Stitched Trajectories for Off-Policy Learning

1 1

Scott Sussex ' Omer Gottesman

Abstract

We study the problem of off-policy evaluation in
RL settings. Importance sampling methods pro-
vide unbiased estimators for the value of a policy,
without the need to learn an explicit model of
the environment, but suffer from high variance,
in part due to small effective sample sizes when
evaluating deterministic policies. We introduce a
method of stitching together sequences from dif-
ferent trajectories to increase the effective sam-
ple size for importance sampling estimators, thus
reducing their variance while retaining their un-
biasedness. We demonstrate that our method re-
duces the policy value estimation error on several
synthetic toy examples.

1. Introduction

Off-policy evaluation (OPE) methods aim to evaluate the
performance of an evaluation policy using data collected
under a different behavior policy. OPE is desirable in situa-
tions where deploying the evaluation policy in practice may
be costly, dangerous, or unethical. In the healthcare do-
main, for example, one might want to estimate the value of
a new treatment policy using observational data collected
by clinicians (Gottesman et al., 2018) rather than put pa-
tients at risk by subjecting them to an untested treatment
regime.

Existing approaches to the OPE problem can be classi-
fied into two main categories: model-based and importance
sampling methods. Model-based methods involve learning
an approximate model of the environment and using that
model to estimate the value of the evaluation policy (Sut-
ton & Barto, [2017). The main drawback of model-based
methods is that their estimates can be highly biased if the
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modeling assumptions do not hold.

Importance sampling (IS) methods estimate the value of a
policy by computing a weighted average of the rewards col-
lected in trajectories observed under the behavior policy.
The IS weight of a trajectory is given by the ratio of the
probability of the trajectory being observed under the eval-
uation policy compared to the behavior policy. IS methods
are appealing as they can provide unbiased estimates for
the value of the evaluation policy, without requiring any
knowledge of the environment’s dynamics. The downside
of IS methods is that their estimators often have very large
variance (Thomas & Brunskill, 2016).

Two main reasons lead to the high variance of IS methods.
First, if policies that are likely under the evaluation policy
are unlikely under the behavior policy, many IS weights
will be either very large or very small. Second, for real
world applications, we are often interested in estimating the
value of a deterministic evaluation policy but collect data
using a stochastic behavior policy. This results in the IS
weight of a trajectory being equal to zero for all trajectories
in which the action taken does not match the action which
would have been taken under the evaluation policy, leading
to very small effective sample sizes even for large datasets.

We introduce a method of stitching partial trajectories for
the setting where we have a deterministic evaluation policy
and a stochastic behavior policy. Our method takes tra-
jectories with IS weight O—that is, trajectories that would
have been thrown out—and splits and stitches them into
new trajectories. These new trajectories can be combined
with the original trajectories with non-zero IS weight to
create a new data set; existing IS-based OPE methods can
then be applied to generate a value estimate with a greater
effective sample size. We prove that, under some assump-
tions about the underlying Markov decision process, our
method of stitched trajectories retains the unbiasedness of
ordinary importance sampling and decreases its variance.
We also incorporate the method into ordinary, weighted
(Precup et al., 2000) and weighted doubly robust (Jiang
& Li,[2016) IS-based OPE methods, and show empirically
that it reduces mean squared error (MSE) in estimating the
value of the evaluation policy in three synthetic domains.
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2. Background and Notation

We give the notation we use for Markov decision pro-
cesses (MDPs). sy, a, ry refer to the state, action and re-
ward during a trajectory at time ¢t. In this paper we as-
sume the sets of possible states, actions and rewards are
finite. Let z = (so,ag, 70, $1,...) be a trajectory and let
g(z) = Y127 denote the return of a trajectory. Set
v € [0,1) to be the rate we discount the future. The evalu-
ation policy is denoted 7. and the behavior policy 7. We
let V() := Elg(z)|z ~ w] where z ~ 7 means that z
is sampled using policy m. We are interested in estimating
V(7). The transition probabilities of the MDP are denoted
p(sty1lat, s¢). The reward function r(ry|s¢11, ar, s¢) gives
the probability of receiving reward r,. We are interested in
the setting where both 7 and the transition probabilities are
unknown.

There exist many IS-based methods to estimate the value
of a policy given a dataset of trajectories D. Ordinary im-
portance sampling provides an unbiased estimator for the
value function, but with large variance that can make the

method impractical (Precup et al, 2000). Weighted im-
portance sampling provides a biased estimator that is still

consistent and has lower variance (Precup et al, [2000).
More recently, doubly robust off-policy evaluation meth-
ods provide an unbiased estimator if either the value func-
tion or importance ratios are accurately estimated
[2016). These estimators have been shown to have
lower variance that makes them more practical than alterna-
tives. Doubly robust methods do require an initial estimate
for the value function, however this can be obtained from
our off-policy data. Weighted doubly robust estimators can
lower the variance further at the cost of introducing a small
amount of bias (Thomas & Brunskill, [2016).

Define  p(z, e, m) = p(z|me) /p(z|mp) =
T2 yme(ails;) /mp(ails;). Let D be the set of trajec-
tories generated under the behavior policy. Ordinary
importance sampling gives an estimate for the value of
ZzeD p(z,ﬂ'ﬁ,m,)g(Z)
. . . ‘D‘

given trajectory z, the notation p;.; refers to oz jrTes )
where z;.; = (si, @i, T, ...55).

an evaluation policy V (7.) as . For a

For the setting where 7. is deterministic and 7 is stochas-
tic, p(z, 7, mp) will be O if there is an action in the trajec-
tory that 7. would not take. This will result in some number
of trajectories having 0 importance weight, especially so if
7. and m, differ a large amount; these 0-weighted trajec-
tories in turn reduce our effective sample size and increase
the variance of our value estimate.

Finally, closer to this work, |[Fonteneau et al.| (2013)) also

constructs new trajectories from existing data. Their work
was focused on value estimation in the batch off-policy

case (Fonteneau et al,[2013)), but aims to simulate a Monte
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Figure 1. Demonstration of a stitching policy on a deterministic
four state corridor gridworld. Trajectory 1 does not follow the
evaluation policy after the stitching state. We sample any trajec-
tory that does not follow the evaluation policy before the stitching
state- trajectory 2. We then assemble the circled parts of each to
form a stitched trajectory.

Carlo estimator rather than use importance sampling.

3. Stitching trajectories to increase effective
sample size

When evaluating a deterministic policy, a trajectory will
have non-zero importance sampling weight only if every
action in the trajectory is the action which would have been
taken under the evaluation policy. For long histories, the
probability of finding such a trajectory decreases exponen-
tially with the number of actions. The intuition for our ap-
proach is that if we have two trajectories which visited a
given state, s, € S, where for the first trajectory all ac-
tions up to state s, agree with the evaluation policy, before
not following the evaluation policy at s.., and for the second
trajectory some actions before state s, differ from the eval-
uation policy, we can stitch the portion of the first trajectory
before s. to the portion of the second trajectory from s, on-
wards to generate a new trajectory which is more likely to
have a non-zero IS weight.

For simplicity here we present an algorithm for the case of
S, containing just one state, and provide the full algorithm
using multiple stitching states in the appendix.

Algorithm T] formally details how to stitch together trajec-
tories in our original dataset D to generate a new sample of
trajectories, D’. If a trajectory z has nonzero importance
weight until reaching a stitching state s, at time 7"+, but in
state s, takes an action a for which 7. (als,) = 0, a second
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trajectory is found. The second trajectory must have zero
importance weight for the section before reaching state s,.
The portion of the first trajectory until reaching state s, is
concatenated to the portion of the second trajectory starting
at state s,, and vice versa, to create two new trajectories—
one with possibly non-zero importance weight—that re-
place the existing two trajectories which both had zero im-
portance weight. Formally, the concatonate function in
algorithm || takes in (s, af, v, si, ..s1,,af,, 71, ...) from
some set Dy and (s7,,a?,,r7,,...) from some set Dy. It
OULPULS (8§, A, TGs S1s oS¢, 5 Aiys Thys o)

Input: Stitching state s, dataset D ~ m,
Output: D’
initialization;
Dy :=;
Dy :=11;
D =11
for z € D do
if po.7s > 0 and prs..7s« 1 = 0 then
\ add (z, T%*) to Dq;

else

if pg.7s. = 0 then

| add (z, T**) to Dy;

end

end

end

for (Zl,tl) € Dy do

sample (22,t3) € Dy;

add concatenate(zd,, ,22,.) to D';
add concatenate(z3.,,,2,.) to D';
remove z2 from Ds;

remove 2! and 22 from D;

end
D'=D+ D
Algorithm 1:

Note that when we sample from D5, we sample without re-
placement. Also note that each element of D; is sampled
at most once. This is to ensure the theoretical variance re-
duction guarantees proven later. In Algorithm [I] for every
trajectory in D; we must be able to assign it a trajectory
in Dy. Since we sample from D, without replacement,
we must set the constraint that |D;| < |Ds|. This con-
straint means that under the behavior policy there must be
less trajectories that reach the stitching state following the
evaluation policy, and then immediately stop following the
evaluation policy, than there are trajectories that reach the
stitching state by not following the evaluation policy. We
must seek to select a stitching state such that this constraint
is satisfied.

Using our stitching algorithm denoted A, for a trajectory
z € D’ that reaches stitching state s, € S, once, the im-

portance weight for the trajectory is

el
P& = S A)

Hyme(ak|sk)p(sk+1l5k, ar)
ey (ar|sk)p(skt1lse, ar)+
kab(ak|s;€)p(sk+1|sk,ak)(l — 7Tb(a*|5*))
Iy (ak|sk)P(Sk+1 sk, ax)
(2 — mp(ax|s:) ) gy (ar|se)p(Skr1lSk, ar)
R C))
2 — mp(axs«)

)

where p(z) is the importance weight that would be calcu-
lated for the trajectory if there were no stitching algorithm
(so using dataset D), and a. is the action the evaluation pol-
icy takes at s,.. Line two comes from the fact the the trajec-
tory could either have been generated under 7, or consist
of two stitched trajectories. If a trajectory z does not pass
through the stitching state, it has importance weight p(z).

For the case of using our stitching algorithm with multiple
stitching states and a trajectory that may go through mul-
tiple stitching states, s; € S, where a; is the action the
evaluation policy takes at s;, in the second line we simply

sum over all s; to get p/(z) = %.

We maintain the desirable property of importance sam-
pling in having all transition probabilities cancel in the im-
portance weight. Note that our stitching policy results in
a weak increase in trajectories with nonzero importance
weights and a weak decrease in the importance weight of
all trajectories. These two factors suggest that using impor-
tance weights for data subject to our stitching policy will
result in reduced variance, whilst still allowing for unbi-
ased estimates to be computed. We prove this below:

Theorem 1 Assume that for any stitching state s, € S,
p(St41|8t,ar) and p(R|s¢11, s¢, ar) are independent of any
information in the trajectory before state s, was reached.
Apply our stitching algorithm to a dataset D, producing
a dataset D'. Var(V(w.)|D’) < Var(V(m.)|D), where
V(m.) is the estimate of the value of a deterministic pol-
icy T, using ordinary importance sampling. Proof given in
appendix.

The importance weights calculated extend naturally to cal-
culating the importance weight for part of a trajectory, al-
lowing stitched trajectories to be easily applied to per de-
cision variants of importance sampling. Finally, existing
model based methods often assume that the trajectories are
generated following the Markovian property. The modeling
assumption the stitched trajectories proof makes is much
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weaker, and could be satisfied by using domain knowledge
to select stitching states.

4. Experimental Design

We evaluate our method on a corridor gridworld (length 5)
and a 3 by 5 gridworld. In both cases, the gridworld is
stochastic and possible actions are all four directions. An
action to move in a certain direction has probability 0.8 of
moving in the specified direction, and probability 0.1 of
moving in each of the two perpendicular directions. The
reward is deterministic, moving results in loss of reward,
and the future is discounted with v = 0.95. The evaluation
policy is the optimal deterministic policy. The behavior
policy is e-greedy with e = 0.5. Reward is -1 per move, -1
for hitting a wall, and 50 for reaching the goal.

Stitching states are chosen by the experimenter and se-
lected in an attempt to maximize the number of stitching
states but have approximately probability one of satisfy-
ing the constraints of our stitching policy. In the 5 state
corridor gridworld, the agent starts on one side and must
reach the opposite side. The penultimate state is the stitch-
ing state for the stitched trajectories method. In the 5 by 3
gridworld, three stitching states are selected (see figure 2).

We use a number of off-policy techniques to compute an
estimate for the value of the optimal policy. For each num-
ber of sampled trajectories, we repeat the experiment 100
times and calculate mean squared error. The methods com-
pared are ordinary importance sampling (IS), stitched tra-
jectories ordinary importance sampling (STIS), weighted
importance sampling (WIS), stitched trajectories weighted
importance sampling (STWIS), per-decision weighted dou-
bly robust (PDWDR), and stitched trajectories per-decision
weighted doubly robust (STPDWDR). We repeat 100 times
for 50, 200, 500, 1000 and 2500 trajectories each.

We repeat the experiment above for a cliff gridworld ex-
ample (see figure 3). The evaluation and behaviour policy
have the same specification as above. Stochasticity of the
MDP and rewards are the same as above, with -50 reward
for entering a pit state.

5. Results

All method’s mean estimate quickly converge on the true
value for large numbers of trajectories, with no noticeable
bias shown by any method. The methods do show clear
differences in their variances. The plot of mean squared er-
ror (MSE) over the repeats against number of trajectories
demonstrates this. Incorporating stitched trajectories into
ordinary importance sampling, weighted importance sam-
pling and per decision weighted doubly robust results in a
reduction in MSE in all cases.

Figure 2. The 3 by 5 gridworld showing stitching states

Figure 3. The cliff gridworld showing stitching states. Orange
tiles indicate the pit states. Black tiles indicate “walls”- tiles the
agent cannot enter.

MSE of Value Estimator for Various Off-Policy Methods on Corridor Gridworld
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Figure 4. A plot of MSE for various importance sampling meth-
ods in a corridor gridworld.
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Figure 5. A plot of MSE for various importance sampling meth-
ods in a 3 by 5 stochastic gridworld.

MSE of Walue Estimator for Various Off-Policy Methods on Cliffworld

10°

107

MSE

— 15

ST -
1 -
10 — Wis

=== STWIS

— PDWDR

107 § ==~ STPOWDR

12 10°
episodes

Figure 6. A plot of MSE for various importance sampling meth-
ods in a cliff gridworld.

MSE data are not included if a trajectory count number
included a repeat where the sampling method could not
form an estimate of the policy value, because all impor-
tance weights were 0.

6. Conclusion

We have provided two key contributions. First, we gave
an algorithm for generating stitched trajectories that results
in importance weights which do not depend on MDP tran-
sition probabilities. Second, we empirically demonstrated
that the use of stitched trajectories for off-policy learning
can improve the accuracy of estimators produced from a
range of importance sampling estimators. We proved this
mathematically for the case of ordinary importance sam-

pling.

We lay the framework for using stitched trajectories in im-
portance sampling, however leave many open questions.
More efficient stitching algorithms could be constructed,
and theoretical work might compare the variance reduc-
tions from each. The work presented here also assumes

a discrete state and action space. Future work will in-
clude generalizing our framework to the case of continuous
states.

Empirical work might evaluate the stitched trajectories
method in more complex real world settings, for exam-
ple on medical records data. A challenge in real-world
domains will be the selection of stitching states, and this
would be aided by a systematic method for their selection.
Finally, the variance reducing properties of stitched trajec-
tories might be combined with the MSE reducing proper-
ties of model-based method MAGIC (Thomas & Brunskill,
2016) by including the method of stitched trajectories as
the importance sampling method used in MAGIC.
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