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Abstract. Controlling recurrent infectious diseases is a vital yet complicated
problem. A large portion of the controlling epidemic relies on patients visit clinics
voluntarily. However, they may already transmit the disease to their contacts by
the time they feel sick enough to visit the clinic, especially for conditions with a
long incubation period. Therefore, active screening/case finding was deployed to
provide a powerful yet expensive means to control disease spread in recent years.
To make active screening success a given limit budget, one of the challenges that
need to be addressed is that we do not know the exact state of each patient. Given
the number of horizon and budget we have in each time step, we also need to
plan our screening efficiently and screening the vital patients in time. Thus, we
apply a reinforcement learning approach to solve active screening problems on
the network SIS disease model. The first contribution of this work is that we iden-
tify three significant challenges in active screening problems: partially observable
states, combinatorial action choice, high-dimensional state-action space. We fur-
ther propose the corresponding solutions to overcome these challenges. Specif-
ically, we resolve the issue of high-dimensional state-action space by encoding
the actions and partially observable states into a lower dimension form, which
is done by either manually, using domain expertise, or automatically, using the
state of the art GCN approach. We show that our approach can scale up to large
graphs and perform decently compared to other baselines of previous literature
and current practice.

1 Introduction

Contagious diseases, such as influenza and sexually transmitted diseases (STDs) (e.g.,
gonorrhea and chlamydia) are critical public-health challenges that continue to threaten
lives and impose significant economic burden on society. For example, the economic
loss due to influenza in the USA alone is estimated to be $11.2 billion in 2015 [14].
While low-cost treatment programs are available, individuals ignore symptoms and de-
lay care, increasing transmission risk. As a result, health agencies engage in active
screening or contact tracing efforts, where individuals are asked to undergo diagnostic
tests and offered treatment if tests are positive [7,5]. However, active screening is ex-
pensive in developing countries. Even in USA, Braxton et al. [4] state that “In 2012,
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52% of state and local STD programs experienced budget cuts. This amounts to re-
ductions in clinic hours, contact tracing, and screening for common STDs.” Efficiently
identifying and intervening for infectious cases is therefore of vital importance.

However, in many settings, active screening/contact tracing is expensive and time
consuming. There is a huge body of literature on spread and control of recurrent dis-
eases (no permanent immunity). However, all these prior work assume perfect observa-
tion of who is infected and who is not. Also, most of these methods focus on eradication
of disease, which is not possible if the screening resources are limited. Thus, important
real world characteristics such as partial observation and limited resources have not
been handled in any prior work.

2 Problem Statement

In this work, we aim to use reinforcement learning to decide which patients to actively
screen in each time frame for a multi-round scenario with limited horizon. The envi-
ronment we considered is based on the well-known SIS model [1,2]. An individual can
either be in state S (a healthy individual susceptible to disease) or I (the individual
is infected). SIS models capture the dynamics of recurrent diseases, where permanent
immunity is not possible (e.g., TB, typhoid). We adopt a discrete time SIS model for
modeling the disease dynamics propagating on a given graph G = (V, E), where each
node represents a single patient and each edge indicates the link between people which
disease can spread. We assume the structure of the contact network G to be known yet
the states of patients to be unknown. We can only observe the patients’ current states
while actively screening the patients. At each round, we have k resources that allow
us to provide active screening to k patients. After being screened, the infected patients
recover back to susceptible healthy patients, while the susceptible patients remain sus-
ceptible.
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spreads via the edges in the network. There are  [Notations[Definition

|V| individuals, and we use §(v) to denote neigh- E __ Model
. . . < susceptible state
bors of node v in the network. Each individ- I |infected state
ual (node) v in the network at time t is in state a |transmission rate
c cure rate
sy (t) € {5, I}. Let t,(t) denote the state vector ¢ ltime step number
that represents the true state of node v at time ¢ T |terminal time step
k budget for each time step

where S is represented as [1,0] " and [ as [0,1] . for e
. R A ) v) |set of v’s neighbors
Given the initial state, an infected node infects s.(t) |state of v at time ¢
its healthy neighbors with rate o independently a(t) |setof nodes actively screened as action
. o t) |set of nodes naturally cured as observation
and recovers with probability c. The latter term tolt) |irue state vector of node v at time ¢
represents the probability that the node may visit | TJ(#) |true state transition matrix for V'\ a(t)

. e . TA(t iti ix for a(t
a doctor on its own initiative. The health state o (t) [tue state transition matrix for o(¢)

.. ey . . Algorithm
transition probabilities of a node is then given by bu(f) |marginal probability of v being in I state
P [81} (t —+ 1) = {S’ IH = quy(t)tb(t) where b(t) |belief vector of all nodes being in [ state

b(t) |intermediate belief vector after knowing o(t)
BY(t) |transition matrix for V' \ a(t) U o(t)
S I BZ(t) |transition matrix for a(t) U o(t)

N _S|1—=qv c
T (t)—I{ N 1747 (1)




Title Suppressed Due to Excessive Length 3

Fig. 1. The procedure of the ACTS problem.

and ¢, = 1 — (1 — a){#€(W) [su=I} The columns denote the state of v at time ¢
and the rows denote the state at ¢ + 1. The transition probabilities follow the disease
dynamics described earlier. In particular, ¢, captures the exact probability that node v
becomes infected from its infected neighbors {u € 6(v) | su(¢t) = I} and ¢ captures
the probability that I individuals recover without active screening.

Given such transition probabilities and an initial state, if no intervention happens,
the network state evolves by flipping biased coins for each node to determine their next
true state in each round. The process is repeated until the terminal step 7 is reached.

Motivated by active screening/contact tracing campaigns that have been practiced
since the 1980s [5] and applied in various forms/diseases [4], we propose the Active
Screening (ACTS) Problem. Given the SIS model in the previous section, an active
screening agent seeks to determine the best node sets a(t) C V to actively screen and
cure with a limited budget of |a(t)| < k at each round ¢. The agent does not know
the ground truth health state of all individuals. The agent knows the network structure
G(V, E), the infection probability «, and recovery probability c. In addition, the agent
observes the naturally cured node set o(t) at time t—because this set of patients come
to the clinic voluntarily. Active screening starts after the agent acquires information
about o(t). Let a(t) be the set of nodes that are actively screened at time ¢. A node
v € a(t) becomes cured at time ¢ + 1. Thus, the transition matrix for a node v € a(t) is
Pls,(t+1) = {S,I}] = TA(t)t,(t), where

Ay STl

The action the agent takes at time ¢ does not affect the transition matrix T (¢) of the
nodes not involved in active screening.

Fig. 1 illustrates an example of the problem procedure. The upper part of the figure
shows how the true state of the network evolves and the lower part of the figure shows
the information available to the algorithm. In this example, there are seven nodes A~G.
In each round, infected nodes (nodes B, D, and G in the example) flip a coin and report
to the clinic with probability c. The algorithm acquires the information of the nodes
that eventually report to the clinic and are about to be cured, which is {G} this round.
Based on this information, the algorithm will choose a set of nodes, say {D}, to actively
screen. These two sets of nodes are guaranteed to be in S state in the next round. After
that, the state of the network transitions and the next round starts.

It is worth noting that although both the nodes that voluntarily report to the clinic
and the nodes that are actively screened are guaranteed to be in .S state in the next round,
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their neighbors may still be infected by them in the current round. In the example, node
E is infected by node D even though node D was actively screened. This allows us to
simplify the state transitions because curing and spreading infection occur at the same
time.

Our objective is to maximize the health quality of each individual at each round (in
contrast to past work, which primarily focuses on the cost of eradicating the disease
entirely). The objective of the ACTS problem is:

. T t ]
ca(o){r.lf,nca(T)E [Zt:() v ZUEV Le,=1] - )

where 0 < v < 1 is a future discount factor.

Problem Statement (ACTS Problem) Given a contact network G(V, E), the disease
and active screening model, find an active screening policy such that the expectation of

T L
Y im0 2ovev s, (t)=1 is minimized.

3 Challenges

In this paper, we first identify three main challenges that we are facing in ACTS prob-
lem.

— (a) Partially observable states
— (b) Combinatorial maximization problem
— (c) High-dimensional state-action space

The first challenge corresponds to the standard challenge in partially observable Markov
decision process (POMDP), where the state is unknown and only a partial state can be
observed by the agent. There are some POMDP solvers but the common issue of these
solvers is the scalability. POMDP solvers are extremely unscalabe, which are not suit-
able for our case as we have a large state and action space. The second issue comes along
with large and combinatorial action choices. Any subset of patients with less than k el-
ements is a feasible action, which can involve exponentially many actions and is hard
to find the optimal action. The action selection problem can also be treated as a com-
binatorial problem, where our goal is to select the optimal % patients to provide active
screening. In general, combinatorial maximization in active screening problem can be
NP-hard to solve. Therefore, an efficient greedy algorithm is needed in our case, which
will be discussed in the following section. The final challenge is the large state-action
space. This corresponds to the issue of representation, where we require a compact rep-
resentation of our state-action pair, while at the same time maintaining the information
included in these state-action pairs. We will address these challenges in the following
sections with our proposed solutions.

4 Partially Observable States

The first issue is that we do not have access to the hidden state, falling into the category
of partially observable Markov decision process (POMDP), which prohibits the stan-
dard reinforcement learning methods to work here. There are also POMDP solvers that
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Fig. 2. Belief update based on action, observation, and previous state.
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Fig. 3. MDP on the belief state.

can directly solve a POMDP with partially observable states. However, these POMDP
solvers are generally extremely slow and non-scalable. In our setting, the scale of our
problem is quite large. We have |V'| hidden states, where each patient corresponds to an
entry of the hidden state. POMDP solvers do not apply to such high dimensional set-
ting, which urges us to think of other method to resolve the issue of partially observable
state.

Solution: The way we resolve this issue is to use the posterior belief b(t) estimate of
the current state s(t) as our fake state, which might lose some information but hopefully
is rich enough to represent the original state distribution. The posterior belief b(t) at
time ¢ is affected by the previous observation o(t — 1), action a(t — 1), and belief
b(t — 1). As shown in Figure 2, we can denote the belief update function as b(t) =
g(b(t—1),a(t—1),0(t—1)). Now this update function is achieved by an approximate
Bayesian approach, where people have been actively screened or observed in the clinic
in the last round will be healthy in this round, and the people with no information can
be updated by the conditional probability.

Once we get the posterior belief, we can use the belief as our new state, then run ba-
sic online reinforcement learning methods afterward. The new MDP structure is shown
in Figure 3.

5 Combinatorial Maximization Problem

The second issue is that we cannot easily compute the optimal action maxac 4 Q(b, 0, a).
Notice that since this is in the partially observable setting, so at the beginning of each
round, an observation o will be given and can be used to determine the action. Given the
exponential size of all feasible actions A, the maximization problem is a combinatorial
optimization problem, which can be computationally expensive to solve. The way we
try to resolve the issue is to employ different greedy algorithms. An incorrect estimate
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Fig. 5. Q function with belief and observation as inputs and with marginal improvement of se-
lecting each patient as output. The predicted reward of a given action can be computed by taking
summation of the marginal improvement of curing patients in the action.

of the maximum value Q value could lead to incorrect equilibrium of Bellman equation,
which might break the optimality of the equilibrium of Bellman equation.

Solution: Our proposed solution here is to predict the improvement of each individual
patient selection instead of an aggregated improvement of the entire set of patients. As
shown in Figure 4, the standard Q function takes belief and observation (state), and
action as inputs, and outputs a single scalar value as the predicted future reward after
taking this action. Instead, as shown in Figure 5, our Q function outputs a scalar for
each individual patient, representing the predicted marginal improvement if we actively
screen this patient. By doing so, the optimization problem becomes much easier, where
we can directly estimate the improvement of screening an additional patient, which only
requires one additional access to the Q function. Nonetheless, this approach ignores the
correlation between patients. It also assumes the reward of an entire action is separable
into marginal improvement from each patients been screened. However, given the hard-
ness of the original combinatorial maximization problem, we have to sacrifice some
accuracy in exchange of the scalability. Using the Q function with marginal improve-
ment outputs, we will show two heuristics in the following section.

5.1 Incremental Selection

The first heuristic method is to incrementally add patients into the screening set until
we run out of the budget. Given the existing action, we can feed the action into the Q
function to re-estimate the new marginal improvement of screening all the other pa-
tients again. This is aligned with the greedy algorithm in submodular maximization
problems, which has a nice theoretical guarantee. The time complexity of this heuristic
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is linear in terms of the budget k, which can be a burden when the number of budget
increases, especially in networks with large population. In our problem, for each iter-
ation of new episode or each gradient update on a tuple of belief, observation, action,
and next belief, we require to run the above heuristic to find an approximate optimal
next action with time complexity O(k). Although each iteration is not too expensive,
in the reinforcement learning domain, iteratively training on this heuristic is still quite
expensive.

5.2 One-shot Selection

Instead of iteratively updating the marginal improvement by the updated action, we
can directly select the top k patients with the largest marginal improvement. This only
requires one single evaluation with time complexity O(1). It is also less accurate due
to the one-shot selection. However, we can see a significant speedup while using this
simplified heuristic.

A mixture of these two heuristics is to iteratively select a batch of patients and
update the resulting predictions afterward. It can balance between the accuracy and the
scalability, which is left as a future direction.

6 High-dimensional State-action Space

In Figure 5, in order to estimate the Q(b,0,a) value, we need to feed the belief b,
observation o, and action a into the Q function, which is a high-dimensional vector.
From the function approximation perspective, in order to learn from high-dimensional
data, the sample complexity could be much larger than of low-dimensional data. In the
reinforcement learning domain, it corresponds to the need of a huge amount of data to
collect and learn from. This is generally infeasible in the offline case and time consum-
ing in the online case. Therefore, we would like to have a compact representation but at
the same time maintaining the information containing in the input.

We first show a failed attempt and then show another two alternatives that we even-
tually use.

6.1 One-hot Encoding

One naive and straightforward encoding method is to use one-hot encoding to encode
action and observation. This means we will have three vectors of length |V'|, which are
b, o where o, = 1 if node v is observed and 0 and a where a,, = 1 if node v is selected
and 0 otherwise. Then we simply concatenate into one single vector with length 3|V/|
and feed into our regression model.

However, this encoding method has many drawbacks. First, the dimension is high.
Second, it is hard for the regress to learn the close relationship of the i-th, i +|V|-th and
i + 2|V|-th elements in the state vector, as they represents the same node. Finally, the
encoding method did not encode the fact that the observation and action set of nodes (o
and a) are guaranteed to be cured in the next round and again relies the reinforcement
learning to figure that out. Given there are a great amount of information to learn, this
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encoding method is not applicable due to its requirement of intensive amount of training
to reason the relations between its high dimensional features.
Therefore, we propose the following two alternatives.

6.2 Nodewise Encoding
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Fig. 6. Instead of feeding all the features into a single Q function estimator, we can feed each
node-dependent feature only into the Q function estimator to reduce the dimensionality.

Since feeding all the features at once is not working, an intuitive way is to consider
each node independently as shown in Figure 6, where we feed the features related to
node v to the Q function to get the predicted marginal improvement of actively screen-
ing node v. In order to take the graph structure into account, we can also include some
local graph features as the features related to node v, e.g., the degree of node v, average
path length starting from v etc. The belief, observation, action, and the graph features
of node v are fed into the Q function and get a single scalar value, representing the
prediction of node v. This can largely reduce the size of input by including only the fea-
tures related to the corresponding nodes. However, we know that the disease can spread
from nodes to their neighbors, which implies that we cannot simply ignore the neighbor
nodes and their features. Although such abrupt reduction can efficiently reduce the di-
mension, it can lose a significant amount of information and graph structure at the same
time.

6.3 Graph Convolutional Neural Networks

Another more structural ways to encode the features is to apply graph convolutional
neural networks (GCNs) [11]. We can encode the features related to node v as the node
features of v. The convolutional layers in GCNs can facilitate the nature of message
passing and automatically aggregate the neighbor features as shown in Figure 7. By us-
ing GCNs, we do not need to hand-craft graph features to represent the graph structure.
What we need to do is to make GCNs learn the underlying graph embedding and form
the corresponding representation.

Figrue 8 demonstrates the flowchart of our GCN implementation. We replace the
Q function estimator by a GCN, which takes node features and the graph as input and
outputs a prediction for each node in the graph.
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Fig.7. Message passing in the convoluational layers can allow features like belief, observation,
and action to propagate to the neighbor nodes.
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Fig. 8. Integrating GCN as our Q function can resolve the issue of high-dimensional input and
also automatically extract the graph structure and form a compact feature embedding.

7 Experiments

In this project, we implement the two different encodings mentioned in Section 6. For
the nodewise encoding, we follow the implementation of fitted Q learning [8] with
extra trees regressor [9] as the Q function approximator. For the GCN encoding, we
implement a deep Q network (DQN) [12] with GCN proposed by Morris et al. [13],
where we maintain a fixed-size replay memory to continuously train the GCN. For both
FQI and DQN implementation, we adopt the one-shot selection to speed up finding the
optimal action and the maximization problem. We consider the online setting, where
we can apply new policy and get data from the new policy.

7.1 Experiment Setup

We perform our experiments on real world contact networks that are publicly available.
We set our finite horizon to be 7' = 20 which represents about 10 years of active
screening with each period being six months [6]. We set the discount factor of 0.9. We
assume (o, ¢) = (0.1, 0.1) and the network structure is known by surveys or estimations
and set our budget % to be 10% of the population n in each period, thus the algorithm
needs to scale well according to budget as graph size grows. Finally, we set the random
policy probability to be € = 0.05 in our learning process.

We compare the following screening strategies with our reinforcement learning al-
gorithm

(la) RANDOM: Randomly select nodes for active screening.

(1b) MAXDEGREE: Successively choose nodes with the largest degree until the budget
is reached.

(1c) EIGENVALUE: Greedily choose nodes that reduce the largest eigenvalue of A the
most until the budget is reached.
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Fig. 9. Reward of different methods on different dataset over 10 times average.

Other then simulated graph, we evaluate the performance on the following realistic
contact networks which is collected from diverse sources. The networks are carefully
selected to have significant variation in size |V|, average degree d, average shortest
path length p;,, assortativity pp and epidemic threshold (spectral radius) /\12 as table 2
shows.

(2a) Test graph we use the spatial preferential attachment model to generate a graph
of 20 nodes. Such approach has the heavy-tailed degree distributions observed in
many real networks.

(2b) Hospital [15]: A dense contact network collected in a university hospital to study
the path of disease spread.

(2¢) India [3]: A human contact network collected from a rural village in India where
active screening with limited budget may take place.

(2d) Face-to-face [10]: A network describing face-to-face behavior during the exhibi-
tion INFECTIOUS: STAY AWAY in 2009 at the Science Gallery in Dublin, in
which influenza might spread through close contact of individuals.

7.2 Experiment Result

In Figure 9, we can see that our imple-  apje 2. Properties of the contact network data sets.
mentation of FQI with simple node- Network ‘ \4 /\L d pr. pp
A

wise feature embedding can outper-
form all the other baselines. Notice Hospital [15] 75 0.027 15.19 1.60 -0.18
that the maxdegree baseline can also India [3] 202 0.095 3.43 3.11 0.02
be treated as another simple nodewise Face-to-face [10]{410 0.042 6.74 3.63 0.23
feature embedding if we use the node

degree as the only feature and with a

simple Q function which directly returns the node degree as the predicted marginal
improvement. This maxdegree baseline performs quite poorly as it ignores the belief,
observation, and action, leading to a myopic action selection with poor performance.
In our FQI implementation, we train a regression tree to select and extract important
features to make the prediction, which allows us to deal with various features in a more
elegant way.
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Our second algorithm DQN with GCN feature embedding can further improve the
solution quality. With the help of GCN, we do not need to hand-craft graph features
of each node. GCN can automatically learn a good node features embedding and use
them to make prediction. The DQN can also further improve the scalability and solution
quality by maintaining a replay memory and continuously update the memory and train
on it.

As presented, we can see that after encoding belief, observation, and the action,
our approaches exceed all the baselines. By either manually extracting node related
features or automatically maintaining the feature representation through GCN, FQI with
regression tree and nodewise encoding (manually) and DQN with GCN (automatically)
outperform other baselines.

Overall, as the graph size increases, we can also observe more improvement against
the standard baselines. However, we are still facing the issues of scalability, where our
implementations of FQI and DQN require a long training time compared to all other
myopic baselines. The memory requirement of DQN is also another issue. We will
leave the scalability issue as our future direction. Hopefully these reinforcement learn-
ing based approaches can be applied to larger networks and have a real impact to our
society.

8 Conclusion

We implement reinforcement learning on an active screening model by encoding the
high dimension action and state with large solution space into a low dimension, infor-
mative representation. This can be done either manually (FQI) or automatically (DQN).
“Teaching” the regressor by efficiently encode information using domain knowledge
helps improve the performance and reduce the amount of training needed. The future
direction of this work is to scale our solution to even larger networks with millions of
nodes and reach higher performance by overcoming the trade-off we made for scalabil-

ity.

9 Appendix

9.1 Belief Update

First, we can encode a(t) into b(t) using our knowledge toward the model. From the
model, we know that the node set in o(t) are resulted from infected nodes report with
probability c. Using the Bayesian posterior probability, we can update the original belief
vector to a intermediate belief vector b(#) as have

b L, v € o(t)
bv(t) = { (1—c)b, (t) h . (4)
(1—=b, (t))+(1—c)b, (t)° otherwise

Next, we need to encode the action a(t) and the fact that set o(¢) U a(t) are guaran-
teed to be cured in the next round. To accomplish this, we simply update the intermedi-
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ate belief state b(t) to the prediction of belief in the next round b(¢ 4 1) and use it as
our state representation.

bt 4+1) = {0, v € o(t) Ua(t), )

po(1 —xy) + x4, otherwise

where p, = 1 = g5 (1 — ab,(t)) and §(v) represent the neighbor of v. This
maintance and update our belief of the next time step b(¢ + 1).
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