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Abstract

In the reinforcement learning literature, there are many algorithms developed for
(1) Contextual Bandit problems and (2) Markov Decision Process (MDP) problems
respectively. However, often when deploying reinforcement learning algorithms in
the real world, even with domain expertise, it is often difficult to know whether it is
appropriate to assume Contextual Bandit or MDP problem. Moreover, assuming the
wrong problem setting can lead to inefficient learning, or worse, the algorithm could
never learn the optimal policy, even with infinite data. In this work, we develop
a reinforcement learning algorithm is able to have low regret in both Contextual
Bandit and MDP environments by using Bayesian hypothesis testing approach
to learn whether or not the MDP is that of a contextual bandit. In particular, we
allow practitioners to choose a prior probability of the environment being that of a
Contextual Bandit. We find that in simulations that our algorithm is able to perform
similarly to MDP-based algorithms in non-bandit MDP settings, but also performs
better than MDP algorithms in contextual bandit environments.

1 Introduction

Sequential decision making problems are traditionally analyzed in three different frameworks: (1)
Multi-Arm and Contextual Bandits (CB), (2) Markov Decision Processes (MDP), and (3) Partially
Observable MDPs (POMDPs). For contextual bandits action selections do not impact state transition
probabilities, while for MDPs state transition probabilities are determined by the combination of the
chosen state and action, and for POMDPs only part of the state is observable, so the entire history
of states and actions can affect state transition probabilities. Reinforcement learning algorithms are
typically developed assuming the environment falls strictly within one of these three frameworks.
However, when deploying reinforcement learning algorithms in the real world, it is often unknown
which one of these frameworks one should assume.

For example, consider a mobile health application aimed to help users increase their step count [9].
A few times a day, the sequential decision making algorithm uses the user’s state information (e.g.
user’s recent app engagement, local weather, time of day, location, ect.) to decide whether or not to
send the user a message encouraging them to take a walk. It’s not immediately clear whether to use a
contextual bandit or an MDP algorithm in this problem setting. It may be that whether the algorithm
sends a notification strongly affects what future states the user will visit—for example, notifications
that annoy the user could lead the user to enter states with low reward; this setting warrants the use of
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Figure 1: Above we plot the cumulative regret of a contextual bandit posterior sampling algorithm
and a MDP posterior sampling algorithm in two environments (finite horizon 100, 6 states). The MDP
environment is the river swim environment (see Figure 2). The contextual bandit environment
that is identical to the MDP environment, except the state transition probabilities are uniform
over all states. The error bars are standard errors for the estimates.

an MDP algorithm. However, it may be that what states the user enters does not depend much on past
notifications—for example, whether the user enters high reward states depends on the user’s work
schedule. In this setting, a bandit algorithm could perform well on the problem, and using a full MDP
algorithm would require more data to learn the optimal policy and incur greater regret. Assuming
the wrong framework can lead to inefficient learning, or worse, the algorithm could never learn the
optimal policy, even with infinite data. Below in Figure 1, we demonstrate the loss in total reward of
using an MDP posterior sampling algorithm in a contextual bandit environment and the consequences
of using a contextual bandit posterior sampling algorithm in an MDP environment.

In this work, we consider the problem in which the practitioner is unsure whether the environment
is that (1) a Contextual Bandit or (2) an MDP. Note that a “contextual bandit” environment is a
special case of MDPs in which for each state the probabilities of transitioning to any other given state
doesn’t change depending on the choice of action. Specifically we develop the Bayesian Hypothesis
Testing Reinforcement Learning (BHT-RL) algorithm that allows practitioners to incorporate their
uncertainty regarding whether the environment is that of a contextual bandit or MDP as a prior used
by the algorithm. We find that empirically BHT-RL has (1) lower regret than MDP-based algorithms
when the environment is that of a contextual bandit and (2) regret comparable to that of MDP-based
algorithms in MDP environments.

Our algorithm is based on posterior sampling and utilizes Bayesian Hypothesis Testing to learn
whether the environment is that of a contextual bandit a classical MDP. We allow practitioners
to choose a prior probability between zero and one that the environment is that of a contextual
bandit. Additionally, practitioners choose two reinforcement learning algorithms: one contextual
bandit algorithm and one MDP algorithm. The choice of prior probability allows the practitioner to
“interpolate” between a contextual bandit algorithm and a full MDP algorithm. Specifically, when
the prior probability of a contextual bandit environment is one, then our algorithm is equivalent to
just using the contextual bandit algorithm; when the prior probability is zero, then our algorithm
is equivalent to just using the MDP algorithm of choice. Additionally, when posterior sampling
algorithms are chosen for the contextual bandit and MDP algorithms, then the BHT-RL algorithm can
be interpreted as posterior sampling with an additional prior that can up-weight the prior probability
that environment is that of a bandit; thus, the Bayesian regret bounds for standard posterior sampling
for MDPs can apply in this setting [11].

We demonstrate that our Bayesian Hypothesis Testing approach performs well empirically in both
contextual bandit and MDP environments compared to contextual bandit and MDP algorithms in
their respective misspecified environment. Moreover, our BHT-RL approach results in significantly
better regret minimization empirically in both contextual bandit and MDP environments compared
prior work on learning bandit structure in MDPs [15, 16].
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2 Related Work

Reinforcement Learning Algorithms for both Contextual Bandits and MDPs There have been
several works developing algorithms that have low regret in both contextual bandit and MDP
environments—or more generally on all contextual decision processes. Jiang et al. 2017 introduced
the term “contextual decision processes", which encompass Contextual Bandits, MDPs, and POMDPs
[7]. They also develop the OLIVE algorithm and prove bounds for it in a variety of contextual decision
processes when the the Bellman rank is known. However, since the Bellman rank of problems is
generally unknown in real world problems, OLIVE is not a practically usable algorithm.

Zanette and Brunskill 2018 develop the UBEV-S reinforcement learning algorithm, which they prove
has near optimal regret in the MDP setting and has regret that scales better than that of OLIVE in the
contextual bandit setting [15]. Later, Zanette and Brunskill 2019 developed the EULER algorithm,
which improves upon UBEV-S, and has optimal regret bounds (excluding log factors) in both the
contextual bandit and MDP settings [16]. Both UBEV-S and EULER are upper confidence bound
based methods that construct confidence bounds for the next timestep reward and future value, and
then execute the most optimistic policy within those bounds.

Even though UBEV-S and EULER provably have regret that scales near optimally, we find that in
simulation environments that BHT-PSRL outperforms both UBEV-S and EULER. It’s been shown
in previous work that posterior sampling reinforcement learning algorithms generally outperform
confidence bound based algorithms empirically [11, 12, 13]. As discussed in Osband and Van Roy
2017, one reason for the poor empirical performance of confidence bound based algorithms is that
the confidence bounds used are often loose and solving for the most optimistic policy within these
bounds often leads to choosing policies that are optimal for relatively unlikely MDPs [12].

Regularizing RL Algorithms by Using a Shorter Planning Horizon An open problem in rein-
forcement learning theory is understanding how sample complexity depends on the planning horizon
(in infinite horizon problems this is the discount factor) [6]. Jiang et al. 2015 showed that longer
planning horizons (larger discount factors) increases the size of the set of policies one searches over
[8]. As a result, often it is better to use a smaller planning horizon than the evaluation horizon as a
method of regularization to prevent overfitting to the data. We find empirically that in MDP environ-
ments that BHT-PSRL often slightly outperforms PSRL, which makes sense because BHT-PSRL can
be considered a regularized version of typical PSRL in which we encourage the learning algorithm to
use a shorter planning horizon early on in learning.

Posterior Sampling Reinforcement Learning There is a long history of using Bayesian methods
in reinforcement learning [5]. Among one of the first papers to propose posterior sampling in
reinforcement learning problems is Strens 2000 [14]; however, they do not prove any regret bounds
for their algorithm. Russo and Van Roy 2014, proved Bayesian regret bounds for posterior sampling
in contextual bandit environments [13] and Osband et al. 2013 was the first to prove Bayesian
regret bounds for posterior sampling in MDP environments [11]. Note that while there are proofs
for frequentist regret bounds for posterior sampling under certain priors [1], there are currently no
frequentist regret bounds for posterior sampling on MDPs.

For our BHT-RL algorithm, we will pool the state transition for different actions in the same state
together. Asmuth et al. 2009, [2] call this approach the tied Dirichlet model. However, they also
assume that the experimenter has apriori knowledge and chooses before the study is run whether to
assume the tied or regular Dirichlet model on the transition probabilities. In contrast, we will aim to
learn whether in each state it is better to use the tied Dirichlet model or the standard one. To do this
we will use Bayesian hypothesis testing [3]. Bayesian hypothesis testing is related to Bayesian model
selection because the posterior probabilities of the null versus the alternative models are a function
of the Bayes factor, which is used in model selection to compare the relative plausibilities of two
different models or hypotheses.
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3 Bayesian Hypothesis Testing Reinforcement Learning

3.1 Problem Setting

We define random variables for the states St ∈ S , random variables for the action selections At ∈ A,
and rewards Rt ∈ R. We also define ν, which is a random variable representing the environment;
for example, given ν we know the expected rewards R(s, a, ν) = E[Rt|At = a, St = s] and the
transition probabilities P (s′|s, a, ν) = P(St+1 = s′|St = s,At = a). We assume that we are in the
finite-horizon episodic setting, so the data collected is made up of episodes each of length H . For
example, for the kth episode, we have the data (Atk+h, Stk+h, Rtk+h)Hh=1, where tk := kH . We
define T to be the total number of data tuples total seen in total so far. We also define m := dT/He to
be the total number of episodes seen so far. We defineHtk = {(Stk+h, Atk+h, Rtk+h)Hh=1}

k−1
k′=0 =

{(At, St, Rt}tkt=1 to be the random variable for the history following policy π. Note that we define
our policies to be πk to be σ(Htk)-measurable functions from S× [1 : H] to |A|-dimensional simplex.
So, our actions Atk+h ∼ πk(Stk+h, h) are chosen according to the policy. Note that the policy takes
the time-step in the episode, h, as an input because in the finite horizon setting the optimal policy
can change depending on the timestep in the episode. For example, in the beginning it might make
more sense to sacrifice immediate reward in order too get to a high reward state later in the episode;
however, at the end of the episode the optimal policy will optimize the immediate reward.

3.2 Algorithm Definition

For our Bayesian Hypothesis Testing method we define the following null and alternative hypotheses:

Null hypothesis H0: Action selections do not affect transition probabilities, i.e. P(St+1 = s′|St =
s,At = a) = P(St+1 = s′|St = s,At = a′) for all a, a′ ∈ A, s, s′ ∈ S.

Under the null hypothesis we model our data as generated by the following process:

• For each s ∈ S we draw ϕs ∼ Dirichlet(α)

• For all t ∈ [1 : T ] such that St = s, we have that St+1 ∼ Categorical(ϕs)

Alternative hypothesis H0: Action selections do affect transition probabilities, i.e. P(St+1 =
s′|St = s,At = a) 6= P(St+1 = s′|St = s,At = a′) for some a, a′ ∈ A, s, s′ ∈ S.

Under the alternative hypothesis we model our data as generated by the following process:

• For each s ∈ S and each a ∈ A we draw ϕs,a ∼ Dirichlet(α)

• For all t ∈ [1 : T ] such that St = s and At = a, we have that St+1 ∼ Categorical(ϕs,a)

We choose prior probabilities over the hypotheses P (H0) and P (H1) = 1 − P (H0). Practically,
for someone utilizing the algorithm, the choice of P (H0) would be how likely they think that the
environment is that of a bandit, based on domain knowledge. Then given we’ve run k episodes
already we can compute the posterior probabilities P (H0|{S̄tk′}

k
k′=0) and P (H1|{S̄tk′}

k
k′=0), where

S̄tk := {Stk+h}Hh=1.

P (H0|HT ) =
P (H0,HT )

P (HT )
=

P (HT |H0)P (H0)

P (HT |H0)P (H0) + P (HT |H1)P (H1)
=

1

1 + P (H1)
P (H0)

K
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where K = P (HT |H1)
P (HT |H0)

is the Bayes factor.

Algorithm 1: Bayesian Hypothesis Testing Reinforcement Learning (BHT-RL)
Input: Prior distribution on MDPs Q; prior probability of nullness P (H0); generative

models under H0 and H1 respectively; contextual bandit algorithm πCB and MDP
algorithm πMDP

for episodes k = 0, 1, 2, ... do
Sample indicator of generative model Bk ∼ Bernoulli

(
P (H0|{S̄tk′}

k
k′=0)

)
if Bk = 1 then

// Follow bandit algorithm of choice
Let πk = πCB

k the contextual bandit algorithm
else

// Follow MDP algorithm of choice
Let πk = πMDP

k (Htk) the MDP algorithm
for timesteps h = 1, 2, ...,H do

Sample and apply at = πk(stk+h, h)
Observe rtk+h and stk+h+1

end
Update both πCB

k and πMDP
k with data {stk+h, atk+h, rtk+h}Hh=1 observed in the episode.

end

Note that the Bayesian Hypothesis testing approach can be used with any choice of (1) a contextual
bandit algorithm and (2) an MDP based algorithm. Note that if we set prior probability of the null
P (H0) to 1 the BHT-RL algorithm is equivalent to policy πCB

k and when setting P (H0) to 0 the
BHT-RL algorithm is equivalent to policy πMDP

k .

If one chooses posterior sampling methods for the contextual bandit and MDP algorithms, then
BHT-RL can be interpreted as posterior sampling with a hierarchical prior. Under posterior sampling,
a prior is put on the parameters of the environment, i.e., we assume that for some prior distribution Q,
that ν ∼ Q. The policy for that episode is selected by first sampling νk ∼ Q(·|Htk), where Q(·|Htk)
is the posterior distribution over ν. Then the policy for the episode πk is chosen to be the optimal
policy for environment νk. When using BHT-RL with posterior sampling CB and MDP algorithms,
we have that πCB

k is the optimal policy for νk ∼ Q(·|Htk , H0), the posterior distribution of Q given
that the null hypothesis H0 is true. Similarly, πMDP

k is the optimal policy for νk ∼ Q(·|Htk , H1).

3.3 Regret Guarantees

We now define regret in the episodic setting. We first define the value function, which is the expected
value of following some policy π during an episode:

V νπ,h(s) = Eπ,H
[ H∑
h′=h

R(Sh′ , Ah′)

∣∣∣∣ν]
Above, the expectation is taken over randomness in the policy π and the randomness in the history
H. We define π∗(ν) to be the optimal policy for some MDP (or contextual bandit) environment ν;
barring computational issues, the optimal policy for a given MDP environment can be solved for
using dynamic programming.

The frequentist regret is defined as the difference in total expected reward for the optimal policy
versus the actual policy used:

Rm(π, ν) =

m∑
k=0

∑
s∈S

ρ(s)
(
V νπ∗,1(s)− V νπk,1

(s)
)

Above ρ(s) represents the probability of starting the episode in state s, so
∑
s∈S ρ(s). For the

Bayesian regret, we assume that the MDP environment ν is drawn from prior distribution Q. The
Bayesian regret is defined as follows:

BRm(π, ν) = Eν∼Q[Rm(π, ν)]
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Note that frequentist regret bounds are automatically Bayesian regret bounds, as they must hold for
the worst case environment ν. Bayesian regret bounds generally assume that the algorithm knows the
prior on the environment Q.
Theorem 1 (Bayesian Regret Bound for MDP Posterior Sampling). Let Q be the prior distribution
over ν used by the MDP posterior sampling algorithm. Let rewards Rt ∈ [0, C], for some constant
0 < C <∞. Then,

BRm(π, ν) = Eν∼Q[Rm(π, ν)] = O(HS
√
AT log(SAT ))

Osband et al. 2013 prove that posterior sampling on MDPs has Bayesian regret Õ(HS
√
AT ), as

stated in Theorem 1 [11]. Since BHT-RL with posterior sampling contextual bandit and MDP
algorithms is simply posterior sampling with a hierarchical prior, we can apply the regret bound of
Theorem 1. Thus, BHT-RL with posterior sampling CB and MDP algorithms has Bayesian regret
Õ(HS

√
AT ). See [13, 11] for a discussion about how when the prior is misspecified, Bayesian

regret bounds often translate to asymptotic regret bounds.
Corollary 1 (Bayesian Regret Bound for BHT-RL with Posterior Sampling). Suppose we use BHT-
RL with posterior sampling contextual bandit and MDP algorithms. Let P (H0) ∈ [0, 1] be the prior
probability of null hypothesis. Let Q(·|H0) and Q(·|H1) be the prior distribution over ν conditional
on the null and alternative hypotheses respectively. When rewards Rt ∈ [0, C], for some constant
0 < C <∞,

BRm(π, ν) = Eν∼Q[Rm(π, ν)] = O(HS
√
AT log(SAT ))

where distribution Q over ν is defined as Q := P (H0)Q(·|H0) + P (H1)Q(·|H1).

Corollary 1 follows directly from Theorem 1 because BHT-RL with contextual bandit and MDP
algorithms is equivalent to posterior sampling with prior distribution Q := P (H0)Q(·|H0) +
P (H1)Q(·|H1).

4 Simulation Results

We perform simulations in different finite state, finite action contextual bandit and MDP environments.
We use the river swim environment from Figure 2 of [11], which is a particularly difficult MDP
environment to learn in. The optimal policy (unless near the end of the episode) is to always choose
action right, for which there will be a small probability of moving right; once reaching s6, where
there will be a large reward upon reaching there. Choosing the left action will move the agent left
with probability 1; in state s1 there is a small reward. Note that the rewards are deterministic and
have no noise.

Figure 2: River Swim Environment (MDP); figure from Osband et al. 2013 [11].

We modify the River Swim environment to construct a “contextual bandit River Swim environment” in
which the the probability of transitioning to any other given state is always 1

6 regardless of the starting
state or action selection; the rewards are the same as in the original River Swim MDP environment.
Finally, we also construct the “interpolated River Swim environment”, in which we modify the
transition probabilities in the River Swim environment to with probability 1

2 be according to the River
Swim MDP environment and with probability 1

2 be according to the River Swim contextual bandit
environment. Note that the “interpolated” environment is still a classical MDP.

Simulation Hyper-Parameters

• For Bandit and MDP posterior sampling we have independentN (1, 1) priors on the rewards.
• For MDP posterior sampling we have Dirichlet (α = [1, 1, ..., 1] ∈ RS) priors on the

transition probabilities.
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Figure 3: These simulations in three different environment with horizon H = 100. (1) Top left:
modified River Swim contextual bandit environment; the probability of transitioning to any other
state is always 1

6 . (2) Top right: original River Swim MDP environment of Figure 2. (3) Bottom:
interpolated environment; with probability 1

2 has the transition probabilities of the original River
Swim MDP and with probability 1

2 has the transitions probabilities of the River Swim contextual
bandit environment.

Figure 4: Here we plot the poste-
rior probability of the null hypothesis
P(H0|HT ) for BHT-RL in three differ-
ent simulation environments with hori-
zon H = 25. We see that in the CB en-
vironment that the posterior probability
converges to 1. In the MDP and interpo-
lated MDP and CB settings, we see that
the posterior probability converges to 0.
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Figure 5: These simulations in three different environment with horizon H = 25.

• For BHT-PSRL we set the probability of the null hypothesis to P (H0) = 0.9.

• UBEV-S and EULER we choose failure probability δ = 0.1.

• We add N (0, 1) noise to all rewards.

5 Discussion

Our simulation results show that at least in finite state MDP and contextual bandit environments, the
BHT-RL algorithm can perform well even when the environment is misspecified. Additionally, the
BHT-RL approach allows practitioners to easily incorporate prior knowledge about the environment
dynamics into their algorithm. Finally, BHT-RL can also be used as a regularization method for the
full MDP based algorithm.

Some limitations of our work are that we only examine a relatively simplistic test bed. Additionally,
there may be other theoretical guarantees we’d like to show about the BHT-RL algorithm, like a
frequentist regret bound or a regret bound when the prior is misspecified. Finally, the BHT-RL
algorithm relies heavily on the stationarity of the environment dynamics; thus, our method is not
particularly robust to non-stationarity, which is often encountered in real world sequential decision
making problems.

Beyond just learning whether the environment is that of a contextual bandit or an MDP, we conjecture
that bayesian hypothesis testing could also be used to address other aspects of reinforcement learning
problems. One example is learning better state representations [10], which is a major open problem
in the reinforcement learning field [4].
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A Bayesian Hypothesis Testing for Dirichlet Priors on Transition
Probabilities

We define the set of states as S and the set of actions as A. Suppose we have data HT =
{St, At, Rt}Tt=1.

• Null hypothesis H0: We model our data as follows / Our data was generated as follows
– For each s ∈ S we draw ϕs ∼ Dirichlet(α)
– For all t ∈ [1 : T ] such that St = s, we have that St+1 ∼ Categorical(ϕs)

• Alternative hypothesis H1: We model our data as follows / Our data was generated as
follows

– For each s ∈ S and each a ∈ A we draw ϕs,a ∼ Dirichlet(α)

– For all t ∈ [1 : T ] such that St = s andAt = a, we have that St+1 ∼ Categorical(ϕs,a)

We choose prior probabilities over the hypotheses P (H0) and P (H1) = 1− P (H0). Then we can
calculate the posterior probabilities P (H0|D) and P (H1|D)

P (H0|HT ) =
P (H0,HT )

P (HT )
=

P (HT |H0)P (H0)

P (HT |H0)P (H0) + P (HT |H1)P (H1)
=

1

1 +K

where K = P (HT |H1)P (H1)
P (HT |H0)P (H0)

is the Bayes factor.

Let us now derive the posterior distributions. Let Θ := {ϕs}s∈S ∪ {ϕs,a}s∈S,a∈A.

P (Θ|HT ) =
P (Θ,HT )

P (HT )
=

P (HT |Θ)P (Θ)∫
P (HT |Θ)P (Θ)dΘ

=:
X

Y

First examining the numerator term X ,

X = P (HT |Θ)
[
P (Θ|H0)P (H0) + P (Θ|H1)P (H1)

]
= P (H0)

∏
s∈S

[
Dirichlet(ϕs;α)

T∏
t=1

Categorical(St+1;ϕs)
ISt=s

]

+ P (H1)
∏
s∈S

∏
a∈A

[
Dirichlet(ϕs,a;α)

T∏
t=1

Categorical(St+1;ϕs,a)ISt=s,At=a

]

=
P (H0)

B(α)|S|

∏
s∈S

[ S∏
s′=1

ϕs(s
′)α(s

′)−1
T∏
t=1

ϕs(s
′)
ISt=s,St+1=s′

]

+
P (H1)

B(α)|S||A|

∏
s∈S

∏
a∈A

[ S∏
s′=1

ϕs,a(s′)α(s
′)−1

T∏
t=1

ϕs,a(s′)
ISt=s,At=a,St+1=s′

]

=
P (H0)

B(α)|S|

∏
s∈S

[ S∏
s′=1

ϕs(s
′)
α(s′)−1+

∑T
t=1 ISt=s,St+1=s′

]

+
P (H1)

B(α)|S||A|

∏
s∈S

∏
a∈A

[ S∏
s′=1

ϕs,a(s′)
α(s′)−1+

∑T
t=1 ISt=s,At=a,St+1=s′

]

=
P (H0)

B(α)|S|

∏
s∈S

[ S∏
s′=1

ϕs(s
′)
α(s′)−1+

∑T
t=1 ISt=s,St+1=s′

]

+
P (H1)

B(α)|S||A|

∏
s∈S

∏
a∈A

[ S∏
s′=1

ϕs,a(s′)
α(s′)−1+

∑T
t=1 ISt=s,At=a,St+1=s′

]
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We define Ns = [
∑T
t=1 ISt=s,St+1=1,

∑T
t=1 ISt=s,St+1=2, ...,

∑T
t=1 ISt=s,St+1=|S|] and

Ns,a = [
∑T
t=1 ISt=s,At=a,St+1=1,

∑T
t=1 ISt=s,At=a,St+1=2, ...,

∑T
t=1 ISt=s,At=a,St+1=|S|].

=
P (H0)

B(α)|S|

∏
s∈S

B
(
α+ Ns

)
Dirichlet

(
ϕs;α+ Ns

)
+

P (H1)

B(α)|S||A|

∏
s∈S

∏
a∈A

B
(
α+ Ns,a

)
Dirichlet

(
ϕs,a;α+ Ns,a

)
Thus,

X =
P (H0)B(α)|S|(|A|−1)

∏
s∈S B

(
α+ Ns

)
Dirichlet

(
ϕs;α+ Ns

)
B(α)|S||A|

+
P (H1)

∏
s∈S

∏
a∈AB

(
α+ Ns,a

)
Dirichlet

(
ϕs,a;α+ Ns,a

)
B(α)|S||A|

Since X = P (HT |Θ)P (Θ) and Y =
∫
P (HT |Θ)P (Θ)dΘ, we have that

Y =
P (H0)

B(α)|S|

∏
s∈S

B
(
α+ Ns

)
+

P (H1)

B(α)|S||A|

∏
s∈S

∏
a∈A

B
(
α+ Ns,a

)
=
P (H0)B(α)|S|(|A|−1)

∏
s∈S B

(
α+ Ns

)
+ P (H1)

∏
s∈S

∏
a∈AB

(
α+ Ns,a

)
B(α)|S||A|

=:
W0 +W1

B(α)|S||A|

Thus,

P (Θ|HT ) =
X

Y
=

W0

W0 +W1

∏
s∈S

Dirichlet
(
ϕs;α+Ns

)
+

W0

W0 +W1

∏
s∈S

∏
a∈A

Dirichlet
(
ϕs,a;α+Ns,a

)
Note that

P (H0|HT ) =
P (H0|HT )P (HT )

P (HT )
=
P (HT |H0)P (H0)

P (HT )
=

W0

W0 +W1

P (H1|HT ) =
W1

W0 +W1
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