is more in line with our
expectations, and balance that with the requirement that our
pseudo-data will be as likely as possible under the model
we infer using only the real data.

Formally, we optimize a pseudo-dataset, XP ∈ RD×Np ,
with respect to a cost function, f(XT , XP ). The function
we optimize is

f(XT , XP , λ) =− log p(XP |A(XT ))

+ λfr(A(XT∪P )), (3)

where A(XT ) and A(XT∪P ) are the topic matrices learned
by the TDM using either only the real training data, XT ,
or a combination of both the real and pseudo-data, XT∪P ,
respectively. The cost, fr, could be any regularizer encoding
our prior knowledge of the data, and λ a parameter which
denotes the relative importance of the topics conforming to
the prior, compared with how unlikely we allow our pseudo-
data to be.

To perform inference using this cost function we need to
choose two parameters. Apart from λ, we also need to
choose the number of pseudo-data points, Np. The number
of pseudo-data points Np represents how much confidence
we put in our prior knowledge of the topics structure. An
advantage of this approach is that a particular choice of Np

Algorithm 1 Tensor Decomposition Regularization
Input: Xt, Np, λ
A(Xt)← TDM(Xt) % TDM - tensor decomposition

method
Draw Xp from p(Xp|A(Xt))
while Xp not converged do
Xp ← Xp −ADAM(∇Xp

f(Xt, Xp, λ))
end while
A(Xt+p)← TDM(Xt+p)
Return: A(Xt+p)

limits how much the pseudo-data can influence the topics —
as the number of training samples Nt increases, even in the
limit of infinite λ, the maximum effect of the pseudo-data
on the inferred topics diminishes. The dominance of the
training data as Nt � Np represents the tendency to put
less weight on the pseudo-data as more data is collected.
This is analogous to the tendency of a sharply peaked like-
lihood to overwhelm the prior in Bayesian inference. The
convergence of Algorithm 1 is formalized in Theorem 1.

Theorem 1. In the limit of Nt → ∞, for any finite λ and
any finite Np, the results of Algorithm 1 converge to the
standard TDM.

Proof. The result of Algorithm 1 is a decomposition of
the tensor estimates from XT∪P . These can be written
as M̂i = Nt

Nt+Np
M̂i,T +

Np

Nt+Np
M̂i,P , where M̂i,T and

M̂i,P are the ith order (i ∈ {2, 3}) moments computed
only from the training and pseudo-data respectively. In the
limit Nt →∞, M̂i → M̂i,T . That is, Algorithm 1 returns
the TDM result of the moments computed only using the
training data, thus completing the proof.

Algorithm 1 describes the algorithm for performing the
entire process of learning the regularized topics. TDM
denotes the topics learned using the tensor decomposition
algorithm, and ADAM is the gradient descent step based on
the ADAM algorithm (Kingma and Ba, 2014). We compute
the gradients of the cost function using the Python Autograd
package (Maclaurin et al., 2015).

4. Experiments
In the following section we demonstrate the tensor decom-
position regularization method for two examples with semi-
synthetic and real data. We focus our experiments on the
LDA model, and first demonstrate that given prior knowl-
edge of the latent topics structure, our method can be used
to improve inference when data is sparse and ignore the
prior knowledge when data is abundant. We then use the
method to improve the interpretability of topic models for
classification of medical science papers by regularizing the
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topics to group together articles with similar headers (where
similarity is defined by distance on a hierarchy tree).

In Appendix 1 we present results for two more synthetic toy
datasets, where we use pseudo-data to regularize for topic
independence (orthogonality) and sparsity. We also demon-
strate that the sparsity could be used to improve inference
for noisy data.

4.1. Transfer learning with semi-synthetic ASD patient
data

We first demonstrate that when we have prior knowledge
about the latent structure of our data, our method can use
it to improve inference when training data is scarce, and
ignores it when the training dataset is large. We demonstrate
the method on simulated autism spectrum disorder (ASD)
data. The data is referred to as semi-synthetic because it
is a simulated dataset, but the topics used to simulate it
are learned from real data, and we therefore expect these
topics to include the sparsity and correlations which are
representative of the true data (Arora et al., 2013). We use
electronic health records of D = 64 common diagnoses of
children with autism (Doshi-Velez et al., 2014b). We use the
real data to learn two topic matrices (K = 4) representing
the symptoms common for two age groups, 6 to 7 and 8
to 9. We make the assumption that the symptoms of the
two age groups share some similarities, and that we can
transfer our knowledge about one age group to better learn
the characteristics of the other. In other words, we expect
the topics learned for one age group to be an informative
prior for inference on the other group.

To test our method over a range of Nt, we sample observa-
tions from the LDA model using the topics matrix of ages
6 to 7. We refer to this topics matrix as Atrue, as it repre-
sents the true topics we wish to learn. As our regularizer
function, we choose fr = ||A(XT∪P ) − Aprior||2, where
Aprior is the topics matrix representing ages 8 to 9. In other
words, we use our method to generate pseudo-data which
will force our learned topics from data on ages 6 to 7 to be
as similar as possible to the topics learned from ages 8 to 9.
In Table 1 we demonstrate our results for different values of
Nt and Np = 30. We see that when training data is limited
(Nt = 100), our method allows for tranfer learning which
significantly reduces the topics reconstruction error, but has
little effect on inference when Nt = 10000 and the training
data overwhelms the pseudo-data.

4.2. Real data: Medical Subject Headings hierarchy

The National Library of Medicine (NLM) uses a
hierarchically-organized terminology of medical subject
headings (MeSH) for indexing medical articles1. Ev-

1https://www.nlm.nih.gov/mesh/

Table 1. Transfer learning with ASD data

||A(XT )−Atrue||2 ||A(XT∪P )−Atrue||2
Nt = 100 0.55 0.36
Nt = 10000 0.11 0.11

ery article is labeled using several headings, and head-
ings are given an assignment on a hierarchical tree, in
which the root represents a general topic, and headings
become more specific further down the tree. An exam-
ple of three generations of headings in the tree is “Adult
[M01.060.116]”, “Aged [M01.060.116.100]” and “Aged, 80
and over [M01.060.116.100.080]”. Formally, each three
digit number in the full heading represents a node, and the
periods separating them represent edges.

Topic modeling on subject headings of papers can help in
identifying publication and research trends by finding head-
ings which occur together frequently. Because articles are
hand labeled, there is sometimes significant inconsistency
in labeling—for example, a particular paper could be given
each of the three headings present in the example, depending
on the particular person who labeled it (Doshi-Velez et al.,
2014a). A useful property of the topics which could help
avoid missing information due to inconsistency in labeling
is pushing for topics with headings which are close on the
tree.

For the task of regularizing the model we learn for the MeSH
data we choose a regularizer which is more complex than
simply regularizing for sparsity or diversity (see Appendix
1), as we want to use our knowledge about the hierarchi-
cal indexing structure of the data. We use the following
regularizer to achieve this property—

fr(A) = −
K∑

k=1

(
∑
i 6=j

AikAjkO
−1
ij ). (4)

whereOij is the distance on the tree between the ith and jth

headings. Minimizing this regularizer rewards topics with
several headings which are close to each other on the tree
(−O−1ij is more negative), while simultaneously pushing for
topics with at least more than one highly weighted heading.
We discuss the choice of fr further in Appendix 1.3.

We perform our experiments on a labeled dataset of research
articles on statins—a group of drugs used for treating car-
diovascular disease (Cohen et al., 2006). Our training data
consists of Nt = 500 documents using the D = 300 most
common headings, and we learn a topic model with K = 3
topics.

In Figure 1 (left) we plot the value of the regularizer for
the learned topics with different values of Np and λ, and
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Figure 1. Real data (MeSH) - Regularizing for interpretability. fr value (left) and log-likelihood of held-out test set (right) for
regularized topics with different values of Np and λ/Np. The regularization function allows us to improve interpretability (lower fr) at
the cost of predictive power (lower log-likelihood on test data). The examples with Np = 20 and Np = 50 demonstrate it is possible to
obtain significant improvement in interpretability with a relatively small decrease in predictive power.

observe that similarly to the previous example, a given num-
ber of pseudo-observations is limited in the effect it can
have on the topics, no matter how large λ is. In Figure 1
(right) we plot the log-likelihood of a held out test set of 500
documents, using the learned topics. We see that in most
cases, the interpretability of the topics comes at a relatively
low cost in terms of prediction accuracy, which grows as
Np is increased.

In appendix 1.3 we analyze the topics learned with and
without regularization and demonstrate that optimizing fr
indeed leads to learning more interpretable topics.

5. Discussion
The tensor decomposition regularization algorithm requires
two parameters—Np and λ. We demonstrated throughout
this paper that for a given Np, at some point increasing λ no
longer influences the final regularized topics. The intuition
behind this saturation is that there is a limit to how big
of an effect a small fraction of the data can have on the
learned topics. In practice, this means we can choose λ to
be in the saturated regime (high λ), and only tune Np to
control the strength of our regularizer, reducing the number
of parameter choices we are required to make.

The computational complexity of the tensor decomposi-
tion algorithm as it appears in Anandkumar et al. (2014)
is O(D3), where the limiting step is in computing M̂3 ∈
RD×D×D and whitening it to the RK×K×K tensor, M̂3,w.
Zou et al. (2013) demonstrated that for sparse data, the ten-
sor decomposition can be performed in O(DK + nnz(X))
where nnz(X) is the number of non-zero elements in X .
Because our algorithm is based on differentiating the results
of the tensor decomposition algorithm with respect to its
input, if we wish for our algorithm to be flexible enough to

impose any regularizer,XP will generally not be sparse, and
we cannot use the method introduced in Zou et al. (2013).
Instead, we first compute M̂2, and use the whitening matrix,
W to whiten the data. We then compute M̂3,w directly from
the whitened data Xw, and never explicitly compute M̂3.
This makes the limiting step in the algorithm the computa-
tion and SVD of M̂2, and the computational complexity of
the algorithm is O(D2).

6. Conclusion
We introduced an algorithm to regularize tensor decomposi-
tion methods for learning latent variable model. The method
is versatile and can easily be applied to a variety of mod-
els and regularizers. A strength of this method lies in its
ability to use regularization and prior knowledge to improve
learning when data is limited, and ignore our prior beliefs
when data is abundant, much like the effect of priors in a
Bayesian setting. An open question remaining is drawing a
tighter connection between our method and Bayesian infer-
ence, which would lead to a more quantitative approach to
selecting the algorithm parameters and formulating the reg-
ularizers as probability distributions over the latent topics.
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