
Amortised Variational Inference for Hierarchical Mixture Models

Javier Antorán 1 * Jiayu Yao 2 * Weiwei Pan 2 José Miguel Hernández-Lobato 1 3 4 Finale Doshi-Velez 2

Abstract
Hierarchical Mixtures of Experts (HME) are
flexible and interpretable probabilistic models.
However, existing approaches to learning tree-
structured decision rules are prone to poor local
optima. This work introduces an end-to-end dif-
ferentiable amortised variational inference algo-
rithm for HMEs. We use an RNN (dubbed RNN-
Tree) to approximate the posterior distribution
over tree node routing decisions. We show that
our RNN-Tree finds better decision rules than
greedily learnt trees, resulting in better generalisa-
tion performance. We also show how RNN-Trees’
differentiability facilitates their integration into
existing machine learning pipelines.

1. Introduction and Related Work
Hierarchical Mixtures of Experts (HME), which can be seen
as probabilistic decision trees, are flexible yet interpretable
models. An HME segments the input space into a nested set
of regions. Each region corresponds to a leaf node. The data
assigned to each leaf is fit with a simple predictor (an expert).
Each input is routed to leaf node based on the sequential
application of rules at decision nodes, where each rule that
is applied depends on the outcomes of previous rules. An
HME’s predictions can be interpreted by extracting the rules
determining the paths from the root node to the leaf nodes.

Unfortunately, learning the set of decision node rules that
give optimal assignments of observations to leaf nodes is
NP-hard (Hyafil & Rivest, 1976). This issue is compounded
by the non-differentiability of decision node rules. Existing
approaches either build trees greedily in a node-wise man-
ner (Breiman et al., 1984), or apply end-to-end procedures
which are prone to poor local optima (Ueda et al., 2000).

This work introduces an end-to-end differentiable ap-
*Equal contribution 1University of Cambridge, Cambridge, UK

2John A. Paulson School Of Engineering And Applied Sciences,
Harvard University, MA, US 3Microsoft Research, Cambridge,
UK 4The Alan Turing Institute, London, UK. Correspondence to:
Javier Antorán <ja666@cam.ac.uk>.

Presented at the ICML 2020 Workshop on Uncertainty and Ro-
bustness in Deep Learning. Copyright 2020 by the author(s).

proach for training HMEs, using Recurrent Neural Net-
works (RNN) as inference models. Specifically, we cast
the sequential process of an input traversing a tree as an
autoregressive process. We combine this with a “tree bal-
ance” prior, which expresses the belief that the data density
should be similar in all tree regions. We perform amortised
inference in this model using an RNN (dubbed RNN-Tree)
to output a variational posterior over tree routing decisions.
This results in an end-to-end differentiable training proce-
dure for HMEs which retains their interpretability and cap-
tures model uncertainty. We find that RNN-Trees generalise
in situations where greedily learnt trees fail. We also show
how an RNN-Tree can be learnt in tandem with other differ-
entiable models: we use an RNN-Tree as an interpretable
heteroscedastic noise model for a Gaussian Process (GP).

Related Work: Training HMEs is challenging due to the
discrete nature of decision nodes’ rules. Traditional tree
learning approaches, such as CART (Breiman et al., 1984)
and C4.5 (Quinlan, 1996) split greedily the input space to
maximise some metric of interest (e.g. information gain).
These methods are sensitive to noise in the data, suffering
from high variance. Errors stemming from sub-optimal
choices of earlier decision rules propagate throughout the
hierarchical procedure (Hastie et al., 2001).

Jordan & Jacobs (1994) and Hehn & Hamprecht (2019) use
the EM algorithm for Maximum Likelihood (ML) end-to-
end learning of HMEs, treating observations’ routing deci-
sions as latent variables. However, ML exhibits a propensity
for poorly performing local optima where too many mixture
components are placed in some parts of input space and too
few in others. Ueda et al. (2000) attempt to remedy this
by adding split and merge operations to the EM procedure.
Bishop & Svenskn (2002) place priors over both decision
node rules’ and leaf nodes’ parameters. Their posteriors are
approximated with Variational Inference (VI). Similarly to
Jordan & Jacobs (1994) and Hehn & Hamprecht (2019), we
treat each input’s path through the tree as a latent vector.
However, we place an explicit prior over routing decisions,
resulting in a better behaved variational objective.

More recent approaches relax discrete decision rules with
differentiable approximations. Yang et al. (2018) divide
each input space dimension into an independent set of soft
bins. Unfortunately, this results in exponential growth of
the number of leaf nodes with the input dimensionality. The



Amortised Variational Inference for Hierarchical Mixture Models

x(n)

y(n)

m(n)

n=1 ... N

mr

m0 m1

y00 y01 y10 y11

m0

m1

y

GRU

0 m0

GRU
h0

q(l) = softmax( fNN(h0))
{wl}L

l=1 = gNN(h0)

=∑ q(m0 | l, x)q(l)

q(m1 |m0, x)

h1

…

q(m0 |x)

q(m0 | l, x) = σ(wl0 + wl1xl)
1

0

0.5

−wl0 /wl1

xl+ +++

a) HME. b) Markovian decision nodes. c) Autoregressive decision nodes. d) RNN-Tree inference network.

Figure 1. Graphical models under consideration. In b) and c), all nodes’ dependency on x and superscripts are omitted for clarity.

model is learnt by ML, leading to poor local optima. Frosst
& Hinton (2017) preserve hierarchical structure and regu-
larise the ML learning of tree parameters with a heuristic
tree-balancing objective. We formalise this regulariser as a
reverse KL divergence between a variational posterior over
routing decisions and our “tree balance“ prior.

2. HME Background and Notation
We introduce a dataset D= {X,Y }= {x(n),y(n)}Nn=1,
with x ∈ RL. We use bold letters to refer to vectors and
capitals for matrices. An HME (Figure 1a), assigns each
observation x(n) to a leaf node with predictor p(y|m,x)
based on the decision nodes’ values m(n). These values
represent tree routing decisions. The model’s likelihood is:

p(Y |X)=
∏N
n=1

∑
mp(y

(n)|m,x(n))p(m|x(n)). (1)

We consider binary decision nodes. The dependencies be-
tween nodes are expressed with a tree graph, as shown in
Figure 1 b). This model has a maximum depth1 D=2 and
thus 2D leaf nodes. All nodes are conditionally independent
given the value of their parent node and x. Denoting the root
node as mr and intermediate node i as mi, the probability
of x being assigned to leaf (1, 0) is given by:

p(mr=1,m1=0|x)=p(mr=1|x)p(m1=0|mr=1,x) (2)

This Markovian structure is combined with decision rules
that only depend on a single dimension of the input space
l ∈ {1 ... L}. This yields a model that can be interpreted
as a sequence of if-else rules that resemble: “If xl is larger
than w, go left. Otherwise go right.” In this work, instead
of learning decision node rule parameters, we perform prob-
abilistic reasoning about tree routing decisions m directly.

3. Autoregressive, Tree-Balanced HMEs
In this section, we lay out a probabilistic framework that is
conducive to efficient and reliable inference in HMEs.

Autoregressive HME: The dependencies between decision
nodes in an HME can be re-cast into a more compact autore-
gressive structure, as shown in Figure 1 c). Here, a single

1Depth d is the number of vertices between a node and the root.

binary variable md determines if we should go right or left
at each tree depth d ∈ {0 ... D−1}, as opposed to individual
nodes. The root node’s value is referred to as m0. Thus,
a complete path through the tree is given by m, a binary
vector of length D. Each routing decision md is dependent
on all outcomes at previous depths; m factorises as

p(m|x) =
∏D−1
d=0 p(md|{mi}d−1i=0 ,x). (3)

We model node routing decisions with Bernoulli distribu-
tions p(md|{mi}d−1i=0 ,x) = Bern(md; ρ). Note, not all vec-
tors m∈{0, 1}D will be valid for non-balanced tree graphs.

The Tree Balance Prior: Direct optimisation of (1) is
prone to local optima that use decision nodes inefficiently
(Ueda et al., 2000; Bishop & Svenskn, 2002). We can
encourage usage of our tree’s full capacity by assigning sim-
ilar mass under the inputs’ density p(x) to each leaf node.
Specifically, we place a Binomial prior on the number of
datapoints that fall on either side of each decision node:

p({m(n)
d }Nn=1|X) =

(
N
K

)
0.5N ; K =

∑N
n=1m

(n)
d . (4)

Under the tree balance prior, node routing decisions made
for different inputs are no longer independent. We refer to
[m(1) . . .m(N)]ᵀ as the (N×D) matrix M , with rows Mn,:

and columns M:,d. The HME’s likelihood becomes:

p(Y |X) =
∑
Mp(Y |M)p(M |X) (5)

where the prior factorises across tree depth but not inputs:

p(M |X) =
∏D−1
d=0 p(M:,d|X). (6)

4. Amortised VI for HMEs with RNN-Trees
Computing (5) is generally intractable, as marginalising
M requires enumerating 2D

N

possible states. Instead, we
introduce an inference model over node routing decisions:
q(M |X) =

∏N
n=1

∏D−1
d=0 q(md|Mn,0:d−1,x

(n)).

The ELBO: In Appendix A, we derive the following Evi-
dence Lower Bound (ELBO):

log p(Y |X) ≥∑N
n=1 Eq(m|x(n))[log p(y(n)|x(n),m)]

−KL(q(M |X) || p(M |X)). (7)



Amortised Variational Inference for Hierarchical Mixture Models

The ELBO’s likelihood term factorises across datapoints
and can be evaluated in closed form by enumerating all leaf
nodes. The KL divergence factorises across tree depth:

KL(q(M |X) || p(M |X))

=
∑D−1
d=0 Eq(M:,0:d−1|X)[KL(q(M:,d|M:,0:d−1|X) ||

p(M:,d|X))]. (8)

In Appendix B, we show how Stirling’s approximation to
the log factorial allows us to closely approximate individual
KL terms in the above sum with a differentiable expression:

KL(q(M:,d|M:,0:d−1|X) || p(M:,d|X))

≈ −∑N
n=1H(q(md|Mn,0:d−1,x

(n)))

−NH(q(md|Mn,0:d−1)) + const. (9)

H(·) refers to a distribution’s entropy. q(md|Mn,0:d−1) =
Ep(x)[q(md|Mn,0:d−1,x)] is the aggregate posterior. In Ap-
pendix D, we show that eqs. (7) to (9) formalise the tree
regularisation introduced by Frosst & Hinton (2017).

RNN-Tree Variational Family: Having shown that HME
routing sequences can be expressed autoregressively in Sec-
tion 3, a natural choice for an inference network qφ(m|x)
is an RNN. We refer to this model as an RNN-Tree. We
employ GRUs. Their weights φ are variational parameters.

As shown in Figure 1 d), the RNN-Tree is run for D steps.
At step d, it uses its hidden state hd to predict parame-
ters which are used to linearly split each input dimension
(wl0, wl1). It also outputs the parameters of a categorical
distribution over which dimension should be split qφ(l|hd):

{wl0, wl1}Ll=1 = gNN(hd;φ); (10)
qφ(l|hd) = softmax(fNN(hd;φ)). (11)

Parametrising these objects explicitly allows us to recover
decision rules from the RNN-Tree’s predictions; the thresh-
old for dimension l is given by −wl0/wl1. A sigmoid is used
to produce dimension-wise routing decision probabilities:

qφ(md|hd,x, l) = σ(wl0 + wl1xl). (12)

The approximate posterior over node routing decisions is
obtained by marginalising over the dimension which is split:

qφ(md|hd,x) =
∑L
l=1qφ(md|hd,x, l)qφ(l|hd). (13)

Sampling binary outcomes md∼ qφ(md|hd,x) at each
depth and feeding them back into the RNN results in
qφ(md+1|hd+1,x) = qφ(md+1|{mi}di=0,x). However,
this makes our RNN-Tree non-differentiable and requires
2D inference network passes to compute all leaf node prob-
abilities. Instead, decision probabilities plus quantisation
noise, qφ(md|hd,x) + ε, are fed back into the RNN at each

depth. We choose ε∼ U(−0.5, 0.5) in order to make the
RNN robust to being fed binary outcomes at test time (Ballé
et al., 2019). A lack of hard routing decisions during train-
ing allows the RNN-Tree’s hidden state to track all tree
paths’ probabilities simultaneously. We obtain them from a
single RNN-Tree roll-out by leveraging routing decisions’
md conditional independence given the hidden state hd:

qφ(m|x) =
∏D−1
d=0 qφ(md|hd,x). (14)

Recall that we require conditional distributions over routing
decisions qφ(md|Mn,0:d−1,x

(n))) to compute (8) and (9).
We recover these from qφ(md|hd,x) in Appendix C.

At test time, we choose the single most likely tree by replac-
ing the softmax and sigmoid operators in (11) and (12) with
max and step functions, respectively. Thus, the RNN-Tree
successively queries different dimensions of a test input x∗

with questions like “x∗l ≶ −wl0/wl1?” D times before finally
assigning the input to an expert at a leaf node.

5. Experiments
In our experiments, we employ experts that do not depend
on the inputs x, i.e. the same prediction is made for all
inputs assigned to a given leaf node. We use the Gaussian
likelihood for regression p(y|m) =N (y;µ, 1) and the Cat-
egorical for classification p(y|m) = Cat(y; τ ). The Gaus-
sian’s mean µ and categorical’s class logits τ are treated as
hyperparameters θ = (µ, τ ). Variational parameters φ and
hyperparameters θ are optimised jointly with RAdam (Liu
et al., 2020). As a baseline, we provide results for CART,
arguably the most popular tree construction approach. Full
details on our experimental setup are in Appendix F.

5.1. Prediction Tasks

We construct two tasks in which the generative process of
the data is tree-based. We use these to evaluate the efficiency
of methods’ node routing decisions. We also evaluate meth-
ods’ predictive performance on 6 benchmark datasets.

Eight Level Pulse Regression: We fit CART and an RNN-
Tree to an 8-level pulse function. Maximum tree depth is
set to 3. Thus, full tree capacity is required to split the
input space into 8 regions. Figure 2a shows that CART
(red line) only splits the input space into 5 regions. The
RNN-Tree (blue line) fits the data almost perfectly. CART
builds trees in a greedy node-wise manner, leading it to
make sub-optimal use of decision nodes. In Appendix G
Figure 3, we show that CART requires minimal depth of 5
to fit this function. In contrast, an RNN-Tree makes efficient
use of its decision nodes by learning all of their rules jointly.

Binary Parity Classification: We generate a dataset of
3000 random 8-bit arrays. Arrays with an even number of
active bits are assigned class 1, others are assigned 0. We



Amortised Variational Inference for Hierarchical Mixture Models

−1 0 1
x

1

2

3

4

5
y

Ground Truth
RNN-Tree
CART (D=3)

(a) 8-level Pulse

0.0 0.3 0.6 0.9
noise σ

0.0

0.1

0.2

0.3

0.4

0.5

er
r

RNN-Tree
CART

(b) Noisy Binary Parity

−5

2

9

y

−2 −1 0 1
x

0

1

no
is

e
lo

g(
σ

)

Ground Truth
NN
RNN-Tree

(c) Heteroscedastic Regression Task

Figure 2. Experimental results.

add Gaussian noise of increasing σ to training inputs and
train CART and RNN-Trees of depth 8 on this data. The
test set contains all possible sequences in [0, 1]8. This task
requires usage of full tree capacity. With noiseless data,
both methods find optimal decision node rules. However,
with even small amounts of noise, CART cannot solve the
task. Noise causes CART to make bad node selections, from
which training cannot recover, even with trees of up to depth
12. RNN-Trees show robustness to input noise, decreasing
their performance gradually only after σ surpasses 0.5.

UCI Datasets: We compare the predictive performance of
CART to that of RNN-Trees on six small-scale datasets
from the sklearn.datasets package. We randomly select
80% of the data for training, 10% for validation (pruning
for CART, early stopping for RNN-Tree), and 10% for test-
ing. As shown in Table 1, RNN-Trees perform best on all
tasks except “Digits”, on which both methods perform com-
parably. End-to-end optimisation allows RNN-Trees to find
better solutions than node-wise greedy approaches, even in
moderately sized input spaces like “Breast” or “Digits”.

Table 1. Mean results and standard deviations obtained on bench-
mark datasets across three random train-val-test splits. We indicate
each dataset’s input dimensionality and whether results indicate
classification error (C) or regression RMSE (R). Lower is better.

Dataset CART RNN-Tree

Iris (4 C) 0± 0 0± 0
Boston (13 R) 0.311± 0.105 0.218± 0.043
Wine (13 C) 0.092± 0.026 0.055± 0.045

Diabetes (10 R) 0.855± 0.241 0.583± 0.079
Digits (64 C) 0.161± 0.022 0.168± 0.018
Breast (30 C) 0.058± 0.036 0.023± 0.008

5.2. Noise Estimation with an RNN-Tree

We demonstrate how RNN-Tree’s differentiability benefits
tasks that require end-to-end training. Specifically, we use
RNN-Tree to characterise input-dependent noise. Summaris-
ing regions of high and low noise is essential when com-

bining algorithmic predictions with human expertise. For
example, Heslinga et al. (2019); Leibig et al. (2017) find
that deferring high uncertainty cases for human inspection
results in significant improvements to task performance.

Frequently, heteroscedasticity is modelled with separate pre-
dictors (e.g. NNs or GPs) for the mean and noise functions.
But learning both jointly often results in non-identifiability,
overfitting, and noise models that are not easily summaris-
able. We demonstrate that these issues can be mitigated
by an RNN-Tree noise model. Here, we use a GP mean
function. In Appendix E, we derive a variational objective
based on the bound of Lázaro-Gredilla & Titsias (2011).

We construct a toy example where the true noise model is
a four-step function (orange line in Figure 2c). We use a
GP to model the function mean and compare a RNN-Tree
noise model with a NN noise model. The NN (green line)
generates a non-smooth noise function. It spikes around
x≈0.5 due to unfortunate data sampling. In contrast, our
RNN-Tree (blue line) recovers the noise function more pre-
cisely, especially in high noise regions. We also compare our
framework to the more common setup one NN is used to out-
put both the mean and the noise (Kendall & Gal, 2017) - it
too overfits on our task (Appendix Figure 4). Our approach
shows lower variance than both baselines, which generate
very different results across random restarts (Figure 5).

6. Conclusion
We re-cast HME routing decisions as an autoregressive pro-
cess and introduce a tree balance prior that encourages ef-
ficient use of HME capacity. We develop an end-to-end
differentiable amortised variational inference procedure for
this model. Our RNN-Tree inference network parametrises
an approximate posterior over tree paths. Our experiments
show that the most likely tree under this distribution outper-
forms greedily learnt trees. In future work, we plan to make
use of the full posterior distribution provided by RNN-Trees.



Amortised Variational Inference for Hierarchical Mixture Models

Acknowledgements
JA acknowledges support from Microsoft Research, through
its PhD Scholarship Programme, and from the EPSRC. JY
acknowledges support from NSF RI-1718306. We would
like to thank Yann Dubois for a helpful discussion on opti-
mising discrete trees.

References
Ballé, J., Laparra, V., and Simoncelli, E. End-to-end opti-

mized image compression. In 5th International Confer-
ence on Learning Representations, ICLR 2017, 2019.

Bishop, C. M. and Svenskn, M. Bayesian hierarchical mix-
tures of experts. In Proceedings of the Nineteenth confer-
ence on Uncertainty in Artificial Intelligence, pp. 57–64,
2002.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. Classi-
fication and regression trees. 1984.

Frosst, N. and Hinton, G. Distilling a neural network into
a soft decision tree. arXiv preprint arXiv:1711.09784,
2017.

Hastie, T., Tibshirani, R., and Friedman, J. The Elements
of Statistical Learning. Springer Series in Statistics.
Springer New York Inc., New York, NY, USA, 2001.

Hehn, T. M. and Hamprecht, F. A. End-to-end learn-
ing of deterministic decision trees. Pattern Recog-
nition, pp. 612–627, 2019. ISSN 1611-3349. doi:
10.1007/978-3-030-12939-2 42. URL http://dx.
doi.org/10.1007/978-3-030-12939-2_42.

Heslinga, F. G., Pluim, J. P. W., Houben, A. J. H. M.,
Schram, M. T., Henry, R. M. A., Stehouwer, C. D. A.,
van Greevenbroek, M. J., Berendschot, T. T. J. M., and
Veta, M. Direct classification of type 2 diabetes from
retinal fundus images in a population-based sample from
the maastricht study, 2019.

Hyafil, L. and Rivest, R. L. Constructing optimal binary
decision trees is np-complete. Information Processing
Letters, 5(1):15 – 17, 1976. ISSN 0020-0190. doi:
https://doi.org/10.1016/0020-0190(76)90095-8. URL
http://www.sciencedirect.com/science/
article/pii/0020019076900958.

Jordan, M. I. and Jacobs, R. A. Hierarchical mixtures of
experts and the em algorithm. Neural computation, 6(2):
181–214, 1994.

Kendall, A. and Gal, Y. What uncertainties do we need in
bayesian deep learning for computer vision? In Advances
in neural information processing systems, pp. 5574–5584,
2017.

Lázaro-Gredilla, M. and Titsias, M. K. Variational het-
eroscedastic gaussian process regression. In Proceedings
of the 28th International Conference on International
Conference on Machine Learning, pp. 841–848, 2011.

Leibig, C., Allken, V., Ayhan, M. S., Berens, P., and Wahl,
S. Leveraging uncertainty information from deep neural
networks for disease detection. Scientific reports, 7(1):
1–14, 2017.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., and
Han, J. On the variance of the adaptive learning rate
and beyond. In International Conference on Learning
Representations, 2020. URL https://openreview.
net/forum?id=rkgz2aEKDr.

Quinlan, J. R. Improved use of continuous attributes in c4. 5.
Journal of artificial intelligence research, 4:77–90, 1996.

Siegmund, D. An introduction to probability theory
and its applications, volume 2 (william feller). SIAM
Rev., 11(2):295–297, April 1969. ISSN 0036-1445.
doi: 10.1137/1011055. URL https://doi.org/10.
1137/1011055.

Ueda, N., Nakano, R., Ghahramani, Z., and Hinton, G. E.
Smem algorithm for mixture models. Neural Comput., 12
(9):2109–2128, September 2000. ISSN 0899-7667. doi:
10.1162/089976600300015088. URL https://doi.
org/10.1162/089976600300015088.

Yang, Y., Morillo, I. G., and Hospedales, T. M. Deep neural
decision trees, 2018.

http://dx.doi.org/10.1007/978-3-030-12939-2_42
http://dx.doi.org/10.1007/978-3-030-12939-2_42
http://www.sciencedirect.com/science/article/pii/0020019076900958
http://www.sciencedirect.com/science/article/pii/0020019076900958
https://openreview.net/forum?id=rkgz2aEKDr
https://openreview.net/forum?id=rkgz2aEKDr
https://doi.org/10.1137/1011055
https://doi.org/10.1137/1011055
https://doi.org/10.1162/089976600300015088
https://doi.org/10.1162/089976600300015088


Amortised Variational Inference for Hierarchical Mixture Models

A. Derivation of ELBO (7)
We refer to our dataset as D={X,Y } with X = {x(n)}Nn=1 and Y = {y(n)}Nn=1. We introduce a variational family q
that factorises across datapoints q(M |X) =

∏N
n=1 q(m|x(n)). We assume the likelihood function at each leaf node also

factorises across datapoints p(Y |X,M) =
∏N
n=1 p(y

(n)|x(n),m(n)). We show that (7), which we refer to as L, is a lower
bound on log p(D) = log p(Y |X):

KL(q(M |X) ‖ p(M |X,Y )

= Eq(M |X)[log q(M |X)− log p(M |X,Y )]

= Eq(M |X)

[
log q(M |X)− log

p(Y |X,M)p(M |X)

p(Y |X)

]
= Eq(M |X)[log q(M |X)− log p(Y |X,M)− log p(M |X) + log p(Y |X)]

= Eq(M |X)[− log p(Y |X,M)] + KL(q(M |X) ‖ p(M |X)) + log p(Y |X)

= log p(Y |X) + KL(q(M |X) ‖ p(M |X))−
N∑
n=1

Eq(m|x(n))[log p(y(n)|x(n),m)]

= −L+ log p(Y |X). (15)

Using the non-negativity of the KL divergence, we can see that: L ≤ log p(Y |X).

B. Deriving a Computationally Tractable Form of the KL divergence from eqs. (7) to (9)
We now discuss how to compute KL(q(M |X) ‖ p(M |X)), where p(M |X) is the tree balance prior (4). Recall m is a binary
vector that refers to the routing decisions made at each depth and M is the matrix resulting from stacking these vectors for
all of our training points. Also recall that M factorises autoregressively across depth q(m|x) =

∏D−1
d=0 q(md|{mi}d−1i=0 ,x).

However, the tree balance prior does not factorise across observations. Recall that we use M:,d = {m(n)
d }Nn=1 to refer to the

array of all observations’ routing decisions at a single tree depth d. Thus, we can write the distribution of all observations’
node routing decisions as:

q(M |X) =

D−1∏
d=0

q(M:,d|M:,0:d−1,x) (16)

For now, we will assume our prior p(M |X) also shares this form. Plugging (16) into the KL divergence:

KL(q(M |X) ‖ p(M |X)) =

= E∏D−1
i=0 q(M:,i|M:,0:i−1,X)

log

D−1∏
j=0

q(M:,j |M:,0:j−1, X)− log

D−1∏
r=0

p(M:,r|M:,0:r−1, X)


= E∏D−1

i=0 q(M:,i|M:,0:i−1,X)

D−1∑
j=0

log q(M:,j |M:,0:j−1, X)−
D−1∑
r=0

log p(M:,r|M:,0:r−1, X)


= E∏D−1

i=0 q(M:,i|M:,0:i−1,X)

D−1∑
j=0

log q(M:,j |M:,0:j−1, X)− log p(M:,j |M:,0:j−1, X)


=

D−1∑
j=0

E∏j
i=0 q(M:,i|M:,0:i−1,X) [log q(M:,j |M:,0:j−1, X)− log p(M:,j |M:,0:j−1, X)]

=

D−1∑
j=0

E∏j−1
i=0 q(M:,i|M:,0:i−1,X) [KL(q(M:,j |M:,0:j−1, X) ‖ p(M:,j |M:,0:j−1, X)]

=

D−1∑
j=0

Eq(M:,0:j−1|X) [KL(q(M:,j |M:,0:j−1, X) ‖ p(M:,j |M:,0:j−1, X)] (17)



Amortised Variational Inference for Hierarchical Mixture Models

This expression matches (8). We now show how to approximate KL(q(M:,j |M:,0:j−1, X) ‖ p(M:,j |M:,0:j−1, X). Because
the tree balance prior is applied to per-depth routing decisions M:,d, it factorises over depth p(M |X) =

∏D−1
j=0 p(M:,j |X).

All inputs affect all routing variables. We take K to be the number of points for which the routing outcome is positive at a
given depth. The prior is:

p(M:,d|X) =
(
N
K

)
0.5N ; K =

∑N
n=1Mn,d (18)

The KL divergence of interest can be written as:

KL(q(M:,d|M:,0:d−1, X) ‖ p(M:,d|X)) = −H(q(M:,d|M:,0:d−1, X))− Eq(M:,d|M:,0:d−1,X)[log
(
N
K

)
+N log 0.5] (19)

The first term in (19) is the entropy of the variational distribution. It is separable: H[q(M:,d|M:,0:d−1, X)] =∑N
n=1H[q(m

(n)
d |{m

(n)
j }d−1j=0 , X)] and easy to compute. We focus on the second term: Eq(M:,d|M:,0:d−1,X)[log

(
N
K

)
0.5N ].

We leverage Stirling’s approximation: n! ≈ n log n− n︸ ︷︷ ︸
Stirling’s

(Siegmund, 1969) in order to approximate log
(
N
K

)
:

log
(
N
K

)
= logN !− logK!− log(N −K)!

≈ N logN −N −K logK +K − (N −K) log(N −K) + (N −K)

= N logN −K logK − (N −K) log(N −K) (20)

Plugging (20) into Eq(M:,d|M:,0:d−1,X)[log
(
N
K

)
0.5N ], we obtain:

Eq(M:,d|M:,0:d−1,X)[log
(
N
K

)
0.5N ]

≈ Eq(M:,d|M:,0:d−1,X)[−K logK − (N −K) log(N −K)] +N logN +N log 0.5

= N Eq(M:,d|M:,0:d−1,X)[−
K

N
log

K

N
− (1− K

N
) log(1− K

N
)]︸ ︷︷ ︸

H[q(M:,d|M:,0:d−1)]

+ (− logN +N logN +N log 0.5)︸ ︷︷ ︸
constant

(21)

We arrive at the following approximation to the KL divergence of interest:

KL(q(M:,d|M:,0:d−1, X) ‖ p(M:,d|X)) ≈
N∑
n=1

H[q(m
(n)
d |{m

(n)
j }d−1j=0 , X)]−NH[q(M:,d|M:,0:d−1)] + constant (22)

Here, the aggregate posterior is computed as q(M:,d|M:,0:d−1) =
∑N
n=1 q(Mn,d|Mn,0:d−1,x

(n)). Expression (22) can be
evaluated in closed form and is differentiable.

C. Computing our ELBO’s KL Divergence from RNN-Tree Outputs
In the previous appendix, we discuss how we can tractably approximate KL(q(M |X) ‖ p(M |X)). This requires access to
conditional distributions over node routing decisions qφ(md|{mi}d−1i=0 ,x). However, during its training phase, our RNN-Tree
parametrises the joint distribution over all tree paths directly qφ(m|x,hd) = qφ({md}D−1d=0 |x,hd) =

∏D−1
d=0 q(md|hd,x).

Recall that stochasticity in the RNN-Tree’s hidden state hd is induced by quantisation noise ε ∼ U(−0.5, 0.5). Performing
a RNN-Tree roll-out can be seen as marginalising the hidden state at each depth with a single Monte Carlo sample
q(md|x) = Ep(ε)[q(md|hd=f(ε),x)]. We then obtain conditional node decision distributions using the product rule:

q(md|{mi}d−1i=0 ,x) =
q({mi}di=0|,x)

q({mi}d−1i=0 |x)
. (23)

We use a similar approach to obtain conditional distributions over node routing decisions with x marginalised:

q(md|{mi}d−1i=0 ) =
q({mi}di=0)

q({mi}d−1i=0 )
=

Ep(x)[q({mi}di=0|x)]

Ep(x)[q({mi}d−1i=0 |x)]
=

Ep(x)[q({mi}d−1i=0 |x)q(md|x)]

Ep(x)[q({mi}d−1i=0 |x)]

≈
∑N
n=1 q({mi}d−1i=0 |x(n))q(md|x(n))∑N

n=1 q({mi}d−1i=0 |x(n))
(24)



Amortised Variational Inference for Hierarchical Mixture Models

D. Relation of our ELBO to the Objective of (Frosst & Hinton, 2017)
Following the notation of (Frosst & Hinton, 2017), we revert to the non-autoregressive tree structure of Figure 1 b) and refer
to a single decision node as i. P i(x) is the probability of an input x reaching node i and pi(x) is the probability of that
input being assigned a positive outcome by node i; p(mi=1)=pi. The objective minimised by (Frosst & Hinton, 2017) is:

La =
∑
x

− log

(∑
leaf

p(leaf|x) log p(y|leaf)

)
︸ ︷︷ ︸

I

−N
∑
i

λ(i) (0.5 log(αi) + 0.5 log(1− αi))︸ ︷︷ ︸
II

(25)

Term I resembles the likelihood term from (7), with an additional log introduced. In term II, αi is obtained for each decision
node i as:

αi =

∑N
n=1 P

i(x)pi(x)∑N
n=1 P

i(x)
(26)

This resembles (24). Drawing a parallelism with our proposed variational formulation, the average of αi for all nodes at
a certain depth d yields our conditional aggregate posterior: q(md|{mi}d−1i=0 ) = (1/2d) ·∑i∈depthd αi. Indeed, (Frosst &
Hinton, 2017) heuristically set the weighing term λi = 1/2di , where di is the depth of node i. Returning to our regular
notation, (Frosst & Hinton, 2017)’s regularisation term II takes the form:

N Ep(M:,d)[q(M:,d|M:,0:d−1)] (27)

with p(M:,d) = 0.5. This function is very similar to NH[q(M:,d|M:,0:d−1)], the second term in our KL divergence (22).
Both are convex and have the same optima.

E. ELBO Derivation for our Heteroscedastic GP from Section 5.2
Suppose we are given a dataset D= {X,y}= {x(n), y(n)}Nn=1. We use bold letters to refer to vectors and capitals for
matrices, X ∈ RN×L,y ∈ RN×1,x ∈ RL×1. We model the dataset as a latent function with some input-dependent noise:
y(n) = f(x(n)) + ε(n), where ε(n) ∼ N (0, r(x(n))). Here, r(x) is modelled with an RNN-Tree whose parameters are
θ, r(x) = e2Tθ(x)). We place a GP prior on the function, f ∼ GP (0,K(x,x′)). In addition, we put tree balance priors
introduced in Section 3 over intermediate leave nodes m. Since the joint posterior p(f ,m|X,y) is intractable, we follow
(Lázaro-Gredilla & Titsias, 2011) in approximating it as q(f) · q(m). Using Jensen’s inequality, we have

log(y|X) ≥
∫
q(f)q(m) log

p(y|f , X,m)p(f |X)p(m)

q(f)q(m)
dfdm = L1(q(f), q(m)) (28)

To obtain a tighter lower bound, we replace q(f) with q∗(f) which maximises L1(q(f), q(m) for a given q(m). By
variational Bayesian theory, we have the optimal distribution of q(f) as

q∗(f) =
1

logZ(q(m))
e
∫
q(m) log p(y|f ,X,m)p(f |X)dm

where logZ(q(m)) is a normalising constant and logZ(q(m)) =
∫
e
∫
q(m) log p(y|f ,X,m)dmp(f |X)df .

Plugging q∗(f) back into (28), we have

log(y|X) ≥ L1(q∗(f), q(m)) =

∫
q∗(f)

logZ(q(m))q∗(f)

q∗(f)
df −KL(q(m)‖p(m))

= logZ(q(m))−KL(q(m)‖p(m))

= L2(q(m)) ≥ L1(q(f), q(m))



Amortised Variational Inference for Hierarchical Mixture Models

logZ(q(m)) can be calculated in closed form since q(m) is categorical. Recall that r(x(n)) = e2T (x(n))

logZ(q(m)) = log

∫
e
∑N
n

∑2D

j q(mj |x(n))
[
− 1

2 (y
(n)−f(n))2e−2mj−mj− 1

2 log 2π
]
N (f |0,K)df

= log

∫
e
∑N
n

[
− 1

2 (y
(n)−f(n))2

(∑
j q(mj |x

(n))e−2mj

)
−
∑
j q(mj |x

(n))mj− 1
2 log2π

]
N (f |0,K)df

= log

∫
N (y|f ,R)eCN (f |0,K)df

where R is a diagonal matrix with Rnn = (
∑
j q(mj |x(n))e−2mj )−1, and C = 1

2

∑
n logRnn −

∑
j

∑
n q(mj |x(n))mj

Hence

L2(q(m)) = logN (y|0,K + R) + C −KL(q(m)‖p(m))

When inferring the posterior predictive distribution for a new data points X ′, instead of marginalising over tree models
q(mj), we let q(m′|x′) = arg maxmj

q(m|x′). We then have

p(f ′|X,X ′,y) =

∫
p(f , f ′|X,X ′,y,m′)q∗(f)df = N (f ′|f̄ ′, cov(f ′))

where f̄ ′ = K(X ′, X)(K(X,X)+R′)−1y, cov(f ′) = K(X ′, X ′)−K(X ′, X)(K+R∗)−1K(X,X ′), and R is a diagonal
matrix with diagonal terms R′ii = e2maxm q(m|x′)

F. Experiment Setup
We provide additional details which are not included in the main text on the experiments performed in Section 5.

F.1. Eight Level Pulse Regression

In the this task, we use a dataset given by the following function

y =



1 −4 ≤ x < −3

4 −3 ≤ x < −2

2.5 −2 ≤ x < −1

5 −1 ≤ x < 0

1.5 0 ≤ x < 1

3.5 1 ≤ x < 2

0.5 2 ≤ x < 3

2.5 3 ≤ x ≤ 4

The inputs {x}Ni=1 is uniformly spaced in [−4, 4] with N = 400.

F.2. Binary Parity Classification

The dataset is composed of 3000 samples drawn from:

x∗ = b + ε; b ∼
8∏
j=1

Bern(bj ; 0.5); ε ∼ N (0, σ)

σ is varied in the range [0, 0.9]. Targets are computed from b, before adding Gaussian noise.



Amortised Variational Inference for Hierarchical Mixture Models

F.3. Noise Estimation Task

For this task, we generate the dataset as y = f(x) + ε where f(x) = −x3 + x2, ε ∼ N (0, σ2) and

log σ =


0 −2 ≤ x < −5/4

2/3 −5/4 ≤ x < −1/2

2 −1/2 ≤ x < 1/4

10/3 1/4 ≤ x ≤ 1

The inputs {x}Ni=1 is uniformly spaced in [−2, 1] with N = 1, 200.

We perform joint inference of the mean function (GP) and the noise function (an RNN-Tree or an NN) but with different
learning rate. To select the hyperparameter for an NN, we randomly select 80% of the data for training, 10% for validation
and 10% for testing. For the NN, we tested learning rate in η ∈ {0.001, 0.003, 0.005, 0.01}, architecture in 1 hidden layer
with 16 nodes and 1 hidden layer with 32 nodes. For Heteroscedastic NN (details in Appendix G.2), in addition to the
learning rate and the architecture same as above, we tested l2 penalisation λ ∈ {0.001, 0.003, 0.005, 0.01}. The optimal
parameter setting is selected by the best test loglikelihood.

G. Additional Experimental Results
G.1. Eight Level Pulse Regression

Figure 3 shows the predictive performance of CART with various maximum depth. We see that CART requires a depth of at
least 5 to fit the function.

G.2. Noise Estimation Task

We compare our framework to the common used practice described in (Kendall & Gal, 2017) where one NN predicts the
noise and the mean function at the same time. Denote the parameters of the NN as θ, the input as x and the target variable as
y. The NN outputs fθ(x) = [f̂ , log σ̂] where x̂ denotes the predictive mean and σ̂2 denotes the estimated noise. The model
is learnt by minimising the following

LNN (θ) =
1

N

N∑
n=1

[
1

2σ(x(n))2
‖y(n) − f(x(n))‖2 + log σ(x(n))

]
+ λ‖θ‖2

where λ‖θ‖2 is a L2 penalisation term. Figure 4 shows that Hetero-NN overfits as it has multiple spikes. Such behaviour is
not desirable for noise summarisation.

Additionally, Figure 5 shows that our framework has lower variance than the other two given multiple random restarts.
Hetero-NN has the highest variance among all three.

Ground Truth
RNN-Tree
CART (D=3)

Ground Truth
RNN-Tree
CART (D=4)

Ground Truth
RNN-Tree
CART (D=5)

Figure 3. Prediction performance of CART of maximum depth D=3, 4, 5.



Amortised Variational Inference for Hierarchical Mixture Models

−5

2

9

y

−2 −1 0 1
x

0.0

0.5

1.0
no

is
e

lo
g(

σ
)

Ground Truth
Hetero-NN
RNN-Tree

Figure 4. Predictive performance of Hetero-NN.

−2 −1 0 1

−0.5

0.0

0.5

1.0

1.5

no
is

e
lo

g(
σ

)

Ground Truth
RNN-Tree

−2 −1 0 1

Ground Truth
NN

−2 −1 0 1

Ground Truth
Hetero-NN

Figure 5. Estimated noise function given multiple ranodm restarts.


