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Abstract

Making intelligent decisions from incomplete information is critical in many applica-
tions: for example, medical decisions must often be made based on a few vital signs,
without full knowledge of a patient's condition, and speech-based interfaces must in-
fer a user's needs from noisy microphone inputs. What makes these tasks hard is that
we do not even have a natural representation with which to model the task; we must
learn about the task's properties while simultaneously performing the task. Learning
a representation for a task also involves a trade-off between modeling the data that
we have seen previously and being able to make predictions about new data streams.

In this thesis, we explore one approach for learning representations of stochastic
systems using Bayesian nonparametric statistics. Bayesian nonparametric methods
allow the sophistication of a representation to scale gracefully with the complexity
in the data. We show how the representations learned using Bayesian nonparamet-
ric methods result in better performance and interesting learned structure in three
contexts related to reinforcement learning in partially-observable domains: learning
partially observable Markov Decision processes, taking advantage of expert demon-
strations, and learning complex hidden structures such as dynamic Bayesian networks.
In each of these contexts, Bayesian nonparametric approach provide advantages in
prediction quality and often computation time.

Thesis Supervisor: Nicholas Roy
Title: Associate Professor
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Chapter 1

Introduction

Imagine exploring a new city for the first time. Busy intersections, quiet plazas,

beckoning cafes-there are countless places to see and countless connections between

them. Trying to memorize everything from the start is a daunting task, especially

when it is unclear what "everything" means: Do we mean every location? Every

connecting road? Is it worth remembering where each piece of litter was? Which cor-

ners have which street performers? Some kinds of knowledge, such as traffic patterns,

cannot be learned immediately: multiple visits to the same intersection are needed to

separate pattern from coincidence. When faced with such a challenge, most people

will build their model of the city gradually: we may start off by memorizing the few

key intersections encountered on our daily commute, and, after some time, we may

start to pay attention to finer details such as alternate routes or weekly variations in

traffic. Most people will also focus on models that make good predictions: a model

that recalls where a particular piece of litter was spotted is less useful for future

excursions than a model that learns how late the buses tend to run.

Many sequential decision-making problems exhibit a similar structure in which

predictive information is gradually learned from data. Medical decisions must be

made based on a limited number of tests and a limited knowledge of the patient's

physiology. Still, doctors can often do quite well by starting with a few key principles

and refining their knowledge about the patient will react over time. Recommender

systems must suggest items that users may wish to buy from a limited purchasing
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history. Still, these systems can also do well by starting with notions of items that

are generally popular and refining their knowledge about user's preferences over time.

Game-playing agents must adjust the difficulty of a player's experience based on a

limited number of games. As with the previous examples, these agents can still do well

by trying some basic strategies first and refining their knowledge about the specific

player's strategy over time.

All of the problems above are examples of reinforcement learning in partially ob-

servable domains: reinforcement learning studies how agents can learn to accomplish

tasks by collecting experience, and partially observable domains are those in which

the agent's entire history of interactions with the environment-whether it is an en-

tire clinical record or purchasing history-may be relevant to making future decisions.

Reinforcement learning in partially-observable settings is particularly challenging be-

cause the history is such a high-dimensional object, and most reinforcement learning

approaches rely on different methods to compact histories into lower dimensional

knowledge representation. However, the choice of what knowledge representation to

use is not always obvious: for example, can all the relevant information in a patient's

clinical record be summarized by a set of conditions? How their organs are function-

ing at a molecular level? Their genetic sequence? There are often many ways which

we can choose to model the data, and each approach will have different gaps and

uncertainties.

The work in this thesis addresses this fundamental question in partially observ-

able reinforcement learning. Specifically, we demonstrate how Bayesian nonparamet-

ric statistics allows agents to incrementally learn about aspects of their environments

that have predictive value. The Bayesian aspect of these methods provide ways for

the agent to explicitly track its uncertainty and thus focus its knowledge-refinement

process toward aspects that are less certain. Bayesian nonparametric methods have

the added advantage of increasing the size of the agent's model only as needed to

explain the agent's observations. For example, variables corresponding to key condi-

tions that affect patient outcomes would be learned before inferring variants of these.

Information about a patient's physiology at a molecular level may never be inferred if

12



simpler structures are sufficient for predicting clinical outcomes. Using Bayesian non-

parametric statistics in the learning process results in both reduced computational

requirements, as the agents start out with small models and expand them only as

need, as well as reduced sample requirements, as agents are able to start performing

well early-on by picking up the major trends in the data.

By automatically adjusting the sophistication of the model with the complexity

of the data, Bayesian nonparametric methods provide an approach for learning a

representation for a system that is the "right size" for the data. The learned mod-

els also have the capacity to incorporate new, unexpected events that may not be

present in an initial training set. Of course, not all applications need such flexible or

general methods to learn representations. For example, in many robotics and other

engineering applications, the representation of the system is known by design, and

sensors can be individually calibrated to fit necessary parameters. When designing

controllers for dynamical systems, long sequences of data from the relevant operat-

ing regimes may be available to perform a more traditional system identification.

Bayesian nonparametric methods are best-suited for problems where the choice of

the knowledge representation is non-obvious-for example, how to characterize a pa-

tient's health or a player's strategy-and it is important to be able to adjust the size

of the representation based on sparse data.

The core contributions of this thesis, summarized in section 1.2, are three models

for applying Bayesian nonparametric methods to reinforcement learning in partially

observable domains. The first, the infinite partially observable Markov decision pro-

cess (iPOMDP), posits that the world consists of an infinite number of latent states,

and instantiates states as they are needed to explain the agents' observations. The

chapter on nonparametric policy priors extends the iPOMDP by considering how

to combine expert input with the iPOMDP models learned from the agent's experi-

ence. Finally, the infinite dynamic Bayesian network (iDBN) extends the iPOMDP

by considering situations where the latent state of the iPOMDP might be made up

of multiple factors.

13



action

observation

reward

Figure 1-1: General reinforcement learning framework. At each time-step, the agent
interacts with the environment with an action and receives an observation and reward.

1.1 Framework

We begin by formalizing the problem of reinforcement learning in partially observable

domains. The most general version of the reinforcement learning problem [Sutton and

Barto, 1998], summarized in figure 1-1, involves a sequence of exchanges between the

agent (left) and the environment (right). At each time step, the agent interacts with

the environment through an action a. The environment sends back an observation

o and an immediate reward r. The agent's goal is to maximize the discounted sum

of its expected rewards E[Z± -ytrt], where rt is the reward that the agent receives at

time t, and -y c [0, 1) trades off between the importance of current rewards and future

rewards.

As a simple example, consider a robot trying to navigate to a goal location.

The actions a might correspond to a vector of motor commands, the observations

o might be data from the robot's laser scanner, and the immediate reward r might

indicate whether the robot has reached its destination. Even from this relatively

simple scenario, we can see that every element of the agent's interaction history

h = {ao, oo, ro, ... , at, ot, rt} may provide clues as to where the robot is and how it

might try and reach the goal. For example, all corners of a room might produce the

same observation o from the laser scanner, but with the entire history of actions and

observations h, the agent might be able to disambiguate its position.

14



Figure 1-2: Graphical Model for the MDP. The shaded nodes s represent the state
of the world, which are observed by the agent. The shaded squares a represent the
agent's actions, and the shaded nodes r represent the agent's rewards.

Fully Observable Environments A special case of the reinforcement learning

framework is one in which the observation o captures all of the information needed

to make predictions from the history h. For example, suppose that the robot from

the previous scenario had access to an oracle that always provided the robot with

its current location. Given its current location, the robot would not require any

additional information about its previous locations or previous actions to predict the

effect of its next motor command. When the current observation ot captures all of

the information needed to predict the future, the environment is described as fully

observable.

One very general way of modeling fully observable environments is with a Markov

decision process (MDP, figure 1-2). In this formulation, the environment is modeled

as consisting of a set of observed states. At each time step, the agent takes an action

a which causes the environment to transition from its current state s to a new state

s' based on a transition probability T(s's, a). It also receives a reward R(s, a). The

values of the parameters of the transition distributions T and the reward function R

are initially unknown. As in the general reinforcement learning framework, the agent's

goal is still to maximize the sum of its discounted expected rewards E[L', y trt]. While

there are many ways to model environments, a key property of the MDP formulation

is that the dynamics of the system are Markov in the state s-that is, given the

15



current state st at time t, we do not require any information about the previous

states so..st1 to predict the state st+1 at time t + 1.

Partially Observable Environments Environments in which the dynamics are

not Markov in the current observation ot are called partially observable. A very

general way of describing partially observable environments is to assume that the

environment is Markov with respect to some now unobserved state s which emits

the noisy or partial observation o. For example, even with noisy sensors, the robot's

dynamics are still Markov with respect to the robot's position-the only difference is

that the robot's position is no longer directly observed. A partially observable Markov

decision process (POMDP, figure 1-3) m is defined by the tuple {S, A, 0, T, Q, R, -Y}

[Sondik, 1971]. S, A, and 0 are sets of states, actions, and observations (all discrete

for the purpose of this work). As in the MDP, the transition function T(s'|s, a) gives

the probability of transitioning to state s' after performing action a in state s, and the

reward function R(s, a) gives the reward for each state-action pair. The observation

function Q(ols, a) gives the probability of seeing observation o after taking action a

in state s.

St-1 t t+1

Figure 1-3: Graphical Model for the POMDP. The white nodes s represent the now

hidden state of the world, and the shaded squares a represent the agent's actions.

The shaded nodes o and r represent the observations and rewards.

16



Action Selection The rule that governs how the agent selects its actions is called

a policy -x. When the environment is fully-observable, the current state st encodes

everything about the past needed to predict the future; thus, we know that the

optimal policy lies in the set of functions ir(s, a) = p(als), which gives the probability

of performing action a in state s. When the environment is partially-observable,

all elements of the history ht = {a1, oi, r1 , ... , at, ot, rt} might be required to make

predictions about the future. Thus, the optimal policy now lies in the set of functions

r(h, a) = p(alh), which gives the probability of performing action a in state s.

Action-Selection with a Known Model: Planning Before describing how an agent

might select its actions in the reinforcement learning setting, we consider a simpler

setting in which the parameters of the POMDP model m = {S, A, 0, T, Q, R, -y} are

given (known as planning). Let the belief bt(s) be the conditional distribution p(st I ht)

over the current state st given the history ht. If the parameters of the transition

and observation functions T and Q are known, it is possible to compute the current

belief bt(s) given the previous belief b_ 1 (s), the current action at, and the current

observation ot:

be(s) = Q(otls, at) E T(sIs', at)bt.1 (s'(1.1)
S'ES Pr(otlbt_1, at)

where Pr(olb, a) = Ewes Q(ols', a) ZSEs T(s'ls, a)b(s). Unlike the most recent ob-

servation ot, the belief bt(s) captures all the information in the history ht needed

to make predictions about the agent's future [Sondik, 1971]. In this sense, we can

think of a partially observable environment as a fully observable environment in this

high-dimensional, continuous space of beliefs. It follows that the optimal policy for

the POMDP must then lie in the space of functions ir(b(s), a) = p(alb(s)), and a

number of algorithms have been developed for finding near-optimal polices for this

representation [Bellman, 1957, Littman et al., 1995, Pineau et al., 2003, Spaan and

Vlassis, 2005, Smith and Simmons, 2004, Shani et al., 2007, Kurniawati et al., 2008].

Action-Selection with an Unknown Model: Learning Action-selection is much more

challenging in the more general setting in which the parameters of the model m are

not known (and thus update rules like equation 1.1 cannot be used to summarize
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the history). Whether the environment is fully observable or partially observable,

reinforcement learning-as opposed to planning-involves learning from data, and

histories are inherently noisy. Thus, many repetitions of similar situations may be

needed to characterize patterns. Second, it is difficult to assign credit for a reward:

a high reward rt at time t may be the result of the action at or some action farther

back in the past. Finally, without knowing the model m, the agent must balance time

spent learning the dynamics (exploration) and maximizing reward (exploitation).

These factors are particularly challenging in the partially observable setting where

the optimal policy 7r(alht) is a function of the entire history ht. Because the history

ht contains many more parameters than a single state st, the policy ir(alht) will

require many more samples to learn. Similarly, without more knowledge about the

environment, we are forced to start learning a very general reward function R(rjh)

rather than having a simpler functional form R(rls). Finally, exploration is more

difficult when we have to consider visiting histories h rather than states s. At the

same time, these factors also make partially-observable reinforcement learning more

general than settings in which the domain is fully-observed or fully-specified: we can

operate directly in the space of histories and never think about hidden states or beliefs

over hidden states.

Approaches to tackling the partially-observable reinforcement learning problem-

that is, learning policies based on histories of experience-vary widely. On one end

of the spectrum are methods that never directly model the hidden state and instead

choose new actions from the history of past actions and observations. Most of these

approaches try to group together histories that require similar actions-for example,

U-Tree [McCallum, 1993] builds a suffix tree on the history, AIXI [Hutter, 2004]

extracts features from the history, and predictive state representations [Singh and

James, 2004] learn short-term predictions for a set of test histories. Under relatively

mild conditions on the underlying POMDP, history-based approaches can learn near-

optimal policies in polynomial time [Even-Dar et al., 2005]. However, even if the

sample complexity is polynomial, these algorithms typically require large amounts of

experience to convert histories into useful policies. For example, even newer AIXI
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implementations, such as that of Veness et al. [2009], require on the order of 10 4

interactions to learn a very simple POMDP (tiger [Littman et al., 1995]), whereas a

model-based Bayesian method such as BA-POMDP [Ross et al., 2008a] requires on

the order of 102 interactions for the same problem.

On the other end of the spectrum are Bayesian methods which explicitly consider

beliefs not only over potential hidden states but also over possible models [Poupart

and Vlassis, 2008, Jaulmes et al., 2005, Ross et al., 2008a, Strens, 2000, Dearden et al.,

1999, Ross et al., 2008b, Doshi et al., 2008, Duff, 2002]. These approaches note that

reinforcement learning problem can be thought of as a planning problem in which both

the agent's current state st and the world model m are hidden. Bayesian methods start

out with a prior distribution over models p(m) and then track the joint distribution

bt(s, m) = pt(s, m) over the current state and the world model m. As with a standard

POMDP, the joint belief bt(s, m) is a sufficient statistic for the history: it encodes

everything about the past needed to make future predictions. Thus, the optimal

reinforcement learning policy lies in the set of functions r(b(s, m), a) which requires

solving a larger "model-uncertainty" POMDP (see graphical model in figure 1-4).

(a) Graphical model for the Bayesian (b) Expansion of the graphical model showing a single
RL framework, showing both the model time-slice in the model-uncertainty POMDP; gray and
and the current state as hidden nodes black arrows are equivalent (colored only for clarity).

Figure 1-4: Graphical model of the Bayesian RL framework. The model m is con-

sidered a hidden variable along with the state s. Usually we assume that the world

dynamics are stationary, that is mt = men.
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The Bayesian reinforcement learning setting also offers an elegant formulation for

incorporating expert knowledge: the starting belief bo(s, m) can encode one's prior be-

liefs over what models m are likely. In general, Bayesian methods need fewer samples

of experience (that is, fewer histories) to learn good policies. However, actually doing

computations on the belief b(s, m)-such as applying equation 1.1-can be challeng-

ing because the model m itself consists of the many parameters contained in TQ,and

R. Different Bayesian reinforcement learning methods present different approxima-

tions of standard POMDP planning techniques for this more complex space where we

maintain distributions over both possible current states and possible models. The cost

of the associated computations-having to reason about all the unknown parameters

in model-have typically restricted these methods to small problems. Unlike model-

free or history-based approaches, another difficulty with these approaches is that the

structure of the hidden part of the underlying model, for example, the number of

states or sets of factors, must now be specified.

Despite the variety of approaches and continued interest in partially observable

reinforcement learning [Hutter et al., 2009], several factors have limited their success.

First, much recent work-especially the Bayesian literature-has focused on inferring

the dynamics of the true underlying system, rather than predicting how the system

will respond to various inputs. While sometimes a reasonable goal, explicitly trying

to infer the true system can make the learning problem unnecessarily challenging,

especially when accurate predictions are all that are required for decision-making. In

these cases, reasoning about extra model parameters is wasted computational effort.

Current inference techniques also tend to converge to sub-optimal solutions. Finally,

expert information is often incorporated in ways that impose rigid constraints on the

model, rather than more targeted use of the agent's own experience.

Bayesian Nonparametric Model Learning This thesis examines how Bayesian

nonparametric techniques can address many of the challenges we outlined for partially-

observable reinforcement learning. A Bayesian nonparametric model defines a distri-

bution over an infinite-dimensional parameter space [Orbanz and Teh, 2010]. For
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example, in this thesis, we consider an extension of the POMDP in which the model

m has an infinite number of hidden states s, and thus an infinite number of pa-

rameters are needed to describe the transitions T(s'Is, a), observations Q(ols, a), and

rewards R(s, a). Like more traditional Bayesian approaches to reinforcement learn-

ing, we define an initial prior p(m) over models m and update this prior belief as the

agent gathers experience; as before, our use of Bayesian nonparametric methods for

reinforcement learning involves casting the partially-observable reinforcement learn-

ing problem as solving the model-uncertainty POMDP in which the belief bt(s, m)

is the proxy for the state. In doing so, we inherit many of the benefits of Bayesian

approaches to reinforcement learning, including a clear optimization criterion and

relatively low sample complexities for learning reasonable policies.

However, unlike more traditional Bayesian reinforcement learning approaches,

which try to recover a model of the environment [Ross et al., 2008a, Jaulmes et al.,

2005, Poupart and Vlassis, 2008, Dearden et al., 1999, Duff, 2002, MacKay, 1997], our

emphasis is simply to be able to make good predictions. Drawing on concepts from

Stolcke and Omohundro [1993], Shalizi and Shalizi [2004], and Drescher [1991], using

Bayesian nonparametric methods allow us to think of hidden states not as physical

aspects of the environment, but as "way-points" that are needed to make the under-

lying system Markovian. Using an approach that assumes that the world contains an

infinite number of underlying states ensures that we will always have enough way-

points to explain our observations. However, the prior p(m) ensures that states are

instantiated only if the current set of instantiated states do not explain the data well.

Models instantiated in this incremental fashion often have fewer instantiated parame-

ters than the "true" model, making them easier to learn and solve. Finally, the same

Bayesian nonparametric methods used to keep distributions over models-that is,

how the world works-can be used to keep distributions over well-performing policies

r(h, a)-that is, how the agents should behave.

In the context of modeling dynamical systems, one of the core Bayesian nonpara-

metric models used in this work is the infinite Hidden Markov Model (HDP-HMM)
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[Beal et al., 2001, Teh et al., 2006],1 A hidden Markov Model (HMM) is essentially

a POMDP without the decision-making component: it does not have actions or re-

wards, but it still posits that the environment consists of a set of hidden states s

that transition according to some transition function T(s'|s) and emit observations

according to some observation function Q(ols). The HDP-HMM places a distribution

p(m) over HMM tuples m = {S, 0, T, Q} that have a countably infinite number of

states s. While there is no closed form expression for p(m), we can draw a sample

HMM m from the HDP-HMM prior p(m) by taking the following steps:

1. Draw the mean transition distribution T ~ Stick(A).

2. Draw observation distributions Q(-Is) ~ H for each state s.

3. Draw transition distributions T(.Is) - DP(a, T) for each state s.

where Stick() represents a stick-breaking procedure based on the Dirichlet process

(DP) [Ferguson, 1973, Teh, 2010], A is the DP concentration parameter, and H is

a prior over observation distributions. For example, if the observations are discrete,

then H could be a Dirichlet distribution from which multinomials over the observa-

tions are drawn.

This sampling procedure produces HMM models m that have an infinite number

of states but whose histories ht = {so, o0 , ... , st, Ot} typically visit only log(t) states.

The first step, drawing T, can be thought of as a procedure for assigning a popularity

Tk to each state k such that the sum of the popularities is one: E' T = 1. The

Dirichlet process provides a bias toward having a few popular states (states k such

that Tk > 1 and and very many unpopular states (states k such that Tk < )

By using these popularities T as a base distribution, or mean, for the transition

distributions T(-|s), we introduce a locality bias so the agent expects to be in the

popular states most of the time. However, since the remaining (infinite) states have

non-zero popularity, the agent may always transition to somewhere new: a new room

'The iHMM models in Beal et al. [2001] and Teh et al. [2006] are formally equivalent [Gael and
Ghahramani, 2010].
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for a robot, a new set of preferences for a recommender system, a new type of condition

for a patient. Figure 1-5 shows the graphical model of the parameters of the HDP-

HMM.
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(a) HDP-HMM graphical model (b) Cartoon of some of the HDP-HMM parameters

Figure 1-5: Graphical Model for the parameters of the HDP-HMM.

Our work follows a variety of works in which Bayesian nonparametric models

have been used to estimate models of dynamical systems. Many of these [Fox et al.,

2010a, 2008, Stepleton et al., 2009, Johnson and Willsky, 2010] are variants of the

HDP-HMM. Other approaches [Stolcke and Omohundro, 1993, Shalizi and Shalizi,

2004], while they not explicitly define Bayesian nonparametric models, have a similar

flavor to Bayesian nonparametric models in that they automatically infer the size

and structure of the underlying model. However, only in rare cases have these models

been used for controlling as well as learning systems, and previous work that has

used Bayesian nonparametric methods for reinforcement learning [Engel et al., 2005,

Deisenroth et al., 2009] has focused largely on continuous domains.

1.2 Contributions of this Research

The core contribution of this thesis is showing how Bayesian nonparametric methods

provide a different way about thinking about state in reinforcement learning; indeed,

Bayesian nonparametric methods are a natural fit for sequential decision-making prob-

lems in which parts of the world can only be learned about once experienced. More
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specifically, we present three Bayesian nonparametric models and empirically demon-

strate their value for reinforcement learning in partially observable domains.

Infinite POMDPs. Our first model is the infinite POMDP (chapter 4). Building

on the HDP-HMM [Beal et al., 2001, Teh et al., 2006], the infinite POMDP posits

that the (now controlled) world consists of an infinite number of states. As with

the HDP-HMM, the states in an infinite POMDP are no longer identifiable; they

do not necessarily correspond to the "true" underlying states of the world. Instead,

the concept of a state is a way-point that is useful for making future predictions,

something that makes the underlying system more Markovian. We show that learning

the state gradually allows us to learn enough to capture the key dynamics of the

system, resulting in learning that both requires fewer samples and is computationally

more efficient than learning the full "true" model. The next two contributions extend

this basic work in two orthogonal directions.

Nonparametric Policy Priors. In chapter 4, the infinite POMDP model is learned

only from the agent's own experience. An agent's actions do not provide information

about the world; they are simply its policy. However, in some settings, it may be

possible to get demonstration trajectories from an expert. As with the agent's data,

the expert histories can be used to learn more about the world dynamics T, Q, and

R. However, they provide an additional source of information: the expert's actions

are presumably near-optimal. Combining this information with self-exploration is

tricky because self-exploration provides direct information about the model, while

demonstrations provide direct information about the optimal policy. In chapter 5,

we provide a principled way to combine agent experience with expert demonstrations

through a model prior that jointly prefers models with fewer states and simpler poli-

cies. As expected, combining expert demonstrations with self-exploration results in

faster learning for performance.

Infinite Dynamic Bayesian Networks. The infinite POMDP describes the hid-

den state by a single node or way-point. However, in many applications, it may
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make sense to think of the hidden state as consisting of several hidden factors: a

robot may have unknown position and velocity; each of a patient's organ systems

may be in a different state of health. In chapter 6, we introduce a very flexible prior

over factored hidden state spaces, the infinite Dynamic Bayesian Network (iDBN).

This prior allows for an infinite number of hidden factors, each of which can take

on an arbitrary number of discrete values and have arbitrary inter-node connections.

We do not demonstrate the iDBN on a sequential decision-making task, but we do

show that it finds interesting, predictive structures compared to other DBN-learning

approaches.

1.3 Document Roadmap

This document contains three major sections. First, chapter 2 expands the formalisms

introduced in section 1.1, providing the key technical background to read this thesis

as a stand-alone text. Chapter 2 also provides pointers to additional papers and

tutorials in these fields.

Second, chapters 3 and 7 places the work in the context of other work in rein-

forcement learning and different types of application domains. Chapter 3 describes

related work in partially observable reinforcement learning, focusing on the different

notions of state used by different methods. We also describe how the notion of state in

Bayesian nonparametric methods relates to these other approaches. Chapter 7 sum-

marizes the empirical results of this thesis, relating these results to what we might

expect from a Bayesian nonparametric framework.

Finally, chapters 4, 5, and 6 contain our technical contributions. Many of

the contributions in these chapters are already summarized in earlier work [Doshi-

Velez, 2009, Doshi-Velez et al., 2010, 2011]. However, chapter 4 in particular has

been greatly expanded: not only have we included a thorough evaluation of the

iPOMDP in many more domains, we also show the effect of several action-selection

strategies on the agent's overall performance. We also provide comparisons be-

tween the iPOMDP and a new history-based Bayesian nonparametric model based
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on probabilistic-deterministic infinite automata.

More generally, this thesis presents the technical chapters in a more unified man-

ner, with some expanded results, the key additions to this work over the more con-

densed conference articles are expanded sections on inference and discussion. A spe-

cial effort has been made to include details and tricks needed to make these models

"behave" and to also include where these techniques fail. To this end, each of the

three main chapters of the thesis are presented in an identical four-part structure:

models, methods, results, and discussion. The models section of each chapter de-

scribes the generative process that defines the prior for each model, making explicit

key assumptions and discussing how these assumptions manifest themselves in prac-

tice. The methods section of each chapter describes the inference techniques needed to

derive a posterior over models given data, with a focus on including inference details

often glossed over in shorter documents. The results section contains an empirical

validation of the approach on various benchmark problems, followed by a discussion

on when these techniques work best.
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Chapter 2

Background

The work in this thesis combines two areas of machine learning: Bayesian nonpara-

metric statistics and partially-observable reinforcement learning. In this chapter, we

provide a brief overview of these areas, as well as pointers to further information.

Models for specific applications, such as finite state machines or dynamic Bayesian

networks, are described in the chapters in which they appear.

2.1 Reinforcement Learning

The field of reinforcement learning (RL) is characterized by sequential decision-

making problems in which the agent's goal is to maximize long-term reward in

unknown environments. Specifically, reinforcement learning involves a sequence of

exchanges between the agent and the environment. At each time step, the agent

interacts with the environment through an action a. The environment sends back an

observation o and an immediate reward r (figure 2-1). The agent's goal is to maxi-

mize the discounted sum of its expected rewards E[EZ -ytrt], where rt is the reward

that the agent receives at time t, and y E [0, 1) trades off between the importance

of current rewards and future rewards (see Sutton and Barto [1998] for a much more

complete introduction).

Three elements differentiate reinforcement learning from related problems in con-

trol and optimization. First, we assume that the agent must interact with the envi-
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action

observation

reward

Figure 2-1: General reinforcement learning framework. At each time-step, the agent
interacts with the environment with an action and receives an observation and reward.
The observation and reward are used to update the agent's representation of the
environment and then to select the next action.

ronment over time: all reinforcement learning problems have an element of sequential

decision-making. Second, the agent learns through only an immediate reward signal:

through trial, error, and inference, the agent must distinguish which actions were

responsible for its rewards. Finally, the learning process is sample-based: the agent

does not start out with a complete model of the environment and then makes sequen-

tial decisions; any and all aspects of the environment must be learned through the

agent's experience of experience.

As with most reinforcement learning problems, the partially observable reinforce-

ment learning problem can be divided into two parts [Hutter et al., 2009]: choosing a

representation for the environment and deciding how to act given that representation.

We emphasize that the representation is internal to the agent: it is how the agent

chooses to encode its knowledge about its environment, not the environment itself.

In general, the representation will consist of two parts: a part that summarizes the

current history ht and a part that encodes general (usually static) information about

the environment. For example, the simple robot from chapter 1 might be simultane-

ously keeping a distribution over its current location-which summarizes its history

ht-while building a (static) map of its environment. Both of these parts are needed

to choose actions.
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2.1.1 The Partially Observable Markov Decision Process

In this section, we provide a description of one popular representation, the partially-

observable Markov decision process [Sondik, 1971, Kaelbling et al., 1995]. (Other

representations are summarized in chapter 3.) A POMDP m is specified by the tuple

{S,A,O,TQ,R,y}, where S, A, and 0 are sets of states, actions, and observations.

The POMDP representation posits that all information needed to make predictions

about the environment can be described by a latent variable s that is hidden from

the agent. For example, given a robot's current position, its previous history of how

it got there is not needed to determine the effect of a movement action.

At each time-step, the transition function T(s'|s, a) gives the probability of transi-

tioning to state s' after taking action a in state s (figure 2-2). The agent then receives

an immediate reward R(s, a) for taking action a in state s. What makes the domain

partially-observable is that the agent does not also receive the state s. Instead, it

only receives an observation ot which is emitted from the state st with probability

Q(ols, a). For example, the observation ot might be a laser scan from the robot's true

position st. Unlike the current state st, the current observation ot is not sufficient for

summarizing the agent's position, and the best action to take at time t may require

information from the agent's entire history ht = {a1, oi, r1 , ... , at, ot, rt} of previous

actions, observations, and rewards.

Figure 2-2: Graphical Model for the POMDP. The white nodes s represent the hidden
state of the world, and the blue squares a represent the agent's actions. The blue
nodes o and r represent the observations and rewards.

29



As we noted in section 1.1, while POMDPs are not Markovian in the current

observation ot, the current distribution over possible states, called the belief bt(s),

does capture all the information in the history ht needed to predict future events.

In discrete state spaces, the belief at time t + 1 can be computed from the previous

belief, bt, the last action a, and observation o, by the following application of Bayes

rule:

Vt j () =Q o I, a E T(s Is', a) bt (s')(21
bg"1(s) ~ SIE = Po s aolb, a),(21

s'ES

where Pr(ol b, a) = E,,Es Q(ols', a) E,,Es T(s'|s, a)bt(s). The agent starts with some

belief bo(s) that summarizes what states it thinks it may be in before any actions are

taken or any observations are received.

Because the POMDP dynamics are Markovian in the space of beliefs bt(s), the

optimal policy is contained in the set of functions ir(b(s), a) = p(alb(s)) that give the

probability of taking action a in belief b. Let VW (b) be the expected long-term reward

associated with starting in belief b and then following a policy 7r. The value of V(b)

can be computed using the Bellman equations [Bellman, 1957]:

V"(b) = Z 7r(b, a)(R(b, a) + y E Pr(olb, a)V'(ba')) (2.2)
a OEO

where we use the notational shorthand r(b, a) = ,7r(s, a)b(s), and R(b, a) =

E, R(s, a)b(s). The term ba' is the belief obtained after seeing observation o when

performing a in b and is computed using equation 2.1.

Solving equation 2.2 gives us the value V" of a specific policy r. For a belief b,

optimal policy r*, that is, the policy that achieves the highest long-term rewards, can

be found by first solving for the value of the optimal policy V'* (b):

V*(b) = maxQ*(b, a), (2.3)
aEA

Q*(b, a) = R(b, a) + -y Pr(ob, a)V*(ba"O), (2.4)
oEO

where Q(b, a) is interpreted as the value of taking action a in belief b and then acting
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optimally. The optimal policy is then

r*(b) = arg max Q*(b, a). (2.5)

The exact solution to equations 2.4 and 2.5 is only tractable for tiny problems, but

many approximation methods [Pineau et al., 2003, Spaan and Vlassis, 2005, Smith

and Simmons, 2004, Shani et al., 2007, Kurniawati et al., 2008] have been developed

to solve POMDPs offline. For even larger problems, forward search techniques can

be used to find solutions online [Ross et al., 2008c].

As with all planning and reinforcement learning techniques, an agent using a

POMDP as its knowledge representation alternates between two phases when inter-

acting with its environment. Upon receiving an observation, the agent updates its

belief over states bt(s) given the previous belief bt_ 1, the current action at, and the

current observation ot using equation 2.1. This representation update is known as be-

lief monitoring or estimation. Second, in the action selection phase, the agent selects

its next action given its current belief be(s) and equations 2.4 and 2.5. While differ-

ent approximations may be used for each of these phases, the phases themselves-

incorporating new information (belief monitoring) and then choosing a new action

(action selection)-are common to all approaches for acting in POMDPs.

2.1.2 Bayesian Reinforcement Learning

In the reinforcement learning setting, of course, the agent does not have access to

the parameters of the model T, Q, and R; the model m must be learned from the

agent's interactions with the world. In the Bayesian reinforcement learning setting,

the agent starts out with a prior distribution p(m) over possible models. Given a

dataset D of histories h, the agent can compute a posterior over possible models

p(mfD) oc P(Djm)P(m). The model prior p(m) can encode both vague notions,

such as "favor simpler models," as well as strong structural assumptions, such as

topological constraints among states.

Placing a prior p(m) over possible models is very similar-indeed, mathematically
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equivalent-to the initial belief bo(s) placed over agent states in section 2.1.1. As

discussed in Duff [2002], if we think of the prior as an initial belief over models,

we can cast the problem of acting in an environment without a known model as a

"model-uncertainty" POMDP in which both the model m and the state of the world

s are hidden from the agent. We can factor the joint belief b(s, m) as

b(s, m) = b(slm)b(m). (2.6)

Conditioned on data D from the agent's histories h, we get

b(s,mjD) = b(slm,D)b(mID). (2.7)

The first term b(slm, D) can be computed using the belief update in equation 2.1.

The second term b(mID) is simply the posterior over models p(m|D). Describing the

reinforcement learning problem as just a very large POMDP implies that now we

can use equations 2.4 and 2.5 to determine an optimal policy to maximize expected

discounted rewards, even if the dynamics are not initially known.

Of course, having a decision-theoretic formulation of the Bayes-optimal policy

does not imply that solving for the policy is computationally tractable. Methods

for approximating the optimal policy include sampling a single model m from the

posterior belief bt (m|D) and following that model's optimal policy p* (b, aIm) for a

fixed period of time [Strens, 2000]; sampling multiple models and choosing actions

based on a vote or stochastic forward search [Jaulmes et al., 2005, Doshi et al.,

2008, Doshi-Velez, 2009, Ross et al., 2008a]; and trying to approximate the value

function for the full model-uncertainty POMDP analytically [Poupart and Vlassis,

2008]. Other approaches [Wang et al., 2005, Kolter and Ng, 2009, Asmuth et al.,

2009] try to balance the off-line computation of a good policy (the computational

complexity) and the cost of getting data online (the sample complexity).
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2.2 Bayesian Nonparametric Statistics: Models and

Inference

In statistics, a model is a probability distribution p(xlj), where x is some set of data

and 9 is some set of parameters. The core concept of a Bayesian nonparametric model

involves the combination of two ideas: Bayesian models and nonparametric models

(see Orbanz and Teh [20101 for a much more detailed overview). A Bayesian model

is one in which the parameters of the distribution 9 are themselves random variables

with some prior distribution p(9). We can think of the prior p(O) as the distribution

over the values that we believe that the parameters 9 might take before we have

seen any data. The posterior distribution p(9|x) captures our uncertainty over the

values that the parameters 9 might take after seeing the data x. Nonparametric

models are models for which the parameter space 9 is infinite-dimensional. Thus, a

Bayesian nonparametric model is some probability distribution p(xl9) in which 0 is

an infinite-dimensional random variable.

There are two ways in which the prior p(O) can be specified. Explicit represen-

tations provide a procedure for first sampling the parameters 0 - p(9) and then the

data x - p(xl9). Having explicit procedures for sampling the parameters and the data

ensures that our prior p(O) is in fact a probability distribution and that a finite sam-

ple of data can be explained by a finite number of parameters. In contrast, implicit

representations describe a procedure for generating the data without explicitly sam-

pling the parameters 9 first (beneficial because the number of parameters is infinite!).

When the prior p(O) is never used explicitly, statistical results such as de Finetti's

theorem or the Kolmogorov Extension theorem must be applied to ensure that the

procedure used to generate the data implies a valid distribution p(9). The properties

of models are often clearer when the generative process is explicit; inference is often

simpler with implicit representations.

Inference, or computing the posterior p(O|x), requires special care when the pa-

rameter vector 0 is infinite-dimensional. The Bayes equation p(Olx) oc p(xI9)p(9) may

not technically exist because the family of all possible posteriors do not dominate,
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or overwhelm, the prior. However, conjugacy can allow the posterior p(9|x) to be

computed given the data x and the prior p(O). A properly defined Bayesian nonpara-

metric model has the following properties: First, even though the parameter vector

O is infinite-dimensional, we require that a finite sample of data x = {x 1) -.. , X, } can

be modeled with only a finite number of those dimensions. Second, asymptotic con-

sistency requires that the effect of the prior p(O) disappears with sufficient data (or,

alternatively, given infinite data, the parameters will converge to their true values

with probability one). A third desirable, but not required, property for these models

is exchangeability, which states that the ordering of the data points does not matter

when evaluating their probability.

In the remainder of this section, we describe one particular Bayesian nonparamet-

ric model, the hierarchical Dirichlet process hidden Markov model (HDP-HMM), that

we use extensively in this work. We also provide and overview of several inference

techniques that can be used to sample from the posterior over parameters p(0|x),

which will be necessary for representing the belief over models b(m).

2.2.1 Hierarchical Dirichlet Process Hidden Markov Model

A standard hidden Markov Model (HMM) [Rabiner, 1989] is a model for time-series

data which consists of the tuple m = {S, 0, T, Q}. The set S is the set of world-states,

and the set 0 is the set of observations accessible to the agent. At each time-step,

the current state st emits an observation ot drawn from a distribution Q(-|s) and

transitions to a new state st+1 drawn from a distribution T(-Is) (figure 2-3). One can

think of the HMM as the part of the POMDP that describes how world-states change

without the components relevant for decision-making (actions and rewards).

Bayesian approaches to learning HMMs involve putting priors over the transition

distributions T and the observation distributions Q. When the set of states S and the

set of observations 0 are discrete and finite, the multinomial distributions are the most

general choice for the transition distribution T(-Is) and the observation distributions

f2(-ls). As conjugate distributions to the multinomial, Dirichlet distributions are thus

a natural choice of priors p(T(-Is)) and p(Q(-|s)).
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Figure 2-3: Graphical Model for the HMM. The blue observation nodes o are the
variables that are observed at each time-step {...t - 1, t, t + 1...}; the white nodes s
represent the hidden state of world.

The infinite Hidden Markov Model, also known as the hierarchical Dirichlet pro-

cess Hidden Markov Model (HDP-HMM) [Beal et al., 2001, Teh et al., 2006] places

a prior over worlds whose state spaces S are discrete but countably infinite. In the

HDP-HMM, the transition distributions T are still multinomials, but over an infinite

number of states s. Thus, the natural conjugate prior for a particular transition dis-

tribution p(T(-Is)) is now a Dirichlet process [Ferguson, 1973, Teh, 2010] rather than

a Dirichlet distribution. Using a hierarchical Dirichlet process as a prior for the set of

transition distributions T ensures that all the distributions T(.s) are over the same

state space S. It also encodes the prior belief that there are a few popular states to

which all states transition.

A formal overview of the HDP-HMM first requires a summary of the Dirichlet

process. Recall that a multinomial distribution d with K elements can be encoded

by a set of pairs {(Xk, 0)} for k = 1...K, where 3 k is the probability of sampling the

element Xk. (Note that Z #K = 1.) For example, a multinomial distribution over

the three colors red, yellow, and blue could be written as { (red, .2) ,(yellow , .2)

( blue , .6 ) }. The Dirichlet process extends the Dirichlet distribution by placing a

prior over multinomials d = {(Xk, #k)} with a countably infinite number of elements

Xk.

The following explicit representation provides the generative procedure to draw a

multinomial distribution d = {(Xk, kI)} from a Dirichlet process prior DP(A, H):

1. Draw the samples Xk ~ H for k = 1...oo. The samples Xk define where the

probability mass will be placed.
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2. Draw the probability #k of each sample Xk via the following procedure:

(a) Draw samples vk ~ Beta(1, A) for k = 1...oo.

(b) The probability of Xk under the multinomial distribution d is given by

#3 = VkH r__i1 - vi).

Here, A is a concentration parameter that governs the ratios of the stick-lengths Pk,

and H is some base measure from which we draw samples. We note that since each #k
is the product of more and more variables Vk, the sizes of #A will decrease exponentially

fast in expectation. Thus, a few Xk will be likely and most will will be unlikely.

The HDP-HMM uses a pair of Dirichlet processes to create a set of transition

distributions over a shared set of states. A draw 0 from the HDP-HMM prior consists

of the parameters 0 = {T, {(-Isk)}, {Tk}}, where T is a mean transition distribution,

{Q(-|Sk)} is the set of observation distributions for each state Sk, and {Tk}} is the

set of transition distributions for each state Sk. First, we let the base distribution H

be our prior over these observation distributions Q(-ISk). For example, for discrete

observations, we can choose a multinomial distribution for Q and a Dirichlet distri-

bution for H. The process for drawing a sample from the HDP-HMM prior has the

following steps:

1. Draw d - DP(A, H). In the context of the HDP-HMM, the atoms Xk = Q(. sk)

describe the observation distributions for state Sk, and sticks #k = T describe

the mean transition probability to state Sk.

2. Draw transition distributions T(-|sk) - DP(a,T) for each state Sk.

where A and a are concentration parameters. A large A indicates that #k decays slowly,

meaning that we expect many states sk to have non-negligible visit probabilities.

More generally, the exponentially decaying visit probabilities in T encodes a prior

belief that the agent will spend most of its time in some local region; however, there

are an infinite number of states with non-zero visit probabilities. The concentration

parameter a determines how closely each transition distribution T resembles the
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mean transition distribution T. The graphical model and a cartoon of

process is shown in figure 2-4.

(a) HDP-HMM graphical model

the generative

distibutons
Bor each state

T(1 (- I S( .( safI
transluon

T(.I disrbuUons
T- 2- for each state

(b) Cartoon of some of the HDP-HMM parameters

Figure 2-4: The figure on the left shows the graphical model for the HDP-HMM.

On the right is a cartoon of the generative process. First, the stick-breaking process

for T assigns a mean transition value Tk to each state Sk (think of this as a state

"popularity"). We also sample observation functions 0(-1 Sk) for each state Sk. Finally,
we sample transition distributions T(.Isk) ~ DP(a,T) for each state s, where a, the

concentration parameter for the DP, determines how closely the sampled distribution

T(- Isk) matches the mean transition distribution T.

2.2.2 Inference

In section 2.2.1, we described the prior for the HDP-HMM as a process for drawing

samples 0 from p(O). Sample-based methods, that is, methods that approximate a

distribution p(9) with set of particles 01 ...0, are often used for working with Bayesian

nonparametric models because an analytical form for the distribution p(9) does not

exist.' In this section, we give an overview of the inference techniques used in this

work. These techniques are very general statistical techniques that are particularly

well-suited for working with Bayesian nonparametric models.

'We also cannot explicitly write down the infinite number of values of the parameters 0; in

practice we either set a truncation level for the number of states or only explicitly describe the
parameters 0 whose posterior value differ from the prior.
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Importance Sampling In many situations, we want to draw samples from some

distribution p(9) but it is much easier to draw samples from some other distribution

q(9). Importance sampling is a general technique for computing expectations with

respect to some distribution p(O) with samples from some other distribution q(9).

Suppose we are trying to compute some expectation

Ep[f (0)] = f f ()p()dO.

We can manipulate the integral to be

f ()p()dO = f q(O)dO q(O) = Eq[f ()w(0)|

where

w(0) = .(0
q()

The integral can be approximated by the sum

E,[ f (0)w(0)] ~- N f (0) jw (0').
Oijq(O)

where N is the number of samples Oj that we use in approximating the integral. Thus,

we can use samples from q(9) to compute expectations with respect to p(O).

Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) describes a

set of techniques for drawing samples from p(9) in which the previous sample £4 is used

to draw the next sample 0 k+1 from some transition kernel t(Ok+1 Ok). The samples

are correlated, but we can still approximate p(O) with a sufficiently long sequence of

samples 01...,; the length associated for a chain to be representative of a sequence

is called the mixing time. Furthermore, depending on the starting 0 o, it may take

several samples for the sequence to start being representative of the distribution p(o).

This length is called the burn-in time.

One common approach to Markov Chain Monte Carlo is called Metropolis-Hastings.
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In this method, we first define an arbitrary transition function q(Ok+1 0k). The sam-

pling procedure for the transition kernel t(0k+1 Ok) is then described by the following

steps:

1. Sample a possible 0* from q(Ok+110k).

2. Compute the acceptance probability a = min(1, p( .

3. With probability a, let the next element in the sequence 0k+1 = 0*. Otherwise,

0k+1 = Ok -

This procedure ensures that the sequence will represent the distribution p(O) under

mild conditions. However, the choice of the transition function q(Ok+1 Ok) can have a

significant effect on the mixing time.

Using Metropolis-Hastings can be very effective if one has a sense of what might be

a good proposal distribution q(Ok+10k). Gibbs sampling is special case of Metropolis-

Hastings in which the acceptance probability is always one. Given a multi-dimensional

vector Ok of dimension D, the algorithm proceeds as follows:

1. Choose a dimension d to resample. We can choose d by iterating through 1...D

sequentially or randomly choosing d such that each dimension gets sampled

infinitely often in an infinite sequence.

2. Set 0 k+1 = Ok.

3. Set Ok+1(d) ~ p(O(d)IOk(1)...Ok (d - 1),Ok(d +1)...Ok(D))

A basic extension to the Gibbs sampling scheme is to sample sets of dimensions of 0 at

one time, instead of only one dimension. For example, if we are sampling parameters

in a POMDP model m, we may first resample all of the parameters in the transition

function T and the resample all of the parameters in the observation function Q. This

extension is called blocked Gibbs sampling.
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Chapter 3

Related Work

Bayesian nonparametric methods provide one alternative for thinking about and

learning representations for partially-observable environments. In this chapter, we

first provide a formal definition of "state" and describe the different notions of state

used in various reinforcement-learning representations. We also provide and overview

of the techniques used to learn this state, pointing out their advantages and disad-

vantages.

3.1 Defining State

In the general reinforcement learning setting, our agent knows its past history ht =

{a, oi, ri, ... , at, ot, rt}. Based on this history, it must make decisions to maximize its

expected future rewards. More generally, any predictions that the agent wishes to

make about the future may depend on the past history ht. Following the information-

theoretic definition of state described in Shalizi and Klinkner [2004], Tishby et al.

[19991, and Wingate [2008], we define the information state s = g(ht) as any statistic

of the history ht which is sufficient to predict the distribution of future rewards and

observations.

As a specific example, let us consider the notion of a state in an MDP. Here, the

history consists of ht = {a, si, ri, ..., at, st,rt} where st is the state of the world at time

t. By construction, the current world state st captures all the relevant information
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about ht needed for making future predictions; thus the function g(ht) = st satisfies

the information-theoretic definition of a state. The POMDP literature continues to

use the term "state" to refer to the underlying MDP-state st even though st is longer

a function of history. However, setting the function g(ht) to the "belief state" be(s)

satisfies the information-theoretic definition of a state.

More formally, let ft be the random variable representing the agent's future after

time t: {at+1, ot+1, rt+1, ... }. The mutual information I(ht; ft) captures how much

information the past provides about the future. If s = g(ht) is a sufficient statistic

for the history ht, then I(ht; ft) = I(g(ht), ft). Another way to state this condition is

that if two histories ht and h' have the same statistic s, then Pr(ftlht) = Pr(ftIlh').

This information-theoretic definition of state is also sufficient for making optimal

predictions from a decision-theoretic perspective [Blackwell and Girshick, 1954].

There exist, of course, many ways of compressing the history ht into a sufficient

statistic. We describe the notion of state used in various reinforcement learning

representations below. In some of these cases, the statistic s = g(ht) is approximate,

that is I(ht; ft) > I(g(ht), ft).

3.2 States from Features of Histories

Strategy One approach to summarizing the history ht into a statistic g(ht) is to

directly search that history for certain patterns: a subsequence of elements, a suffix,

or some more complex feature. For example, noticing that a customer bought the

first two books in a trilogy may be sufficient for predicting whether to recommend the

third book, regardless of the rest of the customer's purchasing history. The last several

moves of a chess player may be sufficient to infer his current strategy, regardless of

how he opened the game.

When is it effective? History-based approaches have the advantage of operating

directly on the data. There are no hidden variables that need to be defined, inferred,

or controlled. Instead, states are simply aspects of the history that are useful for
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predicting future rewards or future observations. However, in general it is harder to

incorporate direct expert knowledge, such as a sensor calibration, into the learner.

Furthermore, because histories are so general, large amounts of experience may be

required before the agent discovers what parts of the histories are valuable for making

decisions.

3.2.1 States as Windows of History

Representation One of the earliest history-based algorithm was U-Tree [McCal-

lum, 1993]. Let us define ht as the history from time 0 to time t. The U-Tree

algorithm builds a suffix tree of the agents' histories hi, h2 ,...ht. Each branch of the

tree is trimmed to a particular depth, corresponding to how large a window of recent

recent history is relevant. The state s = g(ht) in U-Tree corresponds to which leaf-

node the history ht. If the depth of that leaf-node is d, then all histories h sharing

the same d-length suffix will be grouped together into a single state.

Given a particular suffix tree representation, planning is relatively straight-forward:

the agent always knows its current state s (that is, which leaf-node is associated with

its history h), and that state is always a discrete scalar. The agent can also keep

track of how often it has seen various state transitions T(s'|s, a) and rewards R(s, a)

to build an MDP model of the dynamics of these node states; once the model is built,

choosing actions is simply a matter of solving the MDP.

Learning The tricky part, of course, is how to learn a suffix-tree representation such

that the node-state s is a sufficient statistic for the history with respect to the future.

The U-Tree algorithm does so by starting with a small tree and then expanding a

node-that is, increasing the suffix window-if a statistical test suggests that a split

will significantly improve the predictability of future rewards. Thus, we can think of

U-Tree as a nonparametric method for automatically determining the necessary suffix

depths needed to build sufficient statistics.

However, we find from our own implementations that the choice of both the sta-

tistical test and the action-selection approach can dramatically affect the results;
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finding robust solutions to these issues is a continuing area of research [Breslow,

1996, Brafman and Shani, 2004, Pchelkin, 2003]. These choices can lead to large

numbers of samples being needed for relatively small problems. For example, even in

very recent work [Zheng and Cho, 2011], a state-of-the-art implementation of U-Tree

require 75,000 interactions with the environment to learn small benchmarks such as

the shuttle domain of Chrisman [1992].

Finally, we note a set of related methods that use windows of history as state.

Even-Dar et al. [2005] showed that near-optimal behavior in POMDPs can be achieved

in a polynomial number of samples: here, the agent resets itself to a specific set of

randomized positions and then uses the histories it sees from this position as state

(as above, actions are chosen by solving the induced MDP). Dimitrakakis [2010] is a

Bayesian work for uncontrolled systems that learns mixtures over models with varying

lengths of suffixes. This approach provides an alternative to the statistical tests

used in U-Tree, and the authors learn simple, uncontrolled systems with hundreds

to thousands of examples. The last approach, also demonstrated on uncontrolled

systems, is causal state splitting reconstruction (CSSR) [Shalizi and Klinkner, 2004].

CSSR builds states as collections of suffixes rather than a single suffix to create a

more parsimonious representation.

3.2.2 States as History Subsequences: Finite Automata

Learning challenges aside, a fundamental drawback of U-Tree is that the state s =

g(ht) must be a suffix of the history, and sometimes very long suffixes may be needed

to capture relatively simple structure. For example, consider a T-intersection that

splits into two long hallways that are identical except that they have different rewards

at the ends. A suffix-based method that looks only at windows of recent history would

require a very long window to realize that the decision of which of corridor to take at

the start is all that is needed to predict the final reward well.

Representation An alternative approach to using history suffixes as state is to

consider subsequences of the history as the state. One approach to grouping sub-
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sequences of the history together is to use finite automata [Rabin, 1963], such a

finite state machines [Sunehag and Hutter, 2010], probabilistic-deterministic finite

automata [Mahmud, 2010, Pfau et al., 2010], and looping suffix trees [Holmes and

Isbell Jr, 2006]. These representations have a set of nodes n; transitions between the

nodes are generally deterministic given the action-observation pair (at, ot), and nodes

can transition back to themselves.

The nodes and the node transition structure allows the finite automaton to pick

out certain patterns such as the initial choice of hallway in the T-intersection, and

ignore other information such as the many observations corresponding to traveling

down the long hallway. While finite automata are a strictly smaller class of models

than POMDPs, they can be made arbitrary close to-and thus their nodes can be

sufficient statistics for-any RL environment (similar to uncontrolled automata of

Dupont et al. [2005]). Each discrete node can keep track of its transitions and rewards;

choosing a policy given a finite automaton simply involves solving the MDP with the

nodes as states.

The finite automaton that we described above summarizes the history ht with

a node-state s = g(ht) that can predict future rewards as well as the history itself,

and then that representation is solved to derive a policy. An alternative is to learn

the policy directly from the finite automaton, that is, to have each node emit an

action. In this form, the finite automaton is usually called a finite state controller

[Kim et al., 2000, Charlin et al., 2007, Hansen, 1998]. Policy-based methods that use

other features of the history [Aberdeen et al., 2007, Wierstra et al., 2007, Aberdeen

and Baxter, 2002] are also closely related in that they seek to learn a representation

s = g(ht) such that s can be used to make near-optimal decisions independently of

the history.

Learning Learning finite automata is NP-hard, though several approximation tech-

niques have been developed for learning probabilistic-deterministic finite automata

using PAC [Castro and Gavalda, 2008], information-theoretic [Thollard et al., 2000],

and Bayesian methods [Pfau et al., 2010]. Each of these methods uses different heuris-
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tics to create a bias toward learning compact models while still explaining the data

well: whether it is an explicit generalization criterion, an information-gain argument,

or Bayesian Occam's razor. We find from our own experience that the heuristics used

for learning finite automata can be hard to tune; however, they do have the advantage

of learning a compact state-representation directly from the data without the need

for any hidden variables. In Mahmud [2010], well-tuned finite automata were used to

learn simple grid problems with a few thousand interactions with the environment.

Finally, in the setting where the representation is directly linked to the policy,

policy-gradient methods (such as Aberdeen et al. [2007], Wierstra et al. [2007], and

Aberdeen and Baxter [2002]) can be used to update the parameters of the represen-

tation based on several runs in the environment. The key difficulty with these direct

policy-based methods is that knowing what action to take in a particular state s is

a much more difficult task than evaluating how well a representation predicts direct

rewards. These difficulties often lead to more interactions with the environment being

required for even small benchmarks (on the order of 10,000s iterations in Aberdeen

et al. [2007]). However, in settings where experts can provide a strong bias toward

a good representation, such as in robotics, these direct policy-based methods can do

well on complex tasks [Peters and Schaal, 2006].

3.2.3 Predictive State Representations

Representation Finally, another class of history-based methods is the predictive

state representation (PSR) [Singh and James, 2004]. PSRs define a dynamical system

by a set of tests of the form p(f I h) where f is a future of some finite (but possibly

variable) length. If we consider all possible sequences of actions and observations for

f and h, then it is clear that the set of tests p(flh) define the system: for any prior

history h, we can predict the probability of any future sequence f. A trivial choice

of state s = g(ht) is then the collection of the probabilities of all possible futures

{p(f lht)}.

However, this choice of statistic ignores a key aspect of structure found in {p(f lht)}:

futures are related to each other in that longer futures are extensions of shorter fu-
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tures, and for any length of future T, at least one future If I = T must occur. If there

is a simply underlying process generating the data, such as a finite POMDP, then

it can be shown that a finite number of these tests Q = {p(flht)} are sufficient for

computing the value of any other test p(-Iht). These tests are known as core tests

and serve as the state of the PSR s = Q. Similar to POMDPs, a set of update

equations can be derived to compute Qt given Qti, at, and ot: specifically, we can

write p(f hao) = p(aofh)p(aojh)

Recent work has looked at approximations for this PSR-state [Rosencrantz et al.,

2004] with simpler updates, and also methods for near-optimal control given the PSR-

state [James et al., 2004, Boots et al., 2011a]. These works have made it possible to

scale the use of PSRs to larger environments. However, the PSR-state, expressed

as a set of core test probabilities, are already difficult to interpret, and the induced

approximations further separate the PSR-state from aspects of the system that are

intuitive to human domain experts.

Learning Like the other history-based approaches, a key advantage of PSR learning

is that the representation depends directly on statistics of the history: there are no

hidden variables. However, even relatively recent work such as Song et al. [2010]

tended to have strong constraints when learning PSRs: multiple resets, large numbers

of actions, and certain identifiability and ergodicity properties induced by the agent's

exploration policy were all needed to learn the parameters of the representation. Very

recent work has alleviated some of these concerns [Rosencrantz et al., 2004, Boots

et al., 2011a,b] and shown promise on robotics-related problems with only thousands

of iterations of experience; it remains to be seen how well these methods scale to

problems with other structure.

3.3 States using Hidden Variables

Strategy In the previous section, we described various techniques that derive the

state s = g(ht) directly from the history ht. Most of the models in this thesis are
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derived from an alternative state-space representation which assumes that the envi-

ronment contains a hidden variables1 which, if known, would be a sufficient statistic

for the history ht. The partially observable Markov decision process (POMDP) pro-

vides the most general formulation of this latent-variable approach, and we use it

to introduce several other variants that can be considered other formulations of the

same concept.

When is it effective? Historically, the concept of a hidden variable representation

in the POMDP derived from application areas in which it was natural to think of

the agent being in some "true" world-state that was made ambiguous by inadequate

sensing [Sondik, 1971, Kaelbling et al., 1995]. For example, the world-states might

correspond to the location of a robot with imperfect GPS or a factory with limited

sensors (such as the examples in Pineau et al. [2001] and Kurniawati et al. [2008]).

In dialog management applications such as Roy et al. [2000] and Williams and Young

[2005], the hidden world-state is generally the task that the user wants the system to

perform. This very "grounded" approach to thinking about hidden variables makes

the POMDP approach very close to approaches used in the dynamical systems com-

munity and systems identification [Maybeck, 1979].

In the setting where the world-state does represent a real, grounded quantity

about the world, using a POMDP-like representation allows for model-learning to be

split into simpler components: sensors and actuators can be calibrated in laboratory

settings where the true world-state, such as a robot's location, can be measured

directly. Even when every part of the model cannot be specified independently, if

the hidden world-state corresponds to unseen components of a real system, an expert

can input the structure of the system into the agent, leaving only a few, very specific

parameters to be learned. Incorporating such expert knowledge and calibrations is

difficult in the history-based representations described in section 3.3.

In contrast, in applications where sections of the history are highly informative-

'We use the term "world-state" for the term "state" as the hidden variable in the POMDP to

be consistent with the POMDP literature and still differentiate this use of the world-state from the
notion of a "state" as a sufficient statistic of the history with respect to the future.
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for example, if an environment has frequent signs or markers-history-based methods

may have the advantage. However, as longer histories are required-or more structure

is specified-learning a POMDP model may require fewer interactions with the en-

vironment than a history-based method. For example, the BA-POMDP [Ross et al.,

2008a] learns simple benchmark problems in hundreds to thousands of iterations of

experience, compared to the tens of thousands required in some of the history-based

methods. However, the BA-POMDP starts out with some knowledge about the size

of the underlying state space, which limits its search for models. A more general

latent-state method, AIXI, can take two orders of magnitude more interactions to

learn similar problems.

3.3.1 Representation

The POMDP model posits that there exists an underlying process that is Markov if

the hidden world-states s are known-that is, the world-state is a sufficient statistic

for the history. These world-states transition according to some transition function

T(s'Is, a) and emit observations according to some observation function Q(ols, a). In

this setting, it can be shown that the statistic be(s) = g(ht) is a sufficient statistic for

the history ht [Sondik, 1971]. Moreover, there exists a simple update rule to adjust

this sufficient statistic given new experience:

T (sls', a) bt(s')bg() (os,a)Z
s'ES Pr(oIbt,a)

The latent world-state in the equation above need not be a discrete scalar. Factored

POMDPs are POMDPs in which the world-state is vector-valued quantity, which al-

lows for the encoding of more sophisticated problem structures [Williams and Young,

2005, Guestrin et al., 2001, McAllester and Singh, 1999b, Sim et al., 2008]. For

example, world-state may correspond to the location and velocity of a robot. The

POMDP representation can also be used to create world-states that encode hierarchi-

cal relationships between the hidden variables [Pineau et al., 2001, Toussaint et al.,

2008], logic-based systems [Fikes and Nilsson, 1971, Sanner and Kersting, 2010], and
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relational variables [Wang and Khardon, 2010]. In all of these cases, the POMDP

framework provides a way to construct the sufficient statistic b(s) as distribution over

the hidden variables.

The framework also provides a variety of sophisticated solution methods to derive

a near-optimal control policy given the model [Pineau et al., 2003, Spaan and Vlassis,

2005, Shani et al., 2007, Smith and Simmons, 2004, Kurniawati et al., 2008, Ross

et al., 2008c]. Using a POMDP-based representation to derive the state b(s) does

result in more complex update rules than history-based methods based on suffix trees

or PDFAs, and the resulting continuous-state MDP is more difficult to solve than the

representations in which the statistic s is a discrete scalar. However, modern POMDP

solvers, combined with modern computers, can solve even fairly large (10,000s of

world-states) POMDPs efficiently.

Finally, there does exist a parallel between defining state as a set of test probabili-

ties, as in the PSR, and defining state as a belief, in the POMDP. The belief b(s) gives

a probability distribution over possible hidden states, from which the probability of

any future can be derived, while the core test vector q gives the probabilities of various

futures happening directly. It can be shown that the dual of the POMDP actually

produces a test-based representation that is very similar to the representation used

in a PSR [Hundt et al., 2006].

3.3.2 Learning

Unlike the history-based methods, POMDPs cannot simply be learned based on statis-

tics of the histories. Learning POMDPs is a hard problem [Sabbadin et al., 20071,

but a variety of methods exist for inferring the transition, observation, and reward

functions. The first three methods that we describe, expectation-maximization, (para-

metric) Bayesian methods, and system identification, all assume that we know the

parameters that make up the model (but not their values). These methods are ideal

when the hidden world-state corresponds to something tangible, and thus structures

and cardinalities can be specified through expert knowledge. For example, if we are

building a model for a simple pendulum, we know that the mass and the length are
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the parameters that will need to be learned. The last set of methods we describe,

nonparametric methods, are suited for more general problems where we may not know

the parameters required for the model.

Parametric Methods: Expectation-Maximization, System Identification,

and Bayesian Approaches. Learning a POMDP involves inferring the transi-

tion, observation, and reward functions T, Q, and R. Note that if the world-states

were known, then this problem is relatively easy: it is no harder than learning the

MDP parameters in the history-based methods. The simplest approach for learn-

ing the POMDP parameters, expectation-maximization (EM) [Dempster et al., 1977,

Rabiner, 1989], alternates between inferring the latent world-states and fitting the

model parameters. EM is a greedy optimization approach that is prone to getting

caught in local optima. It produces a point-estimate of what model fits the data best,

regardless of how much data is available, which can lead to overfitting the model when

only a small amount of data is available.

Bayesian approaches attempt to alleviate these issues by placing a prior distribu-

tion over the parameters. By computing the posterior over models, rather than a point

estimate, they provide their own measure of uncertainty over the parameters. Many

works assume that the number of world-states is known and the parameters come

from Dirichlet or Gaussian distributions, and they leverage the properties of these

distributions to draw samples from, or otherwise approximate, the posterior [Carter

and Kohn, 1994, Jaulmes et al., 2005, Doshi et al., 2008, Strens, 2000, Poupart and

Vlassis, 2008, Ross et al., 2008ab]. The AIXI approach [Hutter, 2004, 2007, Ve-

ness et al., 2009] computes posteriors over much more general model classes. These

approaches tend to require significant computation even to produce approximate pos-

teriors. Also, while keeping posteriors can help the agent know when it does not have

enough data to fit the parameters, it does not provide a solution for what the agent

ought to do when data is limited.

The last parametric approaches we describe are calibration and system identifi-

cation, a broad set of techniques used to determine the parameters of a generally
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well-defined system model. Calibration can be used in situations in which sensors for

observations and actuators for transitions can be individually characterized. When

less is known about the system, but one still has strong knowledge about the form of

the system-such as a certain environment can be modeled as a set of filters-then

system identification can be used to identify the model from well-collected sequences

of data.

These parametric approaches have had success in many complex applications in

which the world-state and the system are well-understood: then the expert knowl-

edge can be used to learn complex models with relatively little data. However, the

grounded-state idea that underlies these approaches is less well-suited for problems

where the concept of a hidden world-state is more ambiguous: for example, if the un-

derlying "state" is a patient's health, then one could imagine a variety of definitions

of state that could satisfy the required Markov property: ranging from the complete

molecular make-up of the patient to the set of all conditions that produce the same

clinical phenotype. In other cases, the world-states may "exist" but be difficult and

unnecessary to differentiate: for example, all the parts of a long corridor may look

very similar, and knowing exactly where one is in the corridor may not be important

for traversing it.

These are the kinds of situations in which proponents of history-based methods

cite as evidence for not using hidden-variable methods. After all, why introduce a

hidden state if it is either ambiguous (as in the healthcare example) or irrelevant

(as in the hallway example). History-based methods are designed to pick out pre-

dictive features-such as key test result-and compress irrelevant features-such as

long stretches of hallway. In the following section, we describe how one can use non-

parametric approaches to learn hidden-variable representations. These approaches

allow us to keep many of the benefits of hidden-variable approaches, including the

ability for experts to bias the learning toward likely structures. However, by turning

away from the concept of a world-state as something "real," they are able to learn

world-states that, as in history-based methods, are predictive of future events.
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Nonparametric Methods: Spectral Techniques and Bayesian Approaches.

Most of the history-based methods are nonparametric: they either grow the repre-

sentation based on the structure in the histories or use various criteria to determine

an appropriately-sized representation given a batch of data. We now describe similar

techniques for hidden-variable methods (though they are, in general, less commonly

used).

Just as with work in the PSR literature, there exist methods to learn the tran-

sition and observation dynamics of an HMM using spectral techniques [Song et al.,

2010]. The spectral approach allows one to determine an appropriate size for the state

space by looking at components in the resulting eigenvalue decomposition. However,

this recent work does require certain model assumptions-such as each world-state

having a unique observation distribution-and the availability of data from multiple

resets. Also, these techniques have not been applied to the case of a controlled system

(although the spectral PSR-training approach in Boots et al. [2011b] can be thought

of as a generalization of POMDP learning).

Bayesian nonparametric methods provide another alternative to automatically

learning the appropriate size for the hidden-variable representation. As with the

parametric Bayesian approaches, Bayesian nonparametric approaches place a prior

over model parameters. As with all the other POMDP hidden-variable approaches,

they posit that there exists a set of underlying world-states that would make the dy-

namics Markovian. However, closer to the history-based methods, the goal of these

world-states is simply to predict future history well (that is, satisfy the Markov as-

sumption) rather than be some representation of what is truly happening in the world.

Bayesian nonparametric models and their precursors have been used to find predictive

structure in a variety of dynamical systems [Fox et al., 2010a, 2008, Stepleton et al.,

2009, Johnson and Willsky, 2010, Stolcke and Omohundro, 1993, Shalizi and Shalizi,

2004, Drescher, 1991].

More specifically, these methods posit that there are, in fact, an infinite number

of latent variables that could be used to make the process Markovian (just as a

nonparametric history-based method might posit that the entire history might be
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needed as a sufficient statistic). However, the Bayesian aspect of the model injects

a strong prior bias toward explaining the data with fewer latent states rather than

more. These latent states can be thought of as "way-points," features that, if known,

would make it possible to predict future events without previous history. In this

sense, they bring together some of the key ideas underlying latent-state methods like

the POMDP-including advantages such as interpretability and ease of incorporating

expert knowledge-with key ideas in history-based methods such as the PSR, whose

strength is in building a compact basis to well-predict future data.

In the next three chapters of this thesis, we show several applications of Bayesian

nonparametric methods for learning hidden-variable representations. Focusing on

problems where the concept of a world-state is not clear, we show that the flexibility

of Bayesian nonparametric approaches allows us to learn appropriately-sized models

which require both less computation and less data to train than Bayesian parametric

models. The structure of the representation still lets us outperform a history-based

method using suffix trees as state.
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Chapter 4

The Infinite Partially Observable

Markov Decision Process

In this chapter, we describe the first of three models that can be used as priors for

reinforcement learning in partially-observable domains. Recall from chapter 1 that

one of the most common representations used for partially-observable reinforcement

learning is the partially observable Markov decision process. The POMDP represen-

tation posits that the observation ot that an agent receives at time t is emitted based

on the value of some hidden world-state sti and the agent's most recent action at.

The agent's action at also causes the world to emit a reward R(st, at) and transition

to a new state st+1. While very general, the POMDP formulation requires a large

number of parameters to specify how observations are emitted Q(ols, a), how states

transition T(s s, a), and how rewards are given R(s, a). When used as a representa-

tion for reinforcement learning, all of these parameters must be learned online from

the agent's interactions with the environment.

One approach to learning these parameters is to use Bayesian reinforcement learn-

ing to convert the reinforcement learning problem into a larger "model-uncertainty"

POMDP in which the agent maintains distributions over both the parameters of the

1To be consistent with the POMDP literature, we will use the term "state" and the notation s
to describe the world-state. We will refer to the information state (described in chapter 3) as the
"sufficient statistic for the history."
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original POMDP m and the state of the world s (which is hidden). These techniques

require that the number of states, at least, is specified to the algorithm in advance.

However, as we discussed in chapter 3, if the states are truly hidden, it may be hard

to specify how many states a system has, or even what "states" mean. For example,

in a medical domain, it may not be clear how many "states" are needed to describe

various aspects of the patient's health. Even if the size of the state space is known,

just making the agent reason about a large number of unknown parameters at the be-

ginning of the learning process is fraught with difficulties. The agent has insufficient

experience to fit a large number of parameters, and therefore much of the model will

be highly uncertain. Trying to plan under vast model uncertainty often requires sig-

nificant computational resources; moreover, the computations are often wasted effort

when the agent has very little data. Using a point estimate of the model instead-

that is, ignoring the model uncertainty-can be highly inaccurate if the expert's prior

assumptions are a poor match for the true model.

We introduce the infinite POMDP, or iPOMDP 2, an alternative prior over repre-

sentations that posits that the world consists of an infinite number of states. States

no longer necessarily correspond to physical aspects of the system; they are abstract

entities whose sole function is to render the dynamics of the system Markovian. The

iPOMDP places a prior over models of worlds with an infinite number of states. The

prior has a bias toward models with a few popular states that the agent is likely to

visit over and over and many unpopular states. Thus, during inference, models that

explain the agent's data with fewer states will be more probable that models that

explain the agent's data with many states. For example, in a robotics domain, if

two areas appear and behave similarly, the agent will have a prior bias to inferring

that they belong to the same room. Likewise, if two patients with similar symptoms

respond similarly to a set of treatments, then the agent will have a bias to inferring

2We use the name infinite POMDP and the abbreviation iPOMDP to be consistent with the

naming conventions for other Bayesian nonparametric models such as the infinite HMM (iHMM)

and the infinite factorial HMM (ifHMM). However, the infinite POMDP model described here should
not be confused with the interactive POMDP [Gmytrasiewicz and Doshi, 2004], which is a different

model with the same abbreviation.
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that they might have had the same condition. However, having an infinite number

of states available always allows for something new: whether it is a new room for the

robot agent or a new condition for the health-care agent.

From a computational perspective, only states that the agent thinks it has visited

must be instantiated with parameters. There is no reason to instantiate parameters

for any of the other (infinite) states because there is no data to suggest that the

parameter values should have a different distribution than that of the prior. Because

of the bias toward explaining the data with fewer visited states, belief-monitoring

in the iPOMDP generally involves inference over a relatively small set of model pa-

rameters corresponding to agent's limited experience. Additional parameters need to

be inferred only as evidence accumulates for the agent observing more states. These

small models are often lend themselves to faster planning than a model that tries to

explicitly model a large number of parameters.

4.1 Model

The generative process for the infinite POMDP is essentially that of the HDP-HMM

described in section 2.2.1. Just as a POMDP can be built from an HMM by adding

actions and rewards, the infinite POMDP is built by adding actions and rewards to

the HDP-HMM. As review, recall that the specifying an HMM required specifying

a transition function T(s'|s) and an observation function Q(ols). In the Bayesian

setting, both of these unknown quantities were treated as hidden variables. For each

world-state s, the HDP-HMM drew an observation function £(-|s) ~ H, where H

was some base measure. For example, if the observations o were discrete, drawn from

multinomials, H might be a Dirichlet. The transition functions T(s'|s) were drawn

from DP(a, T), where T was a mean transition distribution and the concentration

parameter a governs how closely T(s'Is) matches T. The mean transition distribution

T was drawn such that the number of world-states was unbounded, but only a few

had significant weight.

To convert the HDP-HMM prior into an infinite POMDP prior, we condition the
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transition and observation functions on the action a: T(s'|s, a) and £(ols, a). We

only consider settings with a finite number of actions a; in this case we can use the

same HDP-HMM prior to now specify transition and observation functions that are

conditioned on the action: T(-Is, a) ~ DP(a, T) and Q(-Is) - H.3 In POMDP-based

reinforcement learning settings, the reward r is generally treated as a deterministic

function of the world-state and current action: r = R(s, a). We relax this convention

and assume that the reward is stochastic, where the reward function R(rjs, a) gives

the probability of receiving reward r after doing action a in world-state s. Now we

can treat the reward as another dimension of the observation o. Just as we placed

a prior H over each observation distribution Q(- Is, a), we now place a prior HR over

each reward distribution R(-Is, a).

The full process for drawing a model from the iPOMDP prior is then

1. Sample the mean transition distribution T ~ Stick(A). Under the Dirichlet

process prior, the popularities of world-state k = T(k) decay exponentially.

The concentration parameter A governs this decay: a small value places a bias

toward a very few popular world-states; as A becomes large, many world-states

will be likely destinations of a transition.

2. For each world-state s and action a, sample a transition function T(. Is, a)

DP(a, T). The concentration parameter a governs how closely T(.Is, a) matches

T. Large values of a will result in transition functions T(. Is, a) that look almost

identical to T. Small values of a will result in near-deterministic transition

functions T(.Is, a) whose mean will still be T.

3. For each world-state s and action a, sample an observation function (-Is, a)

H. The observation function can take any form, and similarly there are no

restrictions on the prior H. However, from a computational perspective, it may

make sense to choose a prior H that is conjugate to the observation function

Q(ols, a).

3We use the same base measure H to draw all observation distributions; however, a separate

measures Ha could be used for each action if one had prior knowledge about the expected observation

distribution for reach action. Likewise, one could also draw a separate Ta for each action.
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4. For each world-state s and action a, sample a R(-Is, a) ~ HR. Just as there

are no restrictions on the observation function, there are no restrictions on the

reward function and its prior.

Finally, to complete the specification of the POMDP, we must include a discount

factor -y that trades off between current and future rewards. The graphical model

is summarized in figure 4-1. We denote the entire POMDP model by the variable

m = {T, Q, R}.
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(a) iPOMDP graphical model (b) Cartoon of some of the iPOMDP parameters

Figure 4-1: Graphical Model for the infinite POMDP.

Samples from the iPOMDP prior have an infinite number of states, but fortu-

nately all of these states do not need to be explicitly represented. During a finite

lifetime the agent can only visit a finite number of states, and thus the agent can

only make inferences about a finite number of states. The remaining (infinite) states

are equivalent from agent's perspective, as, in expectation, these states will exhibit

the mean dynamics of the prior. Thus, the only parts of the infinite model that need

to be initialized are those corresponding to the states the agent has visited as well

as a catch-all state representing all other states. In reality, of course, the agent does

not know the states it has visited; we address the question of joint inference in the

model-state space in section 4.2.
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4.2 Methods

Given a prior over POMDP models, we have a starting belief for the joint space of

models and states. Acting in this model-uncertainty POMDP requires the same two

steps required to act in any POMDP: belief monitoring, to update the distribution

over possible states after each action and observation, and action-selection, to choose

the next action based on the current belief (see section 2.1.1 for more on these two

steps). Each of these steps is described in the context of the infinite POMDP below.

4.2.1 Belief Monitoring

In this section, we describe how to (approximately) compute the joint posterior, or

current belief,4 over states s and models m given a history h of actions, observa-

tions, and rewards {ai, oi, ri, a 2 , 02, r 2 , -.-, at, ot, rt}. The posterior p(s, mh) cannot

be represented in closed form. We represent it by first factoring the posterior into

p(sim, h)p(mlh). We represent p(mjh) through a series of samples {m}. Given a

model m = {T, Q, R}, the distribution p(sIm, h) can be computed exactly for discrete

spaces using standard belief update equations (see Appendix 2.1.1). Thus, we focus

in this section on describing how to draw samples m from p(mlh).

Finally, not only is it intractable to represent the posterior p(mlh) in closed form,

it is also impossible to actually "write down" a complete model m because m has an

infinite number of states. However, we note that p(mlh) will differ from p(m) only

for states s that the agent has visited; the finite history h provides data about only a

finite number of states. Thus, it is sufficient to represent the sample m only with the

parameters for states that the agent believes it has visited (to be made more formal

below). All the other infinite states can be grouped together and having properties

that, in aggregate, behave like their base measures.

4 We will use the words posterior and belief interchangeably; both refer to the probability dis-

tribution over the hidden state given some initial belief (or prior) and the history of actions and
observations.
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Updating {m} through Importance Sampling.

The generative process outlined in section 4.1 describes how to draw samples from

the prior over models m. One might imagine first drawing a set of samples mi from

the prior (up to some finite number of states K, and then grouping all the other

states as a K +1 state that acts like the base measures in aggregate), and then never

changing those sample points. Instead, we simply update the importance weights

on each sample wi to reflect information from the history h (see Appendix 2.2.2 for

background on importance sampling); we know that the weighted set of points will

give us an unbiased approximation to the posterior p(mlh).

More generally, suppose we have a set of models m that have been drawn from

the correct posterior p(mlht) at time t. To get a set of models drawn from the

belief at time t + 1, we can either draw the models directly from the new belief or

adjust the weights on the model set at time t so that they now provide an accurate

representation of the belief at time t + 1. Adjusting the weights is computationally

most straightforward: directly following belief update equation 2.1, the importance

weight w(m) on model m is given by:

w"(m) cx O(oIm, a)wt(m), (4.1)

where Q(olm, a) = Es Q(ols, m, a)bm(s), and we have used T(m'm, a) = m(m')

because the true model does not change.

The advantage of simply reweighting the samples is that the belief update is

extremely fast. It is also an effective way of updating the posterior if we do not

expect a large change to have happened: usually, a single round of experience from

t to t + 1 is not going to change the agent's beliefs about the model m significantly.

However, over time, new experience may render all of the current model samples

unlikely. To alleviate this issue, we resample the models mi from the posterior after

every 100 interactions with the environment.
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Updating {m} through Beam Sampling.

We periodically resample a new set of models directly from the current belief using

the beam-sampling approach of van Gael et al. [2008], with a few straight-forward

adaptations to allow for observations with different temporal shifts (since the reward

rt depends on the state st, whereas the observation ot is conditioned on the state st+1)

and for transitions indexed by both the current state and the most recent action. The

correctness of our sampler follows directly from the correctness of the beam sampler.

Basic Procedure The beam-sampler is an auxiliary variable method that draws

samples from the true iPOMDP posterior; we outline the general procedure below.

The inference alternates between three phases:

" Sampling slice variables to limit trajectories to a finite number of

hidden states Given a transition model T and a state trajectory {si, s2, - - -}7

an auxiliary variable ut - Uniform([0, min(T(-Ist, a))]) is sampled for each time

t. The final column k of the transition matrix is extended via additional stick-

breaking until max(T(skIs,a)) < ut.). Only transitions T(s'Is, a) > ut are

considered for inference at time t. 5

" Sampling a hidden state trajectory Now that we have a finite model, we

apply forward filtering-backward sampling (FFBS) [Carter and Kohn, 1994] to

sample the underlying state sequence.

" Sampling a model Given a trajectory over hidden states, transition, observa-

tion, and reward distributions are sampled for the visited states (it only makes

sense to sample distributions for visited states, as we do not have information

. about unvisited states). In this finite setting, we can resample the transitions

T(.Is, a) using standard Dirichlet posteriors:

00

T(-s,a) - Dirichlet(Ti"+n, T2a" +n Tsa + nf"Sa) (4.2)
i=k+1

5For an introduction to slice sampling, refer to Neal [2000].

61



where k is the number of active or used states, T" is the prior probability of

transitioning to state i from state s after taking action a, and n1" is the number

of observed transitions to state i from s after a. The observations and rewards

are resampled in a similar manner: for example, if the observations are discrete

with Dirichlet priors:

Q(-| s, a) - Dirichlet(Hi + n"a, H 2 + n"2sa, ... , Hol + n1oi sa) (4.3)

As with all MCMC methods, initial samples (from the burn-in period) are biased by

the sampler's start position; only after the sampler has mixed will the samples be

representative of the true posterior. After burn-in, all the samples are drawn from

the true posterior and thus have equal weight.

Sampler Notes As with most samplers in practice, the beam sampler in this ap-

plication tends to find one mode and explore around it, rather than finding multiple

modes. Specifically, since the states in the iPOMDP have no meaning, other than

as way-points, we would expect that if a sampler were truly mixing, states would

occasionally swap meanings. Still, the FFBS sampling procedure does tend to avoid

local optima, thus finding better solutions that a basic optimization technique such

as expectation-maximization (as will be seen in section 4.4).

To speed up the burn-in period, we "hot-started" the sampler with the most likely

sample (based on the importance weights) from the previous round of inference after

the first 500 iterations. Using a hot-start too early tended to produce poor results

because if the sampler had initially found itself in poor optima (due to limited data),

it had trouble escaping it once placed there. However, a hot-start later on, when

certain modes had become clearly dominant, sped up the burn-in.

We also experimented with looking at the moving averages and hairiness indices

[Brooks, 1998] for various statistics associated with the sampler, including the con-

centration hyper-parameters A and a, the number of active states K, and the sum

of the active transition parameters T, as measures of mixing. Of these, looking for a
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flattening in the moving average for A proved to be the most effective measure, but

in the end we found that a burn-in of 500 samples was almost always sufficient, and

a burn-in of 50-100 often worked well if we were using a hot-start.

Computational Notes As mentioned in earlier sections, a full infinite POMDP

model m cannot be written down because it has an infinite number of states. Instead,

we store only the instantiated values. For example, the transitions are stored as

(K + 1) x (K + 1) x JAI arrays, where K is the number of active states and JAl

is the number of actions. The K + 1 length transition vector associated with each

state-action pair is sampled from the Dirichlet distribution in equation 4.2, where

the last value represents the probability of visiting any of the infinite uninstantiated

states. The transitions from the K + 1 "state" are simply the Dirichlet parameters

from equation 4.2, because we expect, on average, the states to act as the mean.

The rest of the slice-sampling algorithm is relatively straight-forward to imple-

ment; using standard vectorization tricks in Matlab speeds up the computation. Fi-

nally, it makes sense to cache the random numbers used for the sampling; we empiri-

cally found no difference in performance between caching 5000 random numbers and

reusing them and always sampling a new random number.

4.2.2 Action Selection

Our belief b(s, m) is a joint distribution over the space of states and models, which we

represent by set of sampled models m with exact beliefs over states b(sfm) in each.

Reflecting our representation of the belief, we divide our action-selection strategy into

two parts: (1) evaluating the value of an action a with respect to some model m and

the conditional belief b(slm), which we write as Qm(a, bin(s)) and (2) choosing an

action given a set of (possibly weighted) models m.

Solving Individual Models The beam-sampling approach outlined in section 4.2.1

alternates between sampling the world-state sequences s1 ...sT and the model param-

eters T, Q, and R for all visited states. However, there are still an infinite number
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of states that the agent does not believe that it has visited. The sampled transition

models encode this fact: if the agent believe it has visited K states, then the sum

of the transition probabilities fj T(skls, a) will be less than 1, reflecting the fact

that from any state s, the agent could always transition to somewhere new.

To convert this partially-defined model into something that we can solve, we in-

troduce a new state s* that represents all of the unvisited states. Collapsing all of the

unvisited states into one node is reasonable because we have no data to differentiate

these states. We set the transitions into this new state s* as the "left over proba-

bility" T(s*Isi,a) = 1 - Z3_lT(skesi, a) for all the visited states si, i = 1..K. We

approximate the remaining parameters for s* by using mean values from the prior.

This approximation ignores the variation in these mean parameters, but it is rea-

sonable because s* encompasses a large number of states, which, collectively, should

act close to their mean. Specifically, we set the transitions from s*, T(- S*, a), to the

mean transition function T, the observations Q(-Is*, a) to their mean from H, and

the rewards R(.Is*, a) to their mean from HR.

Given a POMDP model m, we can now solve it using standard approximations

such as those described in section 2.1.1 (we used point-based value iteration [Pineau

et al., 2003]). Many POMDP solution techniques allow us to compute the action-

value function Qm(a, bin(s)), which gives the expected value of performing action a

under belief bin(s) and model m and then following the optimal policy. This action-

value function fully takes into account state uncertainty given a model; if there was

no model-uncertainty then the action a = arg max,, Qm (a, bm (s)) would be the (near)

optimal action for the agent to take. Thus, it follows that as the model uncertainty

decreases with more experience, we expect our agent to start behaving near-optimally.

Solving the Model-Uncertainty POMDP In the previous section, we described

how we can (approximately) solve an individual model m. Now we describe how we

approximate the solution to the full model-uncertainty POMDP, which consists of a

set of models, each individually tracking its own state uncertainty. The state space of

the model-uncertainty POMDP is too large to apply global solutions methods (such
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as PBVI); instead we apply a stochastic forward search in model space which locally

approximates the model-uncertainty POMDP solution.

Forward search in POMDPs[Ross et al., 2008c] uses a forward-looking tree to com-

pute action-values. Starting from the agent's current belief, the tree branches on each

action the agent might take and each observation the agent might see. At each action

node, the agent computes its expected immediate reward R(a) = Em[Esim[R(-Is, a)]].

From equation 2.4, the value of taking action a in belief b(s, m) is

Q(a, b) = R(a, b) + -y Q(olb, a) max Q(a', b") (4.4)
0

where ba" is the agent's belief after taking action a and seeing observation o from

belief b, and we can compute the value of R(a, b) with

R(b, a) = E b(m) E b(sjm)R(s, a) (4.5)
m S

where b(m) is simply the weight w(m) on the model m. The update to the conditional

belief b"(sIm) can be computed in closed form using equation 2.1. To update the

belief over models bo(m), we use equation 4.1 to update the belief over models b(m)

via the weights w(m). Equation 4.4 is evaluated recursively for each Q(a', b"k?) up to

some depth D.

The number of evaluations (JAI 10)D grows exponentially with the depth D, so

doing a full expansion is feasible only for very small problems. We approximate the

true value stochastically by sampling only a few observations from the distribution

P(ola) = E P(ola, m)w(m). Equation 4.4 reduces to

Q(a, b) = R(a, b) + - I E max Q(a', boi) (4.6)
No a/

where No is the number of sampled observations and oi is the ith sampled observation.

Once we reach a prespecified depth in the tree, we must approximate the value of

the leaves Q(a, bf), where f is the future that corresponds the actions and observations
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along the branches from the root b to the leaf. For each model m in the leaves, we

can efficiently compute the value Qm(a, bin(s)) from our approximate solution to the

POMDP m. We approximate the value of action a as

Q(a, bf) ~ w(m)Qm(a, b/m(s))- (4-7)

This approximation is always an overestimate of the value, as it assumes that the

uncertainty over models-but not the uncertainty over states-will be resolved in the

following time step (the proof follows directly from the fact that equation 4.7 applies

the QMDP approximation [Littman et al., 1995] in the space of models). As the

iPOMDP posterior becomes peaked and the uncertainty over models decreases, the

approximation becomes more exact.

The quality of the action selection largely follows from the bounds presented in

McAllester and Singh [1999a] for planning through forward search. The key difference

is that now our belief representation is particle-based; during the forward search

we approximate expected rewards over all possible models with rewards from the

particles in our set. Because we can guarantee that our models are drawn from the

true posterior over models, this approach is a standard Monte Carlo approximation

of the expectation. Thus, we can apply the central limit theorem to state that the

estimated expected rewards will be distributed around the true expectation with

approximately normal noise N(0, 2 ), where n is the number of POMDP samples and

o2 is a problem-specific variance.

4.3 An Alternate Model: Infinite Deterministic

Markov Models 6

In chapter 3, we divided methods for creating a sufficient statistic of the history

into two broad categories: those that operated directly on the history and those

6This work was joint with David Pfau and Frank Wood
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Figure 4-2: Graphical Model showing a time-slice of the PDFA. Note that variables
are observed at all times.

that posited the presence of hidden variables. The focus of this chapter has been

the infinite POMDP, which uses Bayesian nonparametric methods for learning flexi-

ble hidden-variable representations, but in this section, we describe an alternate set

of approaches, all based on the probabilistic-deterministic infinite automata (PDIA)

[Pfau et al., 2010], that use Bayesian nonparametric methods for a learning flexi-

ble history-based representation. Motivated by recent work by Mahmud [2010] that

suggested that PDFAs provide a more succinct way to form sufficient statistics of

the history than POMDPs, we provide an empirical comparison of the PDIA-based

approaches and the iPOMDP approaches in section 4.4.

Mahmud [2010] consider a generalization of the PDFA that includes actions and

rewards, also referred to as a Deterministic Markov Model (DMM). Figure 4-2 shows

the graphical model for the DMM: at each time step, the node-state s transitions

to a new node-state s' given the action a and the observation o. It also emits a

reward r. Unlike in the POMDP, the node-state s is always visible: given the most

recent action a and the most recent observation o, the transition from s to s' is

deterministic. Stochasticity in the transitions arises when the input stream of actions

a and observations o are stochastic. However, the DMM does not try to model

the stochasticity in the observations; instead, it simply uses them as input when

determining transitions. In this way, the DMM can be used to pick out certain

patterns in a history without trying to model all aspects of the environment.
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Formally, a DMM is a 6-tuple (S, A, Q, 6, R, so), where S, A, and Q are discrete

sets of node-states, actions, and observations. The state so is the initial node-state.

The deterministic transition function 6 : S x A x Q -+ S outputs the state which

follows the current state, action, and observation. The reward function R(rjs, a) gives

the probability of receiving reward r after doing action a in node-state s. Inferring a

DMM corresponds to finding reward distributions R(rjs, a) and transition mappings

s' = 6(s, a, o) so that rewards can reliably be predicted. The observations indirectly

influence model learning through the transition function 6(s, a, o); an observation

model £(ols, a) is inferred for the purposes of planning is not part of the formal

DMM specification.

4.3.1 Model

The Bayesian reinforcement learning approach involves defining a prior over repre-

sentations. In a recent work, Pfau et al. [2010] proposed a nonparametric prior over

PDFA with an unbounded number of states, called the probabilistic deterministic

infinite automata (PDIA). The prior biases the learned models towards node-state

reuse, thus, it can elegantly scale the number of node-states as more complex el-

ements appear in histories, without restricting the space of PDFAs considered7 . In

this section, we extend the PDIA to the infinite Deterministic Markov Model (iDMM)

by augmenting it with actions and rewards.

The original PDIA prior, designed for an uncontrolled system, has a generative

process based on the hierarchical Pitman-Yor process' for the transitions [Teh, 2006]:

g PY(co, do, H) (4.8)

g 0 ~ PY(c1, di,g) Vo E Q (4.9)

6(s, o) ~g, Vo E , s E S (4.10)

7 1n contrast, the prior work of Mahmud [2010] used a uniform prior, but restricted the search
space.

8The Pitman-Yor process is an extension of the Dirichlet process that allows for the generation
of heavy-tailed distributions.
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where, as with the HDP-HMM, the base distribution H is the prior over observation

distributions Q(-Is), and the constants co, do, c1, and di are the parameters of the

Pitman-Yor process. Here, g can be thought of a mean transition function and g, is

the mean transition function for each observation o (encoding the bias that we expect

the most recent observation o to be the most informative when predicting the next

node-state). Recall that transitions in the PDIA are deterministic; thus given the

distribution g, we still have to sample a deterministic s' = 6(s, o) for each state s.

Adding rewards to extend to the PDIA prior to the iDMM is straight-forward:

as in previous work with PDFAs [Mahmud, 2010], we assumed that each node s had

some reward emission probability R(rIs, a). However, deciding how to incorporate

actions requires modeling choices on what biases should be encoded. We considered

three different way of incorporating action:

1. Consider observations then actions To encode an explicit bias for the most

recent observation to be more informative than the most recent action, we can

extend the hierarchy for sampling transitions in the following manner:

T ~ PY(co, do, H) (4.11)

T ~PY(ci, di, T) Vo E Q (4.12)

To, ~ PY(c 2 , d2, To) Vo E 2, a E A (4.13)

(s, a, o) ~ Toa Vo E Q,a E As E S (4.14)

Here, all of the transition distributions To, will be similar to To, and thus the

observation will have the stronger generalizing influence (see figure 4-3 for the

graphical model).

2. Consider actions then observations In contrast, if we believe that the most

recent action is more informative than the most recent observation, we can
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Figure 4-3: Asymmetric iDMM graphical model, in which we believe a priori that ac-
tions are more informative than observations in determining the next state. Switching
the order of actions and observations in the generative process for the transition func-
tion would result in an asymmetric iDMM in which observations are more informative
than actions.

reverse the ordering of actions and observations in the hierarchy:

, PY(co, do, H) (4.15)

T~ PY(ci, di, T) Va E A (4.16)

Tao~ PY(C2 , d2,7Ta) VaEA,oEf2 (4.17)

6(s, a, o) Tao Va E A, o E27,s E S (4.18)

Here, all of the transition distributions Tom will be similar to Ta, and thus the

action will have the stronger generalizing effect.

3. Consider actions and observations equally Incorporating the actions by

extending the hierarchy forces a bias towards either actions or observations being
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more informative than the other (depending on their ordering). Our final model

uses a pair of one-level transition models that removes this bias. Specifically,

we break the transition function into two stages. In the first stage, the agent

takes an action, gets a reward, and updates its node-state (before receiving the

observation). In the second stage, the agent receives an observation and updates

its node-state based only the observation. Thus the full transition function can

be expressed as the composition of two partial-transition functions, or : SA -+ S'

and T : S'Q -+ S, where S' is the set of intermediate states, following an action

but before an observation. We then use the original PDIA prior for both partial-

transition functions:

T~ PY(co,doH) (4.19)

Ta ~ PY(ci, di,T) Va E A (4.20)

o(s, a) ~ Ta Ya E A,s E S (4.21)

T'1 PY (c', d' , H') (4.22)

T' ~ PY(c',d',T') o E (4.23)

r(s', o) ~ TO' Vo E Qs' E S' (4.24)

6(s, a, o) = T(a(s, a), o) (4.25)

Since node-states in S can only transition to node-states in S', and vice versa,

the combined transitions o- and r form a symmetric graph, hence we refer to

this model as a symmetric iDMM (see figure 4-4 for the graphical model).

4.3.2 Methods

The belief-monitoring step, which requires performing the inference over iDMMs,

follows directly from the Metropolis-Hastings sampler used in the original PDIA work

of Pfau et al. [2010], and we do not describe it further here. Given a set of iDMMs, we

use a very simple action-selection strategy. First, we choose one of the iDMMs based

on its importance weight. Second, we choose the action preferred by that iDMM
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Figure 4-4: Symmetric iDMM graphical model, in which actions and observations are

equally informative.

using standard MDP-solution techniques.

4.4 Experiments

In this section, we describe a series of experiments that we performed using the

iPOMDP as our prior. We first provide a set of illustrations that demonstration

the properties of the Bayesian nonparametric approach to learning POMDP rep-

resentations. Next, we compare the iPOMDP to parametric approaches to learning

POMDPs, the iDMMs, and U-Tree on several benchmark problems. Finally, we apply

a suite of action-selection strategies to three learning techniques on two benchmark

domains to analyze the interactions of the learning techniques (which correspond to

methods for belief-monitoring), and action-selection.

In all of the experiments, we used the following settings for any applicable priors

and inference:

e Observation Prior H We used a uniform Dirichlet prior for H with a con-

centration H = 1 for each element. Starting with a single pseudo-count per
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element provided a bias toward smoother observation distributions.

" Reward Prior HR We assumed that rewards took on discrete values and used

a uniform Dirichlet prior for HR with a concentration H = .1 for each element.

Using a low concentration encoded our prior belief that R(rls, a) was highly

peaked.

" Updating Models Beliefs were approximated with a sample set of 10 models.

Models were updated after every 100 interactions of experience (after an initial

agent run of 250 interactions). When running the beam-sampler to resample

models, we used an initial burn-in of 50 iterations and then took every 10th

sample as an output. Each round of MCMC was "hot-started" with the last

model from the previous round.

" Evaluating Agent Progress Following each full update over models using

MCMC, we ran 50 "catch" test episodes (not included in the agent's experience)

with the new models and policies to empirically evaluate the current value of

the agents' policy.

" Solving Models Models were solved using PBVI [Pineau et al., 2003]. For each

model, 500 beliefs b(s m) were sampled for running the solver; the number of

backups was increased from 10 to 35 linearly with the interactions of experience

(so that we would spend more effort trying to solve models in the later stages

of the learning process, when they were presumably more accurate).

* Selecting Actions We used a forward-search of depth 3.

" Trial Length A trial consisted of 7500 interactions with the environment.

Within each trial, each episode was capped at 75 interactions of experience.

" Repeated Trials Each learning trial was repeated 10 times.
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4.4.1 Illustrations

We begin with a pair of illustrative examples demonstrating the properties of the

iPOMDP. The first, lineworld and loopworld, shows how the iPOMDP learns only

the structure that is needed to make predictions. The second, tiger-3, shows how the

infinite capacity of the iPOMDP allows it to adapt when "additional state" is added

to the environment.

Avoiding unnecessary structure: Lineworld and Loopworld. We designed

a pair of simple environments to show how the iPOMDP infers states only as it can

distinguish them. The first, lineworld, was a length-six corridor in which the agent

could either travel left or right. Loopworld consisted of a corridor with a series of loops

(see figure 4-5(a)); now the agent could travel though the upper or lower branches.

In both environments, only the two ends of the corridors had unique observations.

Actions produced the desired effect with probability 0.95, observations were correct

with probability 0.85 (that is, 15% of the time the agent saw an incorrect observation).

The agent started at the left end of the corridor and received a reward of -1 until it

reached the opposite end (reward 10).

The agent eventually infers that the lineworld environment consists of six states-

based on the number of steps it requires to reach the goal-although in the early stages

of learning it infers distinct states only for the ends of the corridor and groups the

middle region as one state. The loopworld agent also shows a growth in the number of

states over time (see figure 4.4.1), but it never infers separate states for the identical

upper and lower branches. By inferring states as they are needed to explain its

observations-instead of relying on a prespecified number of states-the agent avoided

the need to consider irrelevant structure in the environment. Figure 4-5(b) shows that

the agent (unsurprisingly) learns optimal performance in both environments.
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Figure 4-5: Both lineworld and loopworld have hallways with a start "S," goal "G,"

and identical middle states (a). In (b), the distribution of rewards from the final

iPOMDP episode (left) is almost identical to the that of the optimal policy (right).

Adapting to new situations: Tiger-3. The iPOMDP's flexibility also lets it

adapt to new situations. In the tiger-3 domain, a variant of the tiger problem of

Littman et al. [1995] the agent had to choose one of three doors to open. Two doors

had tigers behind them (r = -100) and one door had a small reward (r = 10). At

each time step, the agent could either open a door or listen for the "quiet" door. Each

attempt at listening identified the good door correctly with probability 0.85.

The reward was unlikely to be behind the third door (p = .2), but during the first

100 episodes, we artificially ensured that the reward was always behind doors 1 or 2.

The improving rewards in figure 4.4.1 show the agent steadily learning the dynamics

of its world; it learned never to open door 3. The dip in figure 4.4.1 following episode

100 occurs when we next allowed the reward to be behind all three doors, but the

agent quickly adapts to the new possible state of its environment. In this way, the

iPOMDP enabled the agent to first adapt quickly to its simplified environment but

add complexity when it was needed.
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Figure 4-6: The plots show the number of states inferred by the iPOMDP against
the number of times the agent has traversed the hallways over 50 repeated trials: the
black line shows the mean number of inferred iPOMDP states, and boxplots show
the medians, quartiles, and outliers at each episode. Of note is that loopworld infers
only necessary states, ignoring the more complex (but irrelevant) structure.

Evolution of Reward

CD

-0

a)

100 150
Episode Count

250

Figure 4-7: Evolution of reward from tiger-3. The agent's
after the third door is introduced, but it is quickly able to

the new environment.
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4.4.2 Results on Standard Problems

We next completed a set of experiments on POMDP problems from the literature

(listed in table 4.1). We compared the accrued rewards for the iPOMDP agent and

iDMM variants with five baselines:

" EM, an agent that knew the "true" state count K and used expectation-

maximization (EM) [Dempster et al., 1977] to train its model. EM is a greedy,

hill-climbing approach that quickly finds an optimum in the parameter space

m.

" FFBS, an agent that knew the "true" state count K and that used the forward-

filtering backward-sampling (FFBS) algorithm to sample models m from the

posterior over finite models with K states. The prior used the same hyperpa-

rameters as the iPOMDP, except that the prior over the transitions T was now

a Dirichlet distribution rather than a Dirichlet process. FFBS is used in the

inner loop of the iPOMDP beam-sampler to sample state sequences once a finite

model has been sliced; thus the only difference between FFBS and iPOMDP

was that FFBS considered a class of finite models.

" EM-Big, an agent that used EM with ten times the "true" number of states

10K. This option represented a "safe" strategy if the number of hidden states

was not initially known; by guessing too high one could guarantee that the

belief-state b(s) would be a sufficient statistic for the history.

" FFBS-Big, an agent that used FFBS with ten times the true number of states

10K, and

" U-Tree, an optimized version of the U-Tree algorithm [McCallum, 1993] that

used suffixes of the history as a sufficient statistic for predicting future rewards.

Specifically, our version of U-Tree did an all-pairs comparison when considering

whether to split the nodes. We also searched over different values of the KS

hypothesis test threshold aKS, minimum node-size thresholds, and number of
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Table 4.1: Summary of iPOMDP Benchmarks

Domain States Actions Observations
Tiger [Littman et al., 1995] 2 3 2
Network [Littman et al., 1995] 7 4 2
Shuttle [Chrisman, 1992] 8 3 5
Cheese [McCallum, 1993] 23 4 8
5x5 Gridworld (adapted from [Littman et al., 1995] 25 4 16
Follow (adapted from [Ross et al., 2008a] 26 5 6
Hallway [Littman et al., 1995] 60 5 21
Beach [Doshi-Velez et al., 2010] 100 5 2
Rocksample [Smith and Simmons, 2004] 257 9 2
Image [Doshi-Velez et al., 2010] 673 5 9
Tag [Pineau et al., 2003] 870 5 30
Harvest [Mahmud, 2010] 896 8 7

MDP backups to find the best performing settings. The tree-depth was limited

to 6 for computational reasons.

Figure 4-8 plots the iPOMDP agent's learning curve for one of problems, shuttle.

In Figure 4-9, we plot the iPOMDP agent's learning curve, averaged over multiple

trials, against all of the other baselines. The iPOMDP and the FFBS agents lead

the other methods with very similar learning curves; however, the iPOMDP agent

does so without knowledge of the number of hidden variables needed to encode the

environment. While the iDMM agents outperform their history-based baseline U-tree,

their learning rates are slower than the hidden-variable approaches.

Figure 4-10 shows the rewards from catch tests on several benchmark problems.

The problems are organized in order of size: tiger has only two underlying states,

while tag and harvest have over 800. All algorithms have difficulty with the larger

problems; the variations in performance are most clear in the small and mid-sized

problems. The first major difference between the algorithms is that the history-based

representations, including the iDMM, tend to learn slower than the hidden-variable

representations. This observation is consistent with prior work (see chapter 2 in which

model-based (hidden-variable) approaches appear to have lower sample complexity).
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However, we also observe the success of a representation depends on the learning

technique used to discover it: for example, we optimized several parameters in U-

Tree, but the approach had many more knobs than we could tune. Similarly, we used

the basic inference of Pfau et al. [2010] for the iDMM; a more sophisticated sampler

may have yielded better results.

The impact of the inference techniques is clear when one compares the EM-based

approaches with the iPOMDP and FFBS-based approaches. FFBS is a clean, robust

inference technique, and the beam-sampler inherits many of its good properties. As a

result, these samplers are able to find high-probability samples m and not get caught

in local optima (unlike EM). This effect is most clear in tiger, where EM quickly

finds the locally optimal greedy strategy of never opening a door-and thus has the

worst performance. FFBS and iPOMDP often have similar performance-however,

iPOMDP achieves this performance without having to pre-specify the number of

states (which would not be available in a real application). The advantage of using

the iPOMDP is clear when one observes the less consistent performance of the "big"

versions of the algorithms: inferring the number of states (iPOMDP) does as well or

better than knowing the true number of states, whereas guessing conservatively leads

to poorer performance.

Evolution of Total Reward for Shuttle Final Reward for Shuttle
1010

5 5

02 00

-5 -5

-10- -10

-15- -- 15

-200 50 100 150 200 Learned Optimal
Episode Count

Figure 4-8: Evolution of reward in a single trial for shuttle. During training (left), we
see that the agent makes fewer mistakes toward the end of the period. The boxplots
on the right show rewards for 100 trials after learning has stopped; the performance
distribution for the policy learned by the iPOMDP-agent has all the quantiles are
compressed at the optimal value except for a few outliers.
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Figure 4-9: Learning rates for various algorithms in the gridworld domain. The
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Figure 4-11: Running time of various algorithms on Benchmark Problems. Each circle
in the top figure shows the running time of each comparison algorithm compared to the
iPOMDP for a particular domain. A value greater than 1 means that the comparison
algorithm was slower than the iPOMDP. While simple algorithms, such as EM and
U-Tree, generally run faster than iPOMDP, they had significantly worse performance.
FFBS-Big appears faster than FFBS because it could only be run on the six smallest
domains. The lower figure shows mean relative run-times with standard errors.
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Another advantage of inferring the size of the state space instead of being con-

servative is computational. In figure 4-10, the reason that certain algorithms do not

appear in later plots is that we were unable to run them on Matlab with 3-GB of

RAM. Figure 4-11 shows the running times of all the comparison algorithms relative

to the iPOMDP. Because the iPOMDP often infers a smaller number of hidden states

than the true count (figure 4-12), ignoring distinctions not supported by the agent's

experience, it has faster running times than similar-performing (and predicting) al-

gorithms such as FFBS.

4.4.3 Other action-selection approaches

In chapter 1, we divided the problem of reinforcement learning into two parts: choos-

ing (and learning) a representation, and then selecting actions based on this represen-

tation. In section 4.4.2, we saw how the learning mechanism-sampling vs. greedy

optimization-can have a large impact on an agent's performance even when the

choice of representation is the same. Here, we examine the impact of the choice of

action-selection schemes on the performance of the three of three learning algorithms:

EM, FFBS, and iPOMDP.

This empirical analysis is motivated in part because stochastic forward search,

while guaranteed to be Bayes-optimal in the limit, requires a significant amount of

computation to expand the search tree-even to short depths such as five or six.

However, while one may be able to plan reasonably well in many domains by only

considering five actions into the future, it is unclear to what extent the benefits of

learning a model can be ascertained by considering such a small amount of future

data. In this section, we test several other action-selection heuristics on two domains,

tiger and gridworld:

* Epsilon-Greedy One of the simplest action-selection algorithms, the QMDP

heuristic of Littman et al. [1995] just takes the action with the highest expected

reward Em Qm(a)b(m). This algorithm ignores the future value of information

that might be gained from any exploratory action, such as actions that might
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help the agent distinguish between models. The epsilon-greedy approach exe-

cutes the QMDP solution 1 - e proportion of the time, and performs a random

action otherwise. We set E = .1 in our experiments.

" Softmax Each model maintains an action-value function Qm, (a). Instead of tak-

ing the action which maximizes Zm Qm(a)b(m), the softmax algorithms takes

action a in proportion to expected future reward: P(a) oc exp(A E Qm(a)b(m)).

We can think of softmax as a "softened" version of epsilon-greedy that, instead

of occasionally taking a uniformly random action, takes actions based on their

expected value.

" Weighted Stochastic Weighted stochastic is another very simple but fast

heuristic: when selecting actions, we first choose a model m according to its

weight b(m). Then we take the action a that m believes is optimal. Choosing

a model based on its weight, rather than the most likely model, allows for

"potentially useful" actions to be tried some of the time. However, this approach

also does not take into account the value of future information.

" Bayesian Exploration Bonus (BEB) The original BEB algorithm [Kolter

and Ng, 2009], designed for MDPs, inflates rewards for state-action pairs that

the agent has rarely tried (hence "exploration bonus"). In the POMDP setting,

we no longer have access to the world-state. Instead, we apply the same bonus

to state-action visit counts based that the agent thinks it has visited. By en-

couraging the agent to visit regions that it thinks it knows less well, we hope

that BEB would help the agent discover more quickly how world-states should

be organized.

" Best of Sampled Set (BOSS) The original BOSS algorithm [Asmuth et al.,

2009] was also designed for MDPs. Given a set of potential models, it uses the

most optimistic-or the best of the sample-in each iteration of the iterative

process for computing the value of an action. As with BEB, this optimism

encourages the agent to either get high rewards or quickly discover that its
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Figure 4-13: Action Selection Comparison on Tiger.

models are too optimistic. While the original paper describes the work in the

context of value iteration, which cannot be applied POMDPs, we find it straight-

forward to implement the concept in the context of a forward-search.

Of the three alternatives to the basic forward search, epsilon-greedy, softmax, and

weighted stochastic do not explicitly consider the value of future information. In-

stead, they ensure that the agent explores enough by introducing various kinds of

stochasticity into the action-selection process. In contrast, the BOSS and BEB ex-

pand a similar search tree as the standard forward stochastic search, but they use

different optimism-under-uncertainty heuristics to encourage exploration; in principle

these heuristics should help compensate for lower search depths.

Figures 4-13 and 4-14 compare the different action-selection strategies on two prob-

lems, tiger and gridworld, and three learning approaches, iPOMDP, FFBS, and EM.

In all the plots, we see that the action-selection approach seems to make relatively

little difference in performance; the very simple, fast heuristics (epsilon-greedy, soft-

max, weighted stochastic) often do quite well compared to the more computationally

intensive approaches basic forward search, BEB, and BOSS. In the tiger problem, we

confirm that the poor performance of EM was not just due to our stochastic forward

search; none of the action-selection strategies can prevent EM from getting caught in

local optima.

We have several hypotheses for why the action-selection strategy seems to have
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Figure 4-14: Action Selection Comparison on Gridworld. All of the action-selection

strategies have similar performance; the main differences in performance come from
the inference techniques.

little impact. First, we note that all of the strategies above are only trying to make

decisions in the face of model uncertainty b(m). For each sampled model m, we

can and do maintain the belief b(slm) in closed form and compute the value of each

action Q,(b(sIm), a). Thus, if the model uncertainty is small compared to the state

uncertainty, it is possible that the models are almost always in agreement; in this

situation, all of the action-selection strategies will yield similar results. Looking

through the results, we find that all the action-selection strategies chose the greedy

action 70-80% of the time, suggesting that the models were often in agreement. If all

models m from b(m) are similar, then there is little value in trying to differentiate

them.

The model uncertainty may appear to be small either because the posterior b(m)

is truly peaked or because of artifacts in the MCMC sampler. We know that Dirichlet

priors are fairly smooth, and, in practice, our samplers often give us similar models

(because we can rarely mix between modes). We experimented with using multiple

restarts to help alleviate potential mixing issues, still finding that we often end up

with models that make very similar predictions. Thus, it seems plausible that part

of the explanation, at least, may be that there may not be enough information to

be discovered in our crude forward search. Models take on the order of hundreds of

interactions with the environment to learn; we are only searching to depth of four
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or five future actions. It may be that a deeper forward search would result in more

optimal learning, but it also seems that the depth-scales for such a forward search

may be too large to be practical.

Finally, we might ask if the forward search is not really exploring, how is the

learning happening? We hypothesize that all of the domains are relatively "friendly"

in the sense that many policies will provide enough information about the domain

for the agent to learn a model without explicitly selecting actions to do so. Even

action-selection strategies that do not have an explicit stochastic component, such as

BOSS or BEB, still rely on sampled models which introduce some randomness into

the policy. This randomness, combined with spaces where just acting may provide

much information, may be sufficient for simple techniques to perform well.9

4.5 Discussion

Recent work in learning POMDP models include Poupart and Vlassis [2008], which

uses a set of Gaussian approximations to allow for analytic value function updates in

the POMDP space, and Ross et al. [2008a], which jointly reasons over the space of

Dirichlet parameter and states when planning in discrete POMDPs. Sampling-based

approaches include Medusa [Jaulmes et al., 2005], which learns using state-queries,

and Doshi et al. [2008], which learns using policy queries. All of these approaches

assume that the number of underlying states is known; all but Doshi et al. [2008]

focus on learning only the transition and observation models.

In contrast, the iPOMDP provides a principled framework for an agent to posit

more complex models of its world as it gains more experience. By linking the com-

plexity of the model to the agent's experience, the agent is not forced to consider

large uncertainties-which can be computationally prohibitive-near the beginning

of the planning process, but it still can come up with accurate models of the world

when it requires them. As seen in the results, the iPOMDP allows the complexity

9We thank David Hsu for an insightful discussion on the topic of action-selection in Bayesian
reinforcement learning.
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of the model to scale gracefully with the agent's experience. We also showed that it

outperforms both basic history-based approaches, such as U-Tree, and our own PDIA

alternative.

Past work has attempted to take advantage of structure in POMDPs [Robert et al.,

1999, Wolfe, 2006], but learning that structure has remained an open problem. By

giving the agent an unbounded state space-but strong locality priors-the iPOMDP

provides one principled framework to learning POMDP structure. The Bayesian non-

parametric framework also provides some natural directions for extensions: for exam-

ple, the HDP-based construction described in section 4.1 can be extended to include

deeper hierarchies, which can be used to encode structure in the state transitions

(for example, clusters of states might behave similarly). In chapter 6, we explore

another form of structure, in which the hidden variable representing the world-state

is encoded as a discrete vector rather than a single scalar variable.

Another extension would be to use other hierarchical priors than the HDP. In

section 4.4.3, we hypothesized that one reason why the choice of action-selection

strategies had little effect was that the posterior b(m) was too smooth, making it

difficult to discover the value of differentiating models. Posteriors that were peaked

around several different candidate hypotheses might make it easier to quickly explore

the space of possible models. As an intermediate step toward this goal, we briefly

experimented with using hierarchical Pitman-Yor (HPY) processes [Teh, 2006, Pit-

man and Yor, 1997] as in the iDMM as the transition prior for the iPOMDP. These

processes should have introduced a slight bias toward sparser transitions-perhaps

one likely next-state for each transition and several unlikely next-states, which we

hoped would lead to more differentiable models. In our tests, the performance of

the HPY-based iPOMDP did not differ significantly from the iPOMDP (and it was

sometimes worse), but we still believe that the HPY or other priors may provide an

alternative if we have strong reason to suspect that the environment has a different

transition structure than the HDP.
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Chapter 5

Nonparametric Policy Priors1

In chapter 4, we described how an agent might adaptively build a model from histories

of its own experience. This form of data, which we term 'self-exploration,' is the most

common form of data used in model-based RL algorithms [Jaulmes et al., 2005, Ross

et al., 2008a,b, Doshi et al., 2008] to learn the world's dynamics. However, sometimes

other sources of histories are available: for example, a different setting is one in which

the the agent has access to histories collected from experts [Abbeel et al., 2006, Ratliff

et al., 2009]. In the first setting, self-exploration, the agent's choice of actions do not

provide information about the model m; actions are useful only in that they can

reveal patterns in the transitions, observations, and rewards. In the second setting,

in which histories come from experts, the action choices themselves indirectly reveal

additional information about the model by demonstrating a near-optimal policy.

In this chapter, we consider a model for learning when we have access to both

types of histories: data from the agent's own self-exploration and data from experts.

Data from self-exploration gives information about the dynamics, while expert demon-

strations show outputs of good policies and thus provide indirect information about

the underlying model. Similarly, rewards observed during independent exploration

provide indirect information about good policies. Because dynamics and policies are

linked through a complex, nonlinear function, leveraging information about both these

'This work was joint with David Wingate
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aspects at once is challenging. Using both kinds of data improves model-building and

control performance.

As usual, we use a Bayesian reinforcement learning approach to this problem,

applying Bayes rule to write a posterior over models m given data D as p(m|D) oc

p(Dlm)p(m). Previous works [Poupart and Vlassis, 2008, Strens, 2000, Asmuth et al.,

2009, Dearden et al., 1999] have generally defined the model prior p(m) as a distribu-

tion directly on the dynamics and rewards models, making it difficult to incorporate

the policy information encoded in expert trajectories. Placing a prior p(ir) over what

the expert's policy might be, such as in Wilson et al. [2010], is another option, but it

ignores the direct information that the agent observes about the environment while

also observing the expert's trajectory.

A third option might be to place a prior over both the model parameters p(m)

and a prior over the optimal policy p(7r). However, the interpretation of these disjoint

priors is somewhat strange: for example, suppose that the model is known: then we

know that there is just one optimal policy. A policy prior that acts as a smoother

on this optimal policy will result in less than optimal performance. One of the main

contributions of this chapter is to define joint priors over models and policies that

make it easier to incorporate information from trajectories in a principled, Bayesian

way. In particular, we show how our model can be interpreted as a joint prior that

introduces a bias for world models which are both simple and easy to control. This

flexibility also allows to consider cases where the expert trajectories may not be

completely optimal in a robust manner.

In this chapter, we first lay out a very general approach to modeling and inference

over joint model-policy priors in sections 5.1 and 5.2. In section 5.3, we describe

the model and the inference for one very specific joint prior that we also use for

the empirical tests in section 5.4. Focusing on discrete environments, we use the

iPOMDP from chapter 4 as our prior over models p(m). We model policies using

(infinite) state controllers. Noting that the graphical model for a state controller is

identical to the graphical model for a POMDP, with the roles of the observations and

actions reversed, we use the iPOMDP as a prior over policies p(7r) as well. Because
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the iPOMDP has a bias toward models with smaller numbers of instantiated states,

this joint prior places a bias toward world models m that explain the agent's self

exploration data with relatively few states and whose optimal policy, as characterized

by the expert's demonstrations, also requires relatively few nodes.

5.1 Model

We first lay out the notation for our joint model-policy prior. Let m denote the

(unknown) world model. For example, if m is the class of POMDPs, then m consists

of the transitions T, observations Q, and rewards R. Let re be the expert's policy;

together with the model m, the expert produces a set of histories h = aioir1...atotrt

collectively called the expert data De. Similarly, the agent executes some policy ira

to produce self-exploration or agent data Da. The agent has access to all histories,

but the world model m and optimal policy Ire are hidden.

In general, we can assume that the expert's demonstration provides useful infor-

mation beyond the robot's self-exploration because the expert knows the world model

m, and thus can execute a near-optimal policy. Figure 5-1 shows the two graphical

models that can explain the expert's actions. Both graphical models assume that a

particular world m is sampled from a prior over POMDPs, gm(m). In what would be

the standard application of Bayesian RL with expert data (figure 5-1(a)), the prior

gm(m) fully encapsulates our initial belief over world models. An expert, who knows

the true world model m, executes a planning algorithm plan(m) to construct an op-

timal policy re. The expert then executes the policy to generate expert data De,

distributed according to p(DeIm, Ire), where Ire = plan(m).

However, the graphical model in figure 5-1(a) does not easily allow us to encode

a prior bias toward more controllable world models. In figure 5-1(b), we introduce

a new graphical model in which we allow additional parameters in the distribution

P(7re). In particular, we introduce an additional factor g,(ire) that depends only on
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(b)

Figure 5-1: Two graphical models of expert data generation. Left: the prior only ad-
dresses world dynamics and rewards. Right: the prior addresses both world dynamics
and controllable policies. The link between the world and the expert policy can be
used to encode relationships such as the expert being optimal or near-optimal.

the properties of the policy:

p(relm) oC fm(7re)gw(wre) (5.1)

The factor g, (re) can be interpreted as the "policy prior." As in the simpler graphical

model in figure 5-1(a), the factor fm(ire) should be a measure how well the expert

policy ire matches the world model m. We can write the distribution over world

models as

p(m) c fm(7re) gr( ire) gm(m)dre (5.2)

If fm(7re) is a delta function on plan(m), then the integral in equation 5.2 reduces to

p(m) oc g (7rem)gm(m) (5.3)

where 7rem = plan(m), and we see that we have a prior over models that provides

input on both the world's dynamics and the world's controllability. For example, if

the policy class is the set of finite state controllers (as in section 5.3), the policy prior

g,(7re) might encode preferences for a smaller number of nodes used the policy, while
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gm(m) might encode preferences for a smaller number of visited states in the world.

The function fm(re) can also be made more general to encode how likely it is that

the expert uses the policy 7re given world model m.

Finally, we note that p(Delm, r) factors as p(D |7r)p(D"',Im), where D a are the

actions in the histories De and D"', are the observations and rewards. Therefore, the

conditional distribution over world models given data De and Da is:

p(m|De, Da) oc p(D"',, Dalm)gm(m) p(D "|we)g,(re)fm(re)dre (5.4)

The model in figure 5-1(a) corresponds to setting a uniform prior on g,(re). Similarly,

the conditional distribution over policies given data De and Da is

p(Ire|De, Da) OC g,(7re)p(Dewe) f fm(We)p(D"', DaJm)gm(m)dm (5.5)

In this section, we have described a very general formulation that shows how to

encode our prior biases about both the model and the policy into a unified, principled

framework. There exist some mild conditions on these independently-specified world

and policy priors for the joint prior to be consistent: we require that there exist

models for which both the policy prior and model prior are non-zero in the limit

of data. Equivalently, it is sufficient for the true policy and the true model to be

contained in their respective hypothesis spaces. In the limit of infinite data, the

model posterior will peak to a set of dynamics models consistent with the data, while

the policy posterior will peak to a set of policies consistent with the expert. As long

as the expert was providing optimal trajectories, we can argue that there will exist

at least one model and one policy in these sets for which the policy is the solution of

the model.

5.2 Methods

As in chapter 4, we describe the belief monitoring and action selection phases for when

working with nonparametric policy priors. The belief monitoring phase involves doing

94



inference in the joint space of models and policies. The action selection phase involves

choosing an action given the posterior over models and policies.

5.2.1 Belief Monitoring

The belief now consists of four hidden elements: the model m, the expert policy 7re,

the current state of the world s, and the current state of the agent's policy n. For

now, we do not assume any specific properties about the state of the policy n or the

state of world s; these are simply variables that encode any dynamic aspects of the

model or the policy. We assume that the model m itself and the expert's policy 7re

do not change over time. Similar to the approach in chapter 4, we write the belief

b(s,n, m, re) as b(s,nIm, re)b(m, re). We assume that given the model m and policy

7re, the belief over model and policy states s and n, b(s, nlm, 7re), can be computed

using a standard approach such as equation 2.1. The focus of this section is computing

and updating the joint model-policy belief b(m, ire).

We describe three inference approaches for incorporating knowledge from expert

trajectories when sampling from the belief b(m, ire). The samples produced in all of

the inference approaches below are unbiased as long as unbiased estimators are used

for sampling from p(7re IDe) and p(m IDa, De). The first approach assumes that the

policy prior p(7re) is uniform, corresponding to the case in figure 5-1(a). The second

two approaches allow for non-uniform policy priors (corresponding to figure 5-1(b)).

The first samples only models m directly, while the second of the two approaches

samples both models m and expert policies ire explicitly.

Uniform Policy Priors (Bayesian RL with Expert Data).

If fm(7re) = 6(plan(m)) and we believe that all policies are equally likely (graphical

model 5-1(a)), then we can leverage the expert's data by simply considering how

well that world model's policy plan(m) matches the expert's actions for a particular

world model m. Equation 5.4 allows us to compute a posterior over world models

that accounts for the quality of this match. We can then use that posterior as part of
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a planner by using it to evaluate candidate actions. The expected value of an action 2

q(a) with respect to this posterior is given by:

E[q(a)] = q(alm)p(m|Do,"'',Da)dm

= q(alm)p(Dor, Dalm)gm(m)p(D'|p1an(m))dm (5.6)

We assume that we can draw samples from p(mIDo', Da) oc p(Deo'r, Dalm)gm(m).

We then weight those samples by p(D'Jire), where ire = plan(m), to yield the

importance-weighted estimator

E [q(a)] a q(almi)p(D,'Ilmi, gre), mj-~p(,m|DO"'',Da).
i

Finally, we can also sample values for q(a) by first sampling a world model given the

importance-weighted distribution above and recording the q(a) value associated with

that model. (See section 2.2.2 for a review of importance sampling.)

Policy Priors with Model-based Inference.

The uniform policy prior implied by standard Bayesian reinforcement learning does

not allow us to encode prior biases about the policy. If we apply a more general prior

(graphical model 5-1(b) in figure 5-1), then the expectation in equation 5.6 becomes

E [q(a)] = q(alm)p(Do"r, Dajm)gm(m)gr(plain(m))p(D'|plai(m))dm (5.7)

if we still assume that the expert uses an optimal policy, that is, fm(7re) = 6(pian(m)).

Using equation 5.7 can result in somewhat brittle and computationally intensive

inference, however, as we must compute 7re for each sampled world model m. It also

assumes that the expert used the optimal policy, whereas a more realistic assumption

might be that the expert uses a near-optimal policy. We now describe an alternative

2We omit the belief over world states b(s) from the equations that follow for clarity; all references
to q(alm) are q(albm(s), m).
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link function fm(ire) that relaxes the hard constraint that the expert produces optimal

trajectories fm(7re) = 6(plan(m)). Instead, we let fm(re) be a function that prefers

policies that achieve higher rewards in world model m:

fmn(7e) oc exp{V(7ejm)} (5.8)

where V(re Im) is the value of the policy Ire on world m, encoding a bias stating that

experts tend to use policies that yield high value.

Substituting this new link function fm(7re) into equation 5.4, the expected value

of an action is

E [q(a)] = q(alm)p(D."bre) exp {V(reIm)} g.(re)p (D"', Dafm)gm(m)dmd7re

We again assume that we can draw samples from p(MIDer, Da) oc p(DO"r', DaIm)gm(m),

and additionally assume that we can draw samples from p(7reID") oc p(Da"|7re)g,(7re),

yielding:

E [q(a)] ~~ q(almi) exp {V(7rejlmi)}, mi ~p(m|D."' Da), 7rej ~ p(7re|ID ")
i

(5.9)

As in the case with standard Bayesian RL, we can also use our weighted world models

to draw samples from q(a).

Policy Priors with Joint Model-Policy Inference.

While the model-based inference for policy priors in section 5.2.1 is correct, using

importance weights often suffers when the proposal distribution is not near the true

posterior. For example, when using the uniform priors as in section 5.2.1, it may be

that none of the models sampled just from using the dynamics have optimal policies

that are close to that of the expert-and thus they will all look equally (un)plausible.

The same problem occurs if we sample sets of policies as in section 5.2.1 and count

the number of cases for which a policy is optimal: instead, we are forced to use a very
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specific link function that scores a policy based on how well it performs rather than

optimality.

In this section, we present a blocked sampler that alternates between resampling

the policy based on the model and expert data and then resampling the model based

on the policy and the dynamics data (from the expert and the agent's self exploration).

Once we have a set of sampled models we can compute the expectation E[q(a)] simply

as the average over the action values q(almi) for each sampled model.

Sampling the Policy given the Model Given a world model, equation 5.5 be-

comes

p(iie|De, Da, m) oc g_,(7re)p(D'"|e)fm(re) (5.10)

where making g,(we) and p(De|re) conjugate is generally an easy design choice. We

then approximate fm(7re) ~ q(ire, b) with a function q(lre, b) in the same conjugate

family as g,(7re), where q(re, b) -+ fm(7re) as b -+ 0. We can then interpret b as

a cooling parameter that can be used to initially provide the sampler with more

flexibility but does not affect the asymptotic correctness of the inference. The details

of how to construct q(7e, b) will depend on the specific choices of priors g,(re) and

likelihoods p(De|re), and we give an example of one such case in section 5.3.

Sampling the Model given the Policy Next we sample a new world model m

given the policy x. Given a policy, equation 5.4 reduces to

p(m|De, Da, We) oc p(D'', Dajm)gm(m)fm(7re). (5.11)

We use Metropolis-Hastings (MH) to sample new world models (see section 2.2.2 for

a summary of MH). For our proposal distribution, we use the posterior over models

ignoring the policy information:

q(m'|m) = p(Do'r, Dalm)gm(m). (5.12)
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Thus the acceptance probability a is simply the ratio

a fm' (e) (5.13)
fm(7e)

If fn(ire) is highly peaked, then this ratio will often be zero, so we apply another

annealing scheme to allow the sampler more room to move initially. In our case, we

want to eventually approximate fm(7re) = 6(plan(m)). We use the same smoothed

approximation as in section 5.2.1, f.m(re) oc exp(b - (V(irelm) - V(remIm)) 2 ). How-

ever, instead of simply letting fm = fin, we slowly increase the inverse temperature

parameter b. As a result, we eventually only accept a model m' if it produces higher

rewards under policy re than the current model m. Over time, because the proposal

distribution q(m'lm) has full support over the space of models, we will sample models

for which ire is near-optimal.

Using MH can suffer from the same issues as the importance sampling-based

approaches described in sections 5.2.1 and 5.2.1: a poor choice of proposal q(m'Im)

can result in very few acceptances because the new model m' must perform better than

the current model m under the expert policy 7re. However, the annealing provided

by the inverse temperature parameter b allows for smoothing early on, letting the

sampler explore the space of models without getting caught in local optima. More

generally, annealing in both the policy and model inference ensures that one does not

quickly become fixed and force the other to simply adjust to match the link constraint

fm(7re).

5.2.2 Action Selection

All the approaches in Sec. 5.2.1 output samples of models {m}. Since choosing the

Bayes-optimal action is intractable, we follow the same process as in chapter 4 and

first solve all of the models (each of which is typically small) using standard POMDP

planners such as Pineau et al. [2003]. During the testing phase, the internal belief state

b(slm) of the models is updated after each action-observation pair. As in chapter 4,

models are also reweighted using standard importance weights so that they continue
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to be an unbiased approximation of the true belief b(m)

In chapter 4, we found that more sophisticated action-selection strategies, such as

stochastic forward search, did not significantly outperform simpler approaches such

as just sampling a model and selecting its action. Thus, for the action-selection in

this chapter, we simply select a model based on its probability b(m) and then take

the action preferred by that model. (This is one of the fastest strategies for action

selection.)

5.3 Example: Nonparametric Policy Priors Using

the iPOMDP

In this section, we describe one very specific model prior p(m), the iPOMDP, and

also describe how it can be used for a policy prior p(ir) if the policies are encoded

as state controllers. We assume that the expert is optimal, that is, the link function

fm(7re) = 5(plan(m)), and provide details valuable for implementing the joint model-

policy sampling approach of section 5.2.1 with this choice of priors.

5.3.1 Model

We use the iPOMDP as the prior p(m) over world models m. To place a prior over

the policies p(r), we first describe how policies can be represented with finite state

controllers [Sondik, 1971]. Instead of mapping directly from belief states b(s, m) to

actions a, a finite state controller introduces the concept of a node-state n. Each

node state is associated with a policy function r(aln) that gives the probability that

the agent will perform action a in state n. The controller also has a transition

function $(n'In, o) that gives the probability of transitioning to node-state n' if the

environment provides an observation o in node-state n. We can imagine that many

different histories h = aioir1...atotrt will result in reaching a similar set of node-states

n; in this way, the node state compresses sets of histories together. All the histories

that end up in a particular node-state n will have the same action-selection strategy

100



(a) Single POMDP time slice (b) Single FSC time slice

Figure 5-2: Graphical Model for the Finite State Controller.

r(aln).

Formally, a finite state controller consists of the n-tuple (N,A,0,7r,#). The sets

N, A, and 0 are sets of nodes, actions, and observations. The set of nodes is discrete

and finite, and the node transition function #(n'In, o) and the policy function ir(aln)

are as described above. Written this in this way, the similarity between the POMDP

and the finite state controller is clear: the roles of the observations and actions have

simply been reversed. The iPOMDP prior now posits that there is a stochastic state

controller with an unbounded number of nodes n, but probable polices use only a

small subset of the nodes a majority of the time. We perform joint inference over

the node transition parameters 3(n'In, o) and the policy parameters 7r(aIn) which are

equivalent to the state transition parameters T(s'Is, a) and the observation parameters

Q(ols, a). Figure 5-2 shows the graphical model for the finite state controller along-

side the graphical model for the POMDP.

Used as a policy prior, we can think of the iPOMDP as a stochastic state controller

treating the observations as inputs and the actions as outputs. The iPOMDP does not

restrict the number of nodes in the state controller, but it does places a bias toward

state controllers that can explain the expert's choices with only a few nodes. The
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'policy state' representation n learned is not the world state, rather it is a summary

of previous observations which is sufficient to predict actions. Assuming that the

training action sequences are drawn from the optimal policy, the learner will learn

just enough "policy state" to control the system optimally. Finally, we note that the

iPOMDP, as both a model and policy prior, has full support over all possible POMDP

worlds and all possible state-controller policies. Thus, it is a consistent prior to use.

5.3.2 Methods

We first note that the beam sampler of van Gael et al. [2008] can be used to sample

from the partial posteriors p(m|D'T , Da) and p(7re|D'). In the limit of infinite samples

we will recover the true model and policy posteriors conditioned on their respective

data Da, D', and De. When sampling the models and policies using the approach

from section 5.2.1, sampling models m requires no specific considerations. Sampling

the policies requires formulating fm(re) as a function q(re, b) that is conjugate to the

policy prior function g,(7re). We describe the process for sampling 7re below.

Recall from section 5.2.1 that our policy posterior is given by

p(7retDe, Da, m) oc g,(We)p(D2|xe)fm(re) (5.14)

where g,(7re) and p(Del7re) are conjugate if the policy prior g,(7re) is the iPOMDP.

Specifically, when using the iPOMDP prior, the transition parameters #(n'|n, o) and

the policy parameters 7r(aln) are both multinomials. The beam sampler samples these

multinomials given the expert data De by combining the iPOMDP prior g,(re) with

node-visit counts from the likelihood p(De"|e).

To make fm(7re) also conjugate to g,(7re), we represent fm as a set of node-visit

counts. Then we can simply combine those counts with the node-visit counts from

the likelihood p(DI7re) and continue to use our Dirichlet-multinomial formulation

to sample the parameters #(n'ln, o) and 7r(aln). Our strategy for performing this

approximation takes two steps: first computing a near-optimal stochastic state con-

troller for the given model m (the only policy that would have non-zero weight under
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fm(7re)), and then adding a bias toward this stochastic state controller to the prior

g, (7re) and the likelihood with respect to the expert data the likelihood p(DaI7re).

Suppose that we have a near-optimal stochastic state controller lr* for model m.

All of the parameters of lr* are expressed as multinomial distributions. Recall that

the input parameter to a Dirichlet distribution can be parameterized as a vector

ap, where the vector p is the multinomial that is the mean of the distribution and

a is a concentration parameter describing how sharply peaked the distribution is

about its mean. Now, for a certain set of transition function parameters #(. In, o), we

have: (1) a mean transition distribution # from the prior g,(lre), (2) a set of node-

visit counts c,, from the likelihood with respect to expert data p(Dal7re), and (3)

a desired mean multinomial 3* (-In, o) from the near-optimal policy 7r*. We sample

#(-In, o) - Dirichlet(# + cn,0 + a#*(n, o)).

If we start with a small temperature parameter a, then the link function fm-and

by proxy, the sampled model m-will play a relatively small role when resampling the

expert policy 7re; most of the weight will come from the expert trajectories. As a is

increased, we will recover the desired fm(e7r) = 6(plan(m)) because the "fake counts"

a#*(n, o)) will be much larger than the node-visit counts c,,. The initial approxi-

mation allows the expert data to guide the inference without sacrificing asymptotic

correctness. An identical approach can be used to sample the parameters of the policy

function 7r(.In);

Our method of directly combining the counts from the expert trajectories with the

optimized model wr* implies that nodes in -r* must "match" nodes used in the counts.

This condition guides our choice for computing r*: we compute r* by applying several

rounds of bounded policy iteration [Poupart and Boutilier, 2003] to the current policy

7re to get a policy that is near-optimal with respect to model m. Bounded policy

iteration is an iterative process that makes local adjustments to make a policy more

optimal. Thus, it preserves the meaning of a node as changes are made.

Practically, this approximation technique requires an implementation of bounded

policy iteration and only a very small change to the beam sampler. Once the optimal

policy has been computed in a separate module, we simply pass in the ap,, values
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for each node transition function and the ap, values for each policy function into the

beam-sampler, to be added to the base measures # or H before each sampling round.

5.4 Experiments

We first describe a pair of demonstrations that show two important properties of using

policy priors: (1) that policy priors can be useful even in the absence of expert data

when we assume that fm(re) = 6(plan(m)), and (2) that our approach works even

when the expert trajectories are not optimal. We compared our inference approaches

with two approaches that did not leverage the expert data: expectation-maximization

(EM) used to learn a finite world model and the infinite POMDP (chapter 4), which

placed the same nonparametric prior over world models as we did.

All of the tests were run with the same set of conditions for resampling updates

and inference parameters:

" Trial Length All the tasks were episodic, but the number of episodes were a

poor metric for the amount of experience because episodes could be of varying

lengths. Specifically, experts generally completed the task in fewer iterations.

Therefore, we allowed each approach N = 2500 iterations, or interactions with

the world, during each learning trial. Each episode was capped at 50 iterations.

" Expert Trajectories The agent was provided with an expert trajectory with

probability .5yL, where n was the current amount of experience. No expert tra-

jectories were provided in the last quarter of the iterations. All agents received

expert trajectories, regardless of whether they took advantage of trajectory in-

formation.

" Repeated Trials Each approach was run for 10 trials (of 2500 iterations each).

" Updating Models and Policies Models and policies were updated every 100

iterations. For all of the nonparametric approaches, 50 models and/or policies

were sampled, 10 iterations apart, after an initial burn-in of 500 iterations. Sam-

pled models were solved using 25 backups of PBVI [Pineau et al., 2003] with 500
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sampled beliefs. When using the joint model-policy inference of section 5.2.1,

one iteration of bounded policy iteration [Poupart and Boutilier, 2003] was per-

formed per sampled model to move it toward a more optimal model. When

training the finite model, we set the number of states |SI = min(25, IStruel),

where IStuel was the true number of underlying states. Both the nonparamet-

ric and finite learners were trained from scratch during each update; we found

empirically that starting from random points made the learner more robust

than starting it at potentially poor local optima.

Evaluating Agent Progress Following each update, we ran 50 test episodes

(not included in the agent's experience) with the new models and policies to

empirically evaluate the current value of the agents' policy.

Policy Priors with No Expert Data The combined policy and model prior

encodes a prior bias towards models with simpler control policies. This interpreta-

tion of policy priors can be useful even without expert data: figure 5-3 shows the

performance of the policy prior-biased approaches and the standard iPOMDP on a

gridworld problem in which observations correspond to both the adjacent walls (rel-

evant for planning) and the color of the square (not relevant for planning). This

domain has 26 states, 4 colors, standard NSEW actions, and an 80% chance of a

successful action. The optimal policy for this gridworld was simple: go east until

the agent hits a wall, then go south. However, the varied observations made the

iPOMDP infer many underlying states, none of which it could train well, and these

models also confused the joint model-policy inference from section 5.2.1. The uniform

prior approach from section 5.2.1 has no bias toward smaller models; without expert

data, it cannot outperfornm the iPOMDP. By biasing the agent towards worlds that

admit simpler policies, the model-based inference with policy priors from section 5.2.1

creates a faster learner.

Policy Priors with Imperfect Experts While we focused on optimal expert

data, in practice policy priors can be applied even if the expert is imperfect. Fig-
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Figure 5-3: Learning curves for different agents on a multicolored gridworld where
the colors of the locations were irrelevant.

ure 5-4(a) shows learning curves for a simulated snake manipulation problem with a

40-dimensional continuous state space, corresponding to (x,y) positions and velocities

of 10 body segments. Actions are 9-dimensional continuous vectors, corresponding to

desired joint angles between segments. The snake is rewarded based on the distance

it travels along a twisty linear "maze," encouraging it to wiggle forward and turn

corners.

We generated expert data with a rapidly-exploring random tree (RRT), a trajectory-

based planner. The RRT is very effective for finding feasible solutions to high-

dimensional problems, but it does not provide optimal trajectories. We derived 20

motor primitives for the action space using a clustering technique and interpreted

the sequence of clustered actions taken by the RRT as our expert data. Although

the trajectories and primitives are suboptimal, figure 5-4(a) shows that knowledge of

feasible solutions boosts performance when using the policy-based technique.

Tests on Standard Problems We also tested the approaches on ten standard

benchmark POMDP problems: tiger ([Littman et al., 1995], 2 states), network ([Littman

et al., 1995], 7 states), shuttle ([Chrisman, 1992], 8 states), a 5x5 version of gridworld
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Figure 5-4: Learning curves for the snake. Error bars are 95% confidence intervals of
the mean. On the right are three segements of the nine-segmented snake robot.

(modified from [Littman et al., 1995], 26 states), a 1-person version of follow ([Ross

et al., 2008a], 26 states) hallway ([Littman et al., 1995], 57 states), beach (100 states),

rocksample(4,4) ([Smith and Simmons, 2004], 257 states), tag ([Pineau et al., 2003],

870 states), and an image-search task (16321 states). In the beach problem, the agent

needed to track a beach ball on a 2D grid. The image-search problem involved iden-

tifying a unique pixel in an 8x8 grid with three type of filters with varying cost and

scales.
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Figure 5-5 shows the learning curves for our policy priors approaches (problems

ordered by state space size). The cumulative rewards and final values are shown

in table 5.1. The trials in this chapter contain only 2500 iterations, only a third

of the 7500 iterations used to evaluate the iPOMDP in chapter 4. In these shorter

trials, the simple iPOMDP agent-which ignores the fact that some of the trials

come from expert demonstrations-often does not learn the domain. The policy

prior approaches outperform the iPOMDP agent because they used the information

that some of the trajectories come from experts (and were thus near-optimal). Even

problems with relatively large state-spaces had relatively simple near-optimal policies

which could be inferred from the expert data and used to inform what models were

probable. Finally, the optimization used in the policy-based approach-recall we use

the stochastic search to find a probable policy-was also key to producing reasonable

policies with limited computation.
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Cumulative Reward Final Reward
iPOMDP Uniform iSC Pol- iSC Pol- EM iPOMDP Uniform iSC Pol- iSC Pol- EM

Policy icy Prior, icy Prior, Policy icy Prior, icy Prior,
Prior Model In- Joint In- Prior Model In- Joint In-

fernence ference fernence ference
tiger -2.2e3 -1.4e3 -5.3e2 -2.2e2 -3.0e3 -2.Oel -1.0el -2.3 1.6 -2.0el
network -1.5e4 -6.3e3 -2.1e3 1.9e4 -2.6e3 -1.lel -1.2el -4.0e-1 1.lel -4.7
shuttle -5.3el 7.9e1 1.5e2 5.1el 0.0 1.7e-1 3.3e-1 6.5e-1 8.6e-1 0.0
follow -6.3e3 -2.3e3 -1.9e3 -1.6e3 -5.0e3 -5.9 -3.1 -1.4 -1.1 -5.0
gridworld -2.0e3 -6.2e2 -7.0e2 4.6e2 -3.7e3 -1.3 5.3e-1 1.8 2.3 -2.1
hallway 2.0e-1 1.4 1.6 6.6 0.0 8.6e-4 7.4e-3 1.4e-2 1.9e-2 0.0
beach 1.9e2 1.4e2 1.8e2 1.9e2 3.5e2 2.0e-1 1.le-1 1.4e-1 2.7e-1 3.4e-1
rocksample -3.2e3 -1.7e3 -1.8e3 -1.0e3 -3.5e3 -1.6 -5.3e-1 -1.3 1.2 -2.0
tag -1.6e4 -6.9e3 -7.4e3 -3.5e3 - -9.4 -2.8 -4.1 -1.7 -9.1
image -7.8e3 -5.3e3 -6.1e3 -3.9e3 - -5.0 -3.6 -4.2 1.3e1 -5.0

Table 5.1: Cumulative and final rewards on several problems. Bold values highlight best performers.



5.5 Discussion

This chapter addresses a key gap in the learning-by-demonstration literature: learning

from both expert and agent data in a partially observable setting. Prior work usually

tends to either place distributions on-or in some other way directly learn-transition,

observation, and reward parameters from the agent's own self exploration [Jaulmes

et al., 2005, Ross et al., 2008a,b, Doshi et al., 2008] or learn policies or reward models

directly from experts [Abbeel et al., 2006, Ratliff et al., 2009] assuming that the

dynamics model (transitions and observations) are known. Our Bayesian approach

introduces a joint prior over the world models and policies, connecting information

about world dynamics and expert trajectories. Taken together, these priors are a new

way to think about specifying priors over models: instead of simply putting a prior

over the dynamics, our prior provides a bias towards models with simple dynamics

and simple optimal policies. We show with our approach expert data never reduces

performance, and our extra bias towards controllability improves performance even

without expert data.

In some ways, the work in this chapter is an extension of our previous work

[Doshi et al., 2008] that describes how expert knowledge about the policy can be

incorporated when given in the form of policy queries, that is, history-action pairs

(h, a). While answering single policy queries at first may seem like less work for

the expert, incorporating the result of a single query into the prior over models is

challenging; the particle-filtering approach of Doshi et al. [2008] can be brittle as

model-spaces grow large. The approach also requires the expert to update himself to

the agent's internal state given the history rather than just demonstrate a good series

of actions. In general, we find empirically that learning from expert trajectories

is more robust than from learning from single-action corrections; it appears that

using whole trajectories lets the agent generalize better and evaluate models more

holistically. By working with models and policies, rather than just models as in Doshi

et al. [2008], we can also consider larger problems which still have simple policies.

There are several avenues for extending this into future work. First, the inference
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method in section 5.2.1, while relatively robust, is still sensitive to the annealing

parameters. Alternate means of sampling from the desired posteriors could make the

process even more robust. Next, our policy priors over nonparametric finite state

controllers were relatively simple; classes of priors to address more problems is an

interesting direction for future work. Finally, in this work, we simply assumed some

expert trajectories became available to the agent over time. Targeted criteria for

asking for expert trajectories, especially one with performance guarantees such as

Doshi et al. [2008], would be an interesting question in active-learning.
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Chapter 6

Infinite Dynamic Bayesian

Networksi

In both chapters 4 and 5, we learned flat models of the environment: that is, the

model assumed that a discrete, scalar s completely described the latent state of the

environment. This formulation is fairly general, even if we believe the environment

might consist of several hidden states. For example, consider a robot whose location

(which room) and orientation (north, south, east,or west) are both not directly ob-

servable. If we define states to be combinations of locations and orientations, such as

kitchen-north or bedroom-west, then we can still encode this domain with a single,

discrete variable s for each configuration of the environment.

However, flattening the state-space in this way loses key elements of the struc-

ture present in the application domain. In our robot example, certain actions, such

as rotations, may only affect the robot's orientations, while other actions, such as

movements, may only affect the robot's location. Certain observations, such as the

features of a room, may be predominantly a function of the robot's location rather

than its orientation. These patterns would be lost if the hidden state were collapsed

into just one scalar. This loss of structure is not simply an aesthetic consideration: a

flat model, in which we effectively assume that every current part of the state space

'This work was joint with David Wingate
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can affect every future part of the state space and every observation, has exponen-

tially many more parameters to learn than a structured model. Thus, a flat model,

while general, may require much more data to learn.

The obvious alternative, of course, is not to flatten the hidden state s. Instead of

being a scalar, s is now a vector of factors s1, s2 . K, where each dimension sk is

a scalar that represents some aspect of the environment (such as location or color).

Representing the state with a set of factors not only allows us to encode the structure

present in the environment, it can also allow for more efficient inference. Learning

can also require fewer samples than a flat model because data for relevant aspects of

the environment can be aggregated: for example, one can use all instances of being

in the kitchen to learn what kind of floor is likely to be observed, rather than having

to learn the observation model separately for the flattened states kitchen-north and

kitchen-west.

A common model for representing factored environments is the dynamic Bayesian

network (DBN), shown in figure 6-1. Formally, a regular dynamic Bayesian network

(DBN) is a directed graphical model in which the state st at time t is represented

through a set of factors {s1, s, .. , s } (also called nodes). The value of a node-or

state-st+j at time t + 1 is sampled from T(st|+jPak(st)), where Pak(st) represents

values of the parents of node k at time t. The parents of a node always come only

from the previous time slice (there are no intra-slice connections). For example, in

our 2-factor robot example, the robot's current orientation may only depend on its

previous orientation. However, its current location may depend on both its previous

location and orientation.

The state of a DBN is generally hidden; values of the states must be inferred from

a set of observed nodes ot = {ol, o, ... , oN}. The value of an observation o' at time

t is sampled from Q (on"|Pan(st)), where Pan(st) represents values of the parents of

observed node o" at time t. For example an observation corresponding to the type

of flooring might only depend on the robot's (hidden) location, while an observation

corresponding to whether the robot sees a door might depend on both the robot's

current location and orientation. (See Murphy [2002] for very detailed overview of
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Figure 6-1: Graphical model for the DBN: the hidden states (across the top) are
causally connected through time. The visible states (below) are independent of each
other and of states at other times given the hidden states at that time step.

DBNs).

In some cases, the structure of the DBN is known beforehand: for example, an en-

gineer might provide a diagram of how unobserved elements of a robotic system might

be expected to interact with each other. In other cases, the structure of the DBN may

not be known, but all of the nodes (including the states s) are fully observed; work

that allows for unseen data [Ghahramani, 1998, Xing-Chen et al., 2007, Pefia et al.,

2005] still assumes knowledge about the number of hidden nodes and their values.

However, in general it may be unclear how many hidden nodes are needed to explain

the observed data, how they are connected, or even what values they may take. The

core contribution of this chapter is a very general way of learning the hidden structure

of a DBN.

Nonparametric extensions of the DBN have tackled various aspects of the DBN

structure-learning problem. The Infinite Factored HMM [Van Gael et al., 2009] posits

that there are a potentially unbounded number of binary factors that explain the
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observed data, while the Infinite Hierarchical HMM [Heller et al., 2009] posits that

there are a potentially unbounded number of discrete-valued factors that explain

the observed data. Both of these models assume a fixed dependency structure: the

iFHMM assumes that each factor evolves independently, while the iHHMM assumes

that each factor is affected by itself and a factor one level above it. The Infinite Latent

Events Model [Wingate et al., 2009] posits that there are a potentially unbounded

number of binary factors that can have time-varying sequences of causes. Finally,

the Adaptive Dynamic Bayesian network [Ng, 2007] allows each factor to take on an

unbounded number of values but assumes a fixed number of factors.

In this chapter, we describe a generalization of these models, the infinite DBN

(iDBN), that allows for a flexible number of factors, factor values, and factor con-

nections. The model allows each factor to take on an arbitrary number of values

(learned) as well as be connected in an arbitrary fashion to previous nodes (also

learned). Setting various concentration parameters lets designers manage trade-offs

between models with more states and models with more factors without the hard

model constraints assumed in previous work.

Unlike in previous chapters, where we empirically tested the combination of belief-

monitoring and action-selection phases on sequential decision-making problems, we

focus solely on the belief-monitoring problem for the iDBN. Since it is the most com-

plex model in this thesis, we focus on demonstrating its properties and the types

of structures it finds in a variety of datasets. We do not consider the question of

action-selection, but we note that there are several approaches for acting in fac-

tored POMDPs that could be used as solvers in this context [Guestrin et al., 2001,

McAllester and Singh, 1999b, Sim et al., 20081.2

2The standard definition of a DBN does not include actions, but actions can easily be incorporated
as fully-visible state factors s. In this work, we focus on the structure learning problem without
considering actions. However, the techniques directly apply to cases where actions (or any other
state factor) are known.
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6.1 Model

When motivating the model for the iPOMDP, we argued that if the state of the

world is truly hidden from the agent, then the number of possible world states is also

likely unknown. We make a similar argument for the iDBN: if the environment has

structure that is truly hidden from the agent, then the agent probably does not know

the number of factors in the structure or the way these factors interact. Just as with

states in the iPOMDP, which represented waypoints rather than physical states in

the environment, the structure learned in the iDBN corresponds to a representation

that summarizes the data well and is useful for making future predictions, rather than

some "truth" about the underlying system.

Our nonparametric DBN model places a prior over DBNs with unbounded num-

bers of hidden factors. Inference on this infinite structure is tractable only if the prior

ensures that only a finite number of hidden nodes will be needed to explain a finite

sample of time-series data. More generally, the following properties are desirable in

a general nonparametric DBN model:

" A finite dataset should be generated by a finite number of hidden factors with

probability one.

" The structure connecting the hidden nodes should be as general as possible (we

do not wish to enforce a particular form of connections as the hierarchical or

factorial HMM do).

" Each node should be able to take on multiple values (we do not wish to limit

ourselves to binary nodes).

Of these desiderata, the first is the most difficult to satisfy in practice. In the

case of the iPOMDP, where the hidden structure was a single state, the length of the

history automatically ensured that there were only a finite number of hidden states

that were relevant: in a history of length t, at most t states could be visited. However,

with an infinite factored structure, care must be taken to ensure that inference for

any particular hidden node st 1 at time t + 1 does not require knowing the values of
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an infinite number of hidden nodes st at time t. Specifically, every hidden node s'

and every observed node o' must either (1) have a finite number of parents or (2) only

a finite number of its parents may have changing values. In the latter case, we could

imagine there being hidden nodes sk whose value is always fixed; thus conditioning

on sk does not have any effect.

We chose our prior with an eye toward tractable inference. Our infinite DBN

(iDBN) model posits that the world actually has an infinite number of hidden factors

st at any time t. Only a finite number of factors are needed to explain a finite set

of observed nodes; however, as we attempt to model more observed nodes, we expect

that more hidden nodes will be required to explain the data.

tran iton

node transation

Pak
K Sh st+1 K

obs obser-
parents vation

Pn N Or 0t+1 N

T

Figure 6-2: Graphical model for the iDBN prior: one concentration parameter, aDBN
controls the structure of the connections, while a second, aHDP controls the number
of values each hidden node is expected to take in a finite time-series.

We first describe a very general formulation of the iDBN. The general generative

process, summarized in figure 6-2, for our iDBN model proceeds as follows: to sample

a model m from the iDBN prior, we first, for each observed node, draw zero or

more parent hidden factors via a non-parametric process with some concentration

118



parameter aDBN

Pa,, ~~ NP(aiDBN) -61

where Pan(k) = 1 if hidden node sk is a parent of observed node n. Once the observed

nodes have chosen parents, all parent hidden nodes choose their own parent nodes

via the same process:

Pak ~NP(aDBN) (6.2)

where Pak(j) = 1 if hidden node si is a parent of hidden node sk. This process is

repeated for any newly instantiated parents until all hidden nodes that may affect

the observed nodes have been instantiated. For example, suppose that there is only

one observed node ol, and it chooses hidden nodes si and s2 as its parents. Next,

nodes si and s2 would choose their parents: suppose node s1 chooses only node s2,

but node s2 chooses itself and a new node s3. Then we would have to again sample

parents for node s3: suppose it chooses nodes si and s2. At this point, all nodes'

parents are already-instantiated nodes, and we have a finite set of nodes (s ,s2
7 s3)

that are needed to predict observed node s.

The process NP should be an exchangeable process with a rich-get-richer property

such that (1) nodes choose a finite number of parents with probability one and (2)

when a new node is choosing its parents, there is always a finite probability that it

not choose any new (uninstantiated parents). Any nonparametric process satisfying

(1) and (2) above will ensure number of observed nodes will be explained by a finite

number of hidden nodes:

Proposition 1. If NP is a nonparametric process such that the klh node chooses a

new (uninstantiated) parent with probability less than some constant c for all k greater

than some constant K, then the DBN is guaranteed to have a finite number of nodes

with probability one.

Proof. Once a new node selects no new parents, the process for growing the part

of the DBN relevant to the observations is complete. Suppose that the probability

that a new (uninstantiated) parent is chosen is always less than c after K nodes have

already been instantiated. Then the distribution of number of new parent nodes that
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will be added to the DBN is dominated by a geometric distribution with parameter

c. Since a geometric distribution outputs a finite value with probability one, only a

finite number of nodes will be instantiated with probability one. 0

For the application in this chapter, we use the Indian Buffet Process (IBP) [Grif-

fiths and Ghahramani, 2011] as our nonparametric process NP. In the IBP, the n"

factor (the "customer") chooses Poisson(aDBN/r) new parents ("dishes"). The prob-

ability that the factor chooses no new parents is exp(-aDBN/n). Figure 6-3 shows

how, when using the IBP as NP, the expected number of hidden factors grows loga-

rithmically with the dimensions of the observation. 3
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Figure 6-3: Expected number of hidden factors given different numbers
nodes, for varying aDBN-

of observed

Once the connections of the iDBN are specified, the next step in specifying the

iDBN model is describing the prior over transition distributions T(sk 1 IPak(st )) and

3Our process for sampling inter-factor connections is closely related to the cascading Indian Buffet
Process (cIBP) [Adams et al., 2010]. The cIBP uses an IBP used to winnow the number of factors in
each layer of a deep belief network, while our iDBN uses the IBP to winnow the number of parents
in a two-layer network representing the current and future time slices.
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the emission distributions Q£(o"IPan(st)). For the emission distribution, we simply

specify some base distribution H, for each observed node. For the transition dis-

tributions, we use the hierarchical construction of the hierarchical Dirichlet process

HMM (HDP-HMM) [Teh et al., 2006]: we first sample a base, or expected, transition

distribution T from a Dirichlet process prior, and then use that distribution T as the

base distribution for each transition distribution T(st+IJPak(sT. 4

The complete generative process for the iDBN prior is as follows:

" Sample parents s for all observed nodes o' according to some nonparametric

process NP(aDBN): Pan ~ NP(aDBN), where aDBN is the concentration pa-

rameter of the nonparametric process.

" While there exist hidden nodes sk without assigned parents, sample parents for

them via the same process NP(aDBN): Pak ~ NP(afDBN)-

* For each observed node o, sample emission distributions Q(o"|Pan(st)) ~% H

for each setting of the parent variables Pan(s).

* Sample a base transition distribution T ~ Stick(aHDP), where aNlDP is the

concentration parameter of the base transition distribution.

" For each hidden node sk, sample a transition distribution T(st, 1 Pak(st))

DP(T, -y), where -y is the concentration parameter for sampling the individual

transition distributions.

Besides the properties induced by the nonparametric process, the choices of the con-

centration parameters adjust the biases of the iDBN prior. The parameter aDBN

governs the expected number of hidden nodes that are relevant for predicting the

observations. The parameter aHDP governs the number of values, or states, that

each hidden node is expected to pass through in any finite sequence. Finally, the pa-

rameter -y adjusts how deterministic we expect the transitions to be. Together, these

4For simplicity, we used the same base distribution T for all hidden nodes k. While it may appear

restrictive, evidence from the data still allowed the transitions T to vary; if needed, the hierarchy

could easily be extended to sample a private base distribution Tk for each hidden node.
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three parameters govern the number of factors, then number of values per factor, and

the sparsity of the transitions-the three directions which a DBN can be "large" or

"non-sparse." Finally, while the iDBN prior ensures that a finite number of hidden

nodes will explain a finite number of observed nodes, as time goes on, those hidden

nodes may take on new values (as sampled from the HDP prior on transitions) to

explain new trends in the observations.

6.2 Methods

As we mentioned at the beginning of the chapter, we focus only on the belief-

monitoring aspect of the iDBN, not on control. Thus, in this section we describe

how to sample iDBN models m given observations o. Incorporated into a larger

decision-making system, the step described here would correspond to drawing sam-

ples from the belief b(s, m); an action-selection strategy would be needed to compute

an action a given samples from the belief.

In previous chapters, we factored b(s, m) = b(sjm)b(m), noting that in an HMM

or POMDP, the conditional belief b(slm) could be expressed in closed form. The

closed form expression allowed us to efficiently compute various quantities needed for

control. In factored domains, where s is a vector, the belief b(s Im) grows exponentially

with the number of dimensions in s, and thus keeping a closed form expression for

b(sjIm) is no longer computationally tractable. Instead, we draw samples from b(s, m)

directly instead of splitting the belief into two expressions.

Specifically, our inference uses a combination of a blocked Gibbs sampler and

Metropolis Hastings (see section 2.2.2 for an overview) to sample combinations of

models m and corresponding state sequences s. Throughout this section and for

the results, we use the IBP as our nonparametric prior NP because of its straight-

forward inference properties. We sample potential DBNs from the iDBN posterior by

cyclically resampling each of the hidden variables-the values of the hidden factors s,

the parent structure for the hidden nodes Pak and the observed nodes Pan, the base

transition distribution T, and the transition and emission distributions T and Q-one
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at a time conditioned on all of the other variables. The pair of model parameters

m = {Pak, Pan, T, T, Q} and state sequence s from each round of this inferences is a

sample (s, m) from the belief b(s, m).

Resampling structure. We separate the process of resampling the structure

Pa, and Pak into two parts: resampling connections for already instantiated nodes

and changing the number of hidden factors. In the discrete case, given the hidden state

sequence s, it is straightforward to integrate out the transition or emission distribution

and compute the probability of the hidden state sequence with or without an already-

instantiated node as a parent [Heckerman, 1996]. Thus, p(PaIPak, s, T, T, , o) =

p(Pa,,|Pak, s, T) and p(PakIPan, s,T, T, Q, o) = p(Pak|Pan, s,T).

To add or delete factors, we use a Metropolis Hastings (MH) birth-death move of

the following form:

" Choose whether to attempt adding or deleting a node with probability p = .5.

" If attempting to delete a node: only consider nodes whose hidden states are all

the same value for all time, that is only delete a node if sk = c for all time t.

" If attempting to add a node: add a node whose hidden state has the same value

sk+1 = c for all times t and connect it to existing hidden and observed nodes

with probability p.

Computing the prior probability p(Pak, Pan, T, T, Q) of the structure following this

MH move is straight-forward because adding or removing a node whose hidden state

takes on the same value for all time does not affect the likelihood of the model with

respect to the observations, only the probability of the structure. Specifically, recall

that the MH acceptance probability is given by:

a= m P(x')Q(xzx'))

' P(x)Q(x'|x) '

where x is some random variable. In our specific case the random variable corre-
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sponding to x is the probability of the iDBN structure

P(x) = P(Pak,Pa,T, T, Q) (6.4)

Suppose that there are K nodes currently instantiated in addition to the node being

added or deleted, and let sK+1 denote that special node (note that the indexing is

arbitrary, so we can define sK+1 to be any node. Let k be the number of nodes-both

parents and observations-to which sK+1 either was already connected (in the case

of node deletion) or to which sK+1 is now connected (in the case of node addition).

Then, the probability of the transition x to x' in which a node gets added is:

Q(x'|x) = .5 * pk * (1 - p)(N+K-k) (6.5)

where the .5 comes from the chance of choosing to add a node and the binomial term

p * (1 - p)(N+K-k) represents the probability of selecting a certain set of connections

to the instantiated nodes. The probability of a transition x to x' in which a node gets

deleted is

Q(x'lx) = .5 (6.6)

where the .5 comes from the chance of choosing to delete a node. No other terms are

needed because there is only one way to delete a node: severing all connections that

node has to its parents and observations.

A second approach we use to add factors is to sample draws of states sK+1... that

are unconnected to the current structure. Since these states are not connected to

the data, the values for these states can be sampled directly from the iDBN prior:

they simply represent what some of the other infinite nodes in the infinite dynamic

Bayesian network might be doing. Specifically, to use the generative process for the

iDBN prior described in section 6.1, we first instantiate one new node sK+1, choose

its parents, and then choose parents for any new nodes that get instantiated in this

process. Next, we sample the state sequence for any of the new nodes, noting that

we only need to instantiate the transition and observation distributions T and Q
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for the settings of the parents that actually occur. These are drawn from T and H

respectively.

This process results in a state sequences for a new set of nodes sK+1... that do

not affect the data. However, in following iterations of the sampler, these new nodes

may get connected to observations or become parents of existing nodes if they (just

by chance) help explain patterns in the data. We delete these new nodes-and any

other nodes that do not either directly or indirectly affect the data-after every full

round of the sampler.

Resampling transitions and observations We now turn to resampling the

parameters of the transition distributions p(TIPak, s, T) and the emission distribu-

tions p(GIPan, s, T, o), as well as the base transition distribution p(TIPak, s). The

base transition vector T is infinite-dimensional; following Teh et al. [2006], we store

it as {T 1 ,T2, , TN, Tu}, where each T is the base probability for some visited state

n. The base probability of visiting any of the (infinite) unvisited states is Tu. We

resample T using the restaurant-based sampler of Fox et al. [2010b]. Given the fi-

nite representation of T and the hidden node sequence s, resampling the transition

distributions T is straightforward using Dirichlet-multinomial conjugacy; we can sim-

ilarly resample the emission distributions Q given the prior Hn and counts from the

observed and hidden nodes. Finally, since each hidden node can take on an infinite

number of values, we obviously cannot sample distributions for all parent settings of a

particular node. Instead, we only sample distributions for which we have data; addi-

tional distributions are instantiated on-demand as the sampler resamples the hidden

node sequence.

Resampling states Finally, we must resample the hidden node sequence from

the distribution p(sjPan, Pak, T, T, Q, o). While exact inference in DBNs is generally

computationally intractable, many approximation algorithms exist for inference over

the hidden nodes. We applied the factored frontier algorithm [Murphy and Weiss,

2001], a form of loopy belief propagation with a forward-backward message-passing

schedule. Just as with the forward-filtering backard-sampling inference that we used

for the state sequence of the iPOMDP, we sampled instead of smoothed on the final
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backwards pass. By representing the belief over states at every time step as a product

of node marginals, the factored frontier adds one more approximation to our truncated

representation of T that groups all unvisited states into one extra node. However,

we found no empirical difference between this computationally-efficient approxima-

tion and inference using a particle smoother [Doucet and Johansen, 2009] that did

not require such an approximation to perform inference over the infinite-dimensional

state space. The inference over the state sequence is required for structure-learning

algorithms for finite DBNs (e.g. Ghahramani [1998]) as well; in our experiments al-

most 90% of the computational time was spent in this step. Thus, the iDBN prior

does not add significant overhead to the inference.

6.3 Experiments

In this section, we describe a set of experiments to demonstrate the capability of the

iDBN to find structure in data. We first show some demonstrations that illustrate

the properties of the iDBN, and we also test the iDBN on several synthetic datasets.

We then apply the iDBN to finding structure in two realworld datasets: precipitation

patterns in the United States, and neuronal activity in zebra finches.

For all of the examples, we start out with a time-series of observations o. We

randomly choose some of these observations o' to hold-out, or treat as missing, and

denote the remaining observations as o - o'. For example, if o represents the pre-

cipitation over time for various weather stations around the United States, then o'

would correspond to stating that certain stations did not report on certain days (even

though we have data for them). We use the bulk of the observations to draw samples

from the posterior over models m from the posterior b(s, mlo - o'). We evaluate these

models according to their likelihood p(o'|m) on the held-out data o'. The intuition is

that if the model m has characterized the patterns underlying the data well, then it

should be able to predict the values of hidden or missing data well.
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Figure 6-4: Simple DBN with 2 hidden nodes.

6.3.1 Demonstration on a Toy Dataset

We demonstrate various properties of using the iDBN prior using data produced

from the simple DBN with 2 hidden nodes and 4 observed nodes shown figure 6-4.

Figure 6-5 plots the negative predictive log-likelihood of the finite DBN models and

the iDBN on held-out test data, where the predictive likelihoods were computed by

holding out 10% of the data from a time-series with 250 time-steps. Error bars show

the standard error of the mean averaged from five 50-iteration runs of the sampler.

As expected, increasing the number of hidden nodes helps initially because the flat

model cannot fully explain the data. However, the larger finite models overfit the

training data and thus make larger errors on the held-out test data. The iDBN prior

infers a distribution over the number of hidden nodes (right pane of figure 6-5) and

node values that generalizes to predict the held-out data well.

Many explanations can exist for a given sequence of observations: for example,

suppose the "true" underlying model had 2 hidden nodes which took on 2 and 3

state values, respectively. While it would lose the structure, the model could also
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Figure 6-5: Negative log likelihoods for finite models compared to the iDBN. Error

bars show the standard error of the mean.

be represented by a flat model with a single hidden node with 6 state values. In

figure 6-6, we show how adjusting the ODBN and aHDP in the iDBN prior biases

the posterior toward more factors and more states, respectively. As expected, the

number of hidden factors in the posterior increases with aDBN, while the number of

states the hidden factors taken on increases with aHDP (though with less sensitivity).

However, the number of unique factor-state settings in the sequences' posterior stayed

within a small range; changing the concentration parameters made biases for different

structures but the posterior still captured the core variations in the data.

Overall, we found that good test likelihoods could be obtained over a variety of

different concentration parameters. Over the parameter settings, the inter-quartile

range for the test likelihoods was 21.8, suggesting that the iDBN could find a variety

of likely models based on the biases given by the designer. Moreover, when empirically

tested, using the same base distribution T for all of the transition distributions did

not seem to be overly restrictive: the evidence from the data was able to shape the

individual transition distributions to reasonable values.
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Effect of HDP Base Alpha on State Count
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Figure 6-6: Number of hidden factors and number of states discovered by the iDBN;
errorbars indicate one standard error of the mean.

6.3.2 Synthetic Datasets

We first show that the iDBN prior generalizes well on several synthetic datasets from

the literature. For all of the experiments, we set aDBN = 1, aHDP = 1, and 7 = 3; the

inference was relatively robust to the settings of aHDP and -y; small settings Of aDBN

definitely helped bias the prior toward smaller models that were more reasonable for

the domains we explored. The base emission distribution HN was set to a uniform

distribution with concentration 2. In practice, we found that smaller concentrations-

which would have biased the observation distribution toward more peaky observation

models-tended to slow down the inference by initially proposing unique states for

almost every observation. These states would then have to be merged through the

inference process.

We applied the iDBN prior to several datasets from Wingate et al. [2009]. The

three network datasets consist of binary observations indicating whether various com-

puters are up or down. Computers crash randomly, and crashes can propagate

through the (unknown) network. Each dataset contains an unobserved node which

affects the topology of the network. The jungle data set is a synthetic dataset con-

taining a timeseries of noises in a jungle soundscape (where certain animal sounds
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cause other animals to also make sounds). Finally, the spike dataset was derived

from spike train recordings of hippocampal place cells in a rat while running through

a linear track. The data consisted of spike counts that had been passed through a

dimensionality-reduction algorithm. The statistics of the datasets are summarized

in table 6.1; however note that there are always ways of explaining the data with

different numbers of factors or values for factors.

Table 6.1: Description of Datasets

Domain Factors Values per Factor Length
Jungle 6 2 52
Spike 1 45 179
NW-Ring 4 2 1000
NW-Star 5 2 1000
NW-Tree 7 2 1000

We compared the iDBN prior to a finite DBN initialized with the actual num-

ber of hidden factors and states from table 6.1 as well as an infinite factorial HMM

(iFHMM). The iFHMM (figure 6-7) assumed a specific hidden network structure in

which chains of binary hidden nodes evolve independently from each other and ev-

ery hidden node affects every observed node. We chose these models as comparisons

because, like the iDBN, they modeled stationary (non-changing with time) distribu-

tions over the hidden states and had somewhat complementary constraints: the DBN

fixed the number of nodes but allowed non-binary-valued states, while the iFHMM

fixed the number of states per node. The connections for the DBN and the iFHMM

were initialized each hidden node with only itself as its parent and connecting to all

observed nodes. In the case of the iFHMM, the number of hidden nodes was initially

set to the number of observations. To speed up burn-in, the iDBN was initialized

with the final iFHMM model; completely random initializations tended to get caught

in local optima. All three approaches were run using the same base software with

various flags to constrain the numbers of factors and values per factor. A full suite

of repeated runs took between 1-4 hours depending on the size of the dataset.

As in section 6.3.1, we randomly held out different subsets of 10% of the observed
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Figure 6-7: Graphical model for the infinite factorial HMM: the hidden nodes (across
the top) consist of chains of binary states that evolve independently over time. Each
visible state (below) depends on the values of all the hidden states at each time step.

data for 5 runs of the sampler. Each run consisted of 100 iterations, with more

complex models initialized from less complex ones. The predictive test-likelihood

of each approach was computed over the last 10 iterations of each runs. Table 6.2

summarizes the results: we see that the nonparametric models always outperform

the finite model; in all cases the models proposed by the iDBN score either better or

comparably to the iFHMM. The DBN-even though it has the "correct" number of

states-does less well with limited data due to overfitting. We also emphasize that

the structures found by the iDBN are designed to predict the provided data well,

not find the "correct"-or even an interpretable-structure: indeed, especially with

limited data, there will be many structures that describe the data well. The results

show that even though the iDBN is a more flexible prior, it generalizes to unobserved

data by finding structure in the model. By allowing for connections between hidden

nodes, it can also model structures such as the network topologies better than the

more constrained iFHMM.
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Table 6.2: Comparison of iDBN approach to other algorithms. Intervals represent

the standard error of the mean.

Negative Test Likelihood Factors Discovered

DBN iFHMM iDBN DBN iFHMM iDBN.
NW Star 174.0 i 8.2 165.2 ± 3.0 156.2 ± 3.0 5 12.8 ± 0.2 2.4 ± 0.2
NW Tree 255.6 ± 7.1 286.5 t 2.9 216.2 i 10.0 7 12.0 ± 0.0 4.0 ± 0.4
NW Ring 181.7 ± 16.0 154.3 i 1.6 151.4 i 2.8 4 9.0 ± 1.2 4.2 ± 1.0
Spikes 142.4 i 2.7 133.1 ± 2.1 136.0 ± 2.8 1 15.9 ± 0.1 18.1 i 6.2
Jungle 14.8 ± 1.4 13.9 i 1.5 14.2 i 1.6 6 3.1 i 0.1 29.5 ± 3.6

6.3.3 Application: Weather Modeling

For this test, we downloaded historical weather data from the US Historical Climate

Network 5 . In the first test, we used daily precipitation values for 5 different weather

stations (one each in Rhode Island, Connecticut, New Jersey, Delaware and Califor-

nia) for 10 years between 1980-1989, resulting in 3,287 timepoints. Observations were

evenly discretized into 7 values.
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Figure 6-8: Results on the weather dataset. On the left: the weather stations. Middle:

the inferred DBN. On the right: the expected causal connections between latent
factors.

Figure 6-8 shows the results on this small time-series: on the left is the learned

5From ftp://ftp.nede.noaa.gov/pub/data/ushcn/daily/
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DBN, which identified two independent weather systems for New England and Cal-

ifornia. This interpretation was stable across many samples from the posterior, as

shown in the right hand side. An entry (i, j) in the matrix represents the percentage

of samples in which there was a causal connection from parent j to child i (the model

occasionally inferred one extra connection (the square 2,3) which did not connect

to any observation). Here we see the iDBN naturally picking out the independently

evolving latent factors that the iFH MM is designed to model.

Figure 6-9 shows the results of the iDBN applied on a time-series of 500 weather

stations across the United States. As before, the algorithm does not have access to

the weather station locations; it only sees a time-series of discretized precipitation

data. The data can therefore be represented as a matrix with 500 rows (represent-

ing stations) and 3,287 columns (representing days). Figure 6-9 shows the results.

Not only does the iDBN find geographically-localized clusterings of the observations

without any prior geographical knowledge, the west-to-east causal links are consistent

with U.S. weather patterns (due to the jet stream). A close look at the figure also

shows that while most observations connect to a single hidden factor, representing a

region, many observations also connect to more than one hidden factor, representing

that they lie at the intersection of several regions. The quantitative comparison in

figure 6-10 shows that iDBN finds models with lower training and test likelihoods

than the iHMM, iFHMM or a flat HMM with up to 100 states.

6.3.4 Application: Discovery of Neural Information Flow Net-

works

For our final application, we applied the iDBN to analyze neural activity recordings

from the auditory pathway of zebra finches. First analyzed in Smith et al. [2006], the

dataset corresponds to (possibly misplaced) electrodes put in the cerebral auditory

regions of zebra finches. Raw data was discretized into three observations per elec-

trode. The goal of the analysis was to infer functional connectivity between different

brain regions given only a timeseries of electrode measurements. We expected factors
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Figure 6-9: Sample network inferred by the iDBN based on 500 weather stations
across the United States.
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Figure 6-10: Training and test likelihoods for the iDBN, iHMM, iFHMM, and HMM
models on the full weather data. Dashed line represents random guessing with the
marginal empirical distribution.
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Figure 6-11: Results on the finch dataset. (A) Inferred functional connectivity from
Smith et al. [2006]. (B) the iDBN's inferred observation clusterings (figure (A) cour-
tesy of V. Anne Smith).

to correspond to functional regions of the brain and causal connections to represent

information or processing pathways.

We analyzed data for two birds (Black747 and LtGr841). We first tested the

iDBN on temporally-scrambled versions of the datasets. It reliably inferred that no

causal connections existed between the hidden factors, suggesting that the temporal

connections found in the unscrambled dataset were not a product of chance. Fig-

ure 6-11(B) shows clusterings found in the unscrambled time-series: each entry (i, j)
in the square represents the frequency with which observation dimensions i and j
were connected to the same parent. Over many runs of the iDBN, several observation

factors were collapsed into a single state variable-implying that more often than not,
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the differences between some observations were not significant enough to justify their

own factors.

The groupings are anatomically plausible: for example, in the LtGr841 block,

we find that L2 and L3 were often grouped together into a single state variable;

similarly, in Black747, we see that CMM and L2 were often grouped together. These

observational clusterings correlate strongly with the inferred functional connectivity

graphs from the original paper (figure 6-11(A)); the fully-observed-DBN approach of

Smith et al. [2006] cannot infer the same collapsing of variables.

6.4 Discussion

In this chapter we described the iDBN, a nonparametric prior over dynamic Bayesian

networks that posits that the world contains an infinite number of hidden nodes as

well as observed nodes; however, only a finite number of hidden nodes are needed

to explain a finite number of observed nodes. By using the iDBN as a prior over

hidden nodes, we automatically infer the number of hidden factors-and the number

of state values they take on-to explain the observations. Adjusting concentration

parameters lets us tune the models to the type of structures we prefer to find. On a

variety of datasets, the iDBN finds reasonable structure, ranging from independent

chains to highly connected subsets of latent factors. Importantly, this flexibility does

not compromise the likelihood of the data, which is on par or better than more

structurally constrained models.

Most similar to the iDBN model is the infinite state Bayesian network (ISBN) of

Welling et al. [2007]. Like the iDBN, the ISBN uses HDPs as priors over a Bayesian

network of latent variables that can take on a countably infinite number of values.

Each observation has one or more of these latent variables as its parents. While the

ISBN assumes that the Bayesian network structure is given (including the number

of latent variables), the iDBN learns both the number of latent variables and their

connectivity within the DBN structure.

Still, there are several avenues for further work. Within the basic iDBN model
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described in this chapter, we observed in our experiments that sometimes the iDBN

is too flexible: for example, suppose that we have seen a set of transitions for factor

sk that cannot be explained by the current data. The form of the likelihood makes it

such that, even with different settings of aDBN and aHDP, two very different options-

adding a new node sK+1 as a parent and letting the parents Pak(s) just take a new set

of values-are almost indistinguishable. A more structured form for the transition,

such as a tree-structured or a linear model, would restrict the flexibility of the prior

but also provide the model more direction when choosing to add factors or add values

to factors. Developing more sophisticated inference techniques to allow for faster

mixing is also an important element to making the iDBN usable as a belief-monitoring

step in a larger sequential decision-making system.

More generally, the iDBN provides a very flexible way to model latent structure in

observed time-series, and it also raises several interesting questions in non-parametric

time-series modeling. For example, even in the general form of the iDBN formulation,

the nonparametric process NP which ensures that each child only has a finite number

of parents also results in several popular parent factors that influence many parts

of the network. Depending on the application, however, it may not be reasonable

to think that a few factors tend to affect most other factors. For example, if the

hidden factors represent regions on a map, then we might want the prior to be biased

toward planar structures (instead of having to infer such a property from the data).

The process also enforces that a fixed, finite number of hidden factors are needed to

explain fixed number of observed nodes, no matter how long the time series. One can

also imagine scenarios-such as target tracking-where it might be more reasonable

to assume that the longer the time series, the more hidden factors may be needed

to explain the data. Developing other nonparametric time-series models-including

those that can model non-stationary and relational data-remains an interesting area

for future work.

One concrete example of an alternative formulation that satisfies the desiderata

in section 6.1 is a prior which allows the connections between the hidden nodes sk

and connections from the hidden nodes sk to the observed nodes on to be completely
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arbitrary-that is, nodes could have infinite numbers of parents. However, we place

a constraint on the transition function T(s ki IPak(st)) that required s k = sk with

probability Pk = 1 - ak for some parameter a E (0, 1]. Intuitively, this constraint

means that "higher" factors-factors with larger k-are unlikely to transition. Indeed,

it is possible to show in this model that only a finite number of factors will transition

from their initial state in a finite period of time (with probability one). As a result,

a node may have an unbounded number of parents without violating the desiderata

in section 6.1. However, we found inference in this model was less straight-forward

than the procedure we used with the iDBN; without a compelling reason to choose

this prior, we decided to explore a prior with simpler inference.

Finally, we believe that a factored model will, in general, be needed for control

or sequential decision-making problems in. partially observable domains. Most inter-

esting domains-robotics, user interfaces, medicine-have large numbers of observed

variables and definite structure in the underlying system. However, in many of these

domains, we also have some sense of what might be probable sets of hidden variables.

The iDBN can incorporate expert knowledge about structures as fake-counts on the

Beta variables used as priors for the structure variables Pak and Pan. However, more

work is needed in giving these very flexible structure-learning models flexibility in the

"right" places for interesting and useful structures to be inferred.
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Chapter 7

Conclusions and Future Work

In this thesis, we presented three examples of Bayesian nonparametric approaches

for learning representations in partially-observable domains. The infinite POMDP,

chapter 4, placed a distribution over dynamics models that would be Markovian if

the value of a discrete, scalar hidden variable was known (but the hidden variable

could taken on a potentially unbounded number of values). In chapter 5, we used a

similar trick to place a distribution over policies that could explained by a discrete,

scalar hidden variable. Finally, in chapter 6, we placed a prior over dynamics models

which were Markovian in a vector-valued, discrete hidden variable of unbounded

dimensionality.

Following from the Bayesian reinforcement learning framework, the distributions

over these hidden variables could now be used as sufficient statistics of the agent's

past history when making predictions about the future. The nonparametric aspect

of these approaches allowed the size of the sufficient statistic to be scaled as the

data required it-we did not have to make any initial assumptions of how complex

the distributions over history might be. Besides providing a way to characterize

uncertainty, the Bayesian aspect of these approaches governed the trade-off between

expanding the sufficient statistic to better explain patterns in the histories while not

overfitting to the data at hand. Given this sufficient statistic, the machinery of the

Bayesian reinforcement learning framework could then be used to select actions.

As we conclude, we both highlight in what situations the techniques presented in
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this work are likely to be useful as well as directions for future work.

7.1 When is this useful?

Now that we have seen a few examples of the uses of Bayesian nonparametric methods

to reinforcement learning, we return to the pair of questions that must be answered

in any reinforcement learning problem: what representation should one use for the

application, and how does one select actions given a representation? This thesis

focused on providing one alternative to first question of choosing and learning a

representation, and in chapter 3 we described several other approaches to creating

sufficient statistics in a partially-observable reinforcement learning setting. When

does using a Bayesian nonparametric approach to learning a representation make

sense? There are several factors which might make using a Bayesian nonparametric

approach attractive:

" Representations Must Be Built Online. The iPOMDP in chapter 4 ini-

tially learned a small model to explain gross patterns in the data and then

refined it. Smaller models are generally computationally easier to solve, leading

to computational wins early in the training phase. These computational wins

become less significant as the model is refined. The incremental history-based

approaches, such as U-Tree, share this property.

" Training-Time Performance Matters. By capturing the gross structure

in the dynamics initially, the iPOMDP models quickly learn the patterns that

allow for reasonable action-selection. Models with more parameters often take

longer to pick out patterns. The incremental history-based approaches also

share this property. In applications where a large batch of histories is available

from the start, or a large training set can be obtained at little cost, this property

will have less value.

" Data is Limited or Fundamentally Sparse. When gathering experience

from the environment is easy, such as with a game-playing Al, just about any
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representation will be able to discover reasonable structures: long suffix-trees or

many-node PDFAs can be trained without overfitting, statistics can be precisely

computed for training PSRs, and sufficient data exists to train the many param-

eters in a POMDP. While learning an appropriately-sized representation may

still be a pertinent question, the computational overhead associated with using

a Bayesian nonparametric approach may not outweigh its regularization benefits

compared to a simpler model comparison methods such as cross-validation.

In contrast, Bayesian methods are well-suited to situations in which the agent's

experience is limited: we observed in chapter 4 that the Bayesian approaches

outperformed U-Tree with limited data. Bayesian nonparametric methods go a

step farther by automatically scaling the model to the amount of experience-we

also saw in chapter 4 that a poorly-sized parametric Bayesian model resulted

in slower learning. These generalization properties are also valuable if large

amounts of data are available but the data is still fundamentally sparse: for

example, new conditions might always be appearing in medical applications,

and mapping agents may always continue to explore new spaces. These domains

benefit from the combination of having a model with an infinite capacity-we

do not need to fix a model-size-with a prior to prevent overfitting.

a Problem Structure is Poorly Understood or Irrelevant. All of the bench-

mark problems that we used in chapters 4, 5, and 6 had one thing in common:

even when the domain had a very specific structure-such as the gridworld-

none of the structure was given to the agent. In reality, of course, if the domain

structure is well-understood, then it makes sense to use a representation and

learning technique that can leverage that knowledge. For example, if transitions

can be specified, or measurement models can be trained, these simpler learning

approaches will perform better than trying to learn everything from scratch.

There are two situations in which a Bayesian nonparametric approach might

make sense even if the domain is well-understood. The first is if there are still

parts of the representation that cannot be calibrated using simpler techniques.
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In this case, the Bayesian nonparametric approach can be used to learn the

"error" or the "extra" parts of the representation that are not already trained.

The second is if we believe that much of the domain knowledge may be irrelevant

for the predictive task at hand: for example, although medical experts know a

lot about anatomy and physiology, this level of detail may not be needed for

predicting how a disease may evolve.

* Predictive Accuracy is the Priority. Bayesian nonparametric approaches

provide a way to tune the sophistication of a Bayesian model to make accurate

predictions about the future. As mentioned in chapter 1, the hidden vari-

ables should not be thought of as "real" world-states, but rather way-points

for making predictions. The discovered structures may be interpretable-such

as the regions found in the weather and zebra-finch data in chapter 6-but

interpretability is a possible by-product, not a goal. Bayesian nonparametric

methods are less appropriate when the primary objective is to learn the "true"

system. History-based approaches also share this property.

7.2 Directions for Future Work

We conclude this thesis with a discussion of directions for future work. The examples

in this thesis provided a proof-of-concept that Bayesian nonparametric methods can

be used to effectively learn Bayesian models. This current work both has several

limitations and also suggests specific extensions for future work.

Within the two overall questions of representation choice and action selection, we

can divide the question of representation choice into three subproblems. First, we

must choose the form of the representation, formally the sufficient statistic s = f (ht).

In the reinforcement learning setting, this statistic will be learned from data, and

thus the second question is how one intends to prevent overfitting: hypothesis tests?

Bayesian Occam's razor? Minimum description length? Finally, we must decide upon

an algorithm for the implementation of the learning scheme. We divide the directions

for future work along these three questions regarding the choice of representation as

142



well as the general question of action-selection.

7.2.1 Choosing a Sufficient Statistic: Bayesian Nonparamet-

ric Approaches for History-Based Methods

In this work, we explored the use of Bayesian nonparametric techniques primarily in

the context of a learning approach for POMDP-like models. Bayesian nonparametric

approaches were a natural fit in this context because a large literature already exists

for using Bayesian nonparametric methods to fit time-series data [Fox et al., 2010a,

2008, Stepleton et al., 2009, Johnson and Willsky, 2010], though not necessarily with

the objective of control. Using a hidden-variable approach for the representation often

makes it easier to incorporate expert knowledge about the underlying dynamics of

a system. Finally, although the representations that we learned in this thesis used

discrete hidden variable to describe the environment, the "true" underlying state

space could be discrete or continuous: our discrete hidden-variable representation

creates a discretizaion of environment that is sufficient for making predictions.

However, these techniques can be used to learn other kinds of structure as well:

for example, in chapter 4, we explored the use of probabilistic-deterministic infinite

automata (PDIA) to directly compress the history. The nonparametric policy prior

in chapter 5 used a Bayesian nonparametric approach to learn the expert's policy

directly. In the context of history-based methods, the Bayesian nonparametric ap-

proach can provide a bias that states that a potentially unbounded length of history

(effectively, the entire history) may be needed to summarize the history, however,

in most cases, a few features of the history or a small window will do. This bias is

exactly the bias introduced by the PDIA in chapter 4, and similar approaches have

been used for learning suffix trees in the context of language models [Wood et al.,

2011]. In both cases, the Bayesian nonparametric approach provides an alternative to

multiple hypothesis-testing or more heuristic model-fitting methods. The inference in

these approaches would need to be refined to be used in the context of reinforcement

learning, but we hypothesize that given the appropriate algorithms, Bayesian non-
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parametric methods could provide similar benefits to history-based approaches-such

as learning from limited data-as they have done in hidden-variable approaches.

7.2.2 Fitting and Preventing Overfitting: Improving Priors

and Incorporating Outside Knowledge

Improved Priors for Typical Domains The priors used in this work provided a

bias toward using fewer parameters rather than more, but they were still extremely

vague. For example, the iPOMDP prior (chapter 4) and the infinite state controller

prior (chapter 5) simply placed a bias toward using fewer hidden world-states or nodes

to explain the data, and the iDBN (chapter 6) had three concentration parameters

governing the expected number of hidden factors, their values, and the sparsity of

the transitions. Indeed, the only bias actually in the prior is one that is rarely true

in reality: all distributions were drawn independently, and every hidden variable had

an identical bias toward to returning to a few popular values, regardless of its current

value.

While the data was able to overcome these incorrect biases, priors that are more

suited to the domain in question will be able to find relevant structure sooner than

more general priors. Also, we note that the structures discovered by the iDBN on

the synthetic examples in chapter 6 were very different than the kinds of structures

we expected to find in those domains. While interpretability is not our primary goal,

priors that find structures that are at least somewhat interpretable have the advantage

of being easier to analyze.

There are two specific areas in which we believe the priors used in this work could

be extended and improved. First, hierarchical priors can allow more sharing between

different parts of a structure. For example, with the iDBN, we might expect that

if many of a node's parent values have not changed, the node's transition function

will be similar to what it was before. Even in the case of iPOMDP, groups of hidden

variable settings may behave similarly. Hierarchical models [Heller et al., 2009, Adams

et al., 2010] can be used to share statistical strength between shared structure.
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Second, all of the priors used in the current work introduced dense connections

between variables: the connections in the iDBN induced by the Indian Buffet Process

(IBP) is a dense graph in the set of hidden factors1 , and the transitions induced by

the HDP-HMM is a dense graph in the set of hidden variable values. Even if the

concentration parameters are set such that the prior is biased toward sparse transi-

tions, the Dirichlet distribution and Dirichlet process posteriors will no longer favor

sparsity. However, in many domains, connections are sparse: rooms connect to a few

other rooms; a few comorbidities can largely explain a medical conditions. Exploring

the use of various sparsity-inducing priors-such as negative entropy priors [Brand,

1999], spike-and-slab priors [Ishwaran and Rao, 2005], horseshoe priors [Carvalho

et al., 2009]-may result in learning more interpretable models with fewer data, but

will introduce significant computational challenges.

Techniques for Making Relevant Predictions Within the reinforcement learn-

ing framework, a state that is a sufficient statistic for predicting futures generally

captures too much information: we are largely interested in predicting discounted

future rewards. More generally, we may only be interested in certain outcomes, such

as whether a robot reaches a goal or whether a patient's condition improves, even

though many other variables may be measure. The U-Tree algorithm compresses

histories based on how well the induced states can be used to predict future rewards;

a limitation of current Bayesian approaches, including ours, is that they focus on

learning all aspects of an environment as a preliminary step toward choosing a policy.

There exists work in reinforcement learning for expanding representations [McCal-

lum, 1993, Geramifard et al., 2011] and compressing representations [Poupart and

Boutilier, 2002] based on values; an interesting extension would be to incorporate

these kinds of techniques into a Bayesian learning setting.

Incorporating Supervision and Expert Knowledge In chapter 5, we described

one approach for incorporating expert knowledge in the form of demonstrations, and

'A two-parameter version of the IBP [Ghahramani et al., 2007 can be used introduce some
sparsity.
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in chapter 6, we noted that prior knowledge about the structure of the hidden nodes

in the iDBN could be incorporated through a set of counts. More generally, we can

imagine many kinds of expert input during the learning process. In problems where

the reward is hard to specify, the expert may instead provide certain quantities that

are important to predict well, examples of good trajectories, or labels on the quality

of a few of the agent's trajectories. When the problem structure is somewhat well-

understood, the expert may wish to provide a bias toward physically, chemically, or

biologically plausible models. Understanding how to incorporate these varying forms

of information-whether it is in the priors, the inference, or the action-selection-will

be key to scaling these (and any techniques) to complex, realworld problems.

7.2.3 Algorithms for Implementation: Inference

The extensions described above will almost certainly add challenges to the infer-

ence, and inference is already the toughest part of applying Bayesian nonparametric

methods to reinforcement learning problems: the belief monitoring step in Bayesian

reinforcement learning is an inner loop within a larger sequential decision-making

process. In this work, we optimized the inference using software engineering, and

we also took advantage of short-cuts such as importance weighting to reduce the fre-

quency with which an MCMC sampler needed to be run. These techniques will not

scale to much larger applications, and we suggest three possible directions for scaling

Bayesian nonparametric inference for reinforcement learning.

First, advances have been made in using spectral methods for learning HMMs

[Song et al., 20101 and PSRs [Boots et al., 2011a], and recently linear programming

relaxations have been used to learn graph structures [Jaakkola et al., 2010]. If it

is possible to formulate the form of the Bayesian nonparametric regularizer as a

standard optimization problem, then we can at least quickly find a mode of the

posterior space. More standard variational or sampling-based approaches could then

be used to characterize the uncertainty around this mode.

Second, all of the inference techniques used in this thesis were batch methods.

For a system to truly run for long periods of time we must be able to compute

146



updates sequentially. We expect that computation will be the bottleneck before disk

space; thus an interesting set of algorithms might be ones that look at subsets of

past data instead of all past data. Very recent work has looked at online inference

for various HDP-based structures [Canini et al., 2009, Wang et al., 2011, Rodriguez,

2011], though none of these have yet been applied to a reinforcement learning domain.

Third, as datasets become larger, and structures more sophisticated, understand-

ing the modes in the posterior space becomes more and more important. In the con-

text of sequential decision-making, methods for discovering several relevant modes

might be more valuable than knowing the uncertainty around a particular mode.

Currently, the standard approach to finding multiple modes is to restart the sam-

pler or the optimization with several different initial values; and interesting area of

future work might be iterative smoothing techniques, such as the annealing used in

this thesis, to help improve this process. Adapting current algorithms to parallel and

distributed computing structures may also help track multiple modes.

7.2.4 Algorithms for Action Selection

This thesis developed and used a fairly sophisticated set of techniques to characterize

uncertainty in infinite-dimensional latent structures, and more generally, advances

in inference techniques have made it possible to place distributions over a variety of

complex structures [Adams et al., 2010, Ross and Pineau, 2008, Heller et al., 2009,

Deisenroth et al., 2009, Engel et al., 2005]. However, obtaining a sufficient statistic

for the history, of course, is only part of reinforcement learning problem. Given a

summary of the history, one still needs to select actions.

In parallel, advanced techniques have been developed for planning in very large

problems [Shani et al., 2007, Kurniawati et al., 2008, Silver and Veness, 2010]. How-

ever, a question of how to select actions in a Bayesian reinforcement learning frame-

work remains an open question. In chapter 4, we showed that some very simple

action-selection strategies performed as well or better than others and hypothesized

several explanations: the posterior may be very smooth (have low covering number);

with a little randomness, sufficient learning will occur from any reasonable policy;
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and our forward-search was simply not deep enough.

These observations raised two theoretical questions with important practical im-

plications. First, when are these very simple action-selection approaches sufficient?

Does the Bayesian reinforcement learning setting have certain properties that imply

that simple techniques should do well? Second, if these simple strategies work, are

there also simplifications that on our representation of state? What information do we

need from our characterization of uncertainty-for example, will just knowing a few

modes do? The previous directions for future work suggested fairly direct extensions

of the key ideas presented in this thesis. However, larger advancements will require

a deep understanding of the interplay between representations and action-selection

strategies.
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