
An Empirical Comparison of Sampling Quality Metrics:

A Case Study for Bayesian Nonnegative Matrix Factorization

Arjumand Masood∗

Harvard University
Weiwei Pan∗

Harvard University
Finale Doshi-Velez
Harvard University

June 21, 2016

1 Introduction

Bayesian approaches to machine learning begin by positing that the data X can be explained by some
probablistic model p(X|θ), where θ is a set of parameters. Rather than finding a point estimate for θ that
maximizes the likelihood p(X|θ), Bayesian approaches place a a prior distribution over the parameters p(θ)
and compute the posterior p(θ|X). The posterior p(θ|X) captures uncertainty in the parameters θ.

For most models, the posterior p(θ|X) does not have an analytic form. In this situation, a popular
approach is to approximate the posterior p(θ|X) through a set of samples {θ1, .., θN}. Approaches for
generating these samples include importance and rejection sampling Liu (1996), sequential Monte Carlo
Halton (1962), and Markov Chain Monte Carlo Gilks (2005).1

In this work, we empirically explore the question: how can we assess the quality of these samples? We
assume that the samples are provided by some valid Monte Carlo procedure, so we are guaranteed that the
collection of samples will asymptotically approximate the true posterior p(θ|X). Most current evaluation
approaches focus on two questions: (1) Has the chain mixed, that is, is it sampling from the posterior p(θ|X)?
and (2) How independent are the samples (as MCMC procedures produce correlated samples)? Focusing on
the case of Bayesian nonnegative matrix factorization, we empirically evaluate standard metrics of sampler
quality as well as propose new metrics to capture aspects that these measures fail to expose. The aspect of
sampling that is of particular interest to us is the ability (or inability) of sampling methods to move between
multiple optima in NMF problems. As a proxy, we propose and study a number of metrics that might
quantify the diversity of a set of NMF factorizations obtained by a sampler through quantifying the coverage
of the posterior distribution. We compare the performance of a number of standard sampling methods for
NMF in terms of these new metrics.

2 Background

2.1 Current Measures of Sampling Quality

Measures of Mixing. While it is practically impossible to assess whether a chain has mixed, some
popular approaches include sample paths, cumulative sums, autocorrelation plots, batch means, AR and
spectral analysis estimators Johnson (1996); Cowles and Carlin (1996); Flegal et al. (2010).

Measures of Sample Independence. Most current approaches to measuring sampling quality focus on
measuring the independence the samples from the chain. Since sample independence is hard to assess, most

1There are other approaches for approximating posterior distributions, such as variational methods Wainwright and Jordan
(2008); Tzikas et al. (2008); Opper and Archambeau (2009); we focus on sampling-based methods here but the ideas are
generally applicable.
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measures focus on correlation between samples. These include: effective sample size, autocorrelation plots,
cross-correlation, integrated autocorrelation time, Hairiness Index Cowles and Carlin (1996); Brooks (1998).

Other Measures In the theoretical literature, other popular measures include cover time, hitting time,
etc Aldous and Fill; Lee et al. (2015). However, these are impractical in large scenarios or when the modes
of the posterior distribution are unknown.

2.2 Bayesian Non-negative Matrix Factorization

In the case study below, we will evaluate several metrics of sample quality in the context of Bayesian
nonnegative matrix factorization. We choose this example because it is one of the simplest and popular data
exploration techiniques—NMF has been used to in wide-ranging applications ranging from understanding
protein-protein interactions Greene et al. (2008), finding topics in large text corpora Roberts et al. (2016),
and discovering molecular pathways from genomic samples Brunet et al. (2004)—with a myriad of efficient
algorithms for solving it Paisley et al. (2015); Schmidt et al. (2009); Moussaoui et al. (2006); Lin (2007);
Lee and Seung (2001); Recht et al. (2012). However, NMF still suffers from non-identifiability: even in the
exact case, there can be multiple solutions. Thus, it serves a good test case for measuring how well current
Bayesian approaches can describe this uncertainty.

Nonnegative Matrix Factorization and Identifiability Given an D ×N nonnegative matrix X and
desired rank R, the nonnegative matrix factorization (NMF) problem involves finding an R×N nonnegative
weight matrix W , and an D ×R nonnegative basis matrix A, such that X ≈ AW . The ease of interpreting
the weights W and bases A (due to the nonnegativity constraints), and the myriad of efficient algorithms for
solving NMF Paisley et al. (2015); Schmidt et al. (2009); Moussaoui et al. (2006); Lin (2007); Lee and Seung
(2001); Recht et al. (2012), has made NMF—and related models, such as topic models—a popular approach
to data exploration in many fields. NMF has been used to understand protein-protein interactions Greene
et al. (2008), find topics in large text corpora Roberts et al. (2016), and discover molecular pathways from
genomic samples Brunet et al. (2004).

However, in many cases NMF is not identifiable: there may be very different pairs (A,W ) and (A′,W ′)
that might explain the data X (perhaps almost) as well. In the following, we briefly recall some relevant
terminology and properties of NMF related to the notion of identifiability.

If X = AW , we call the pair (A,W ) an exact NMF ; the minimum rank R such that X admits an exact
NMF is called the nonnegative rank of X and is denoted rank+(X). A nonnegative matrix factorization,
X = AW , can be considered trivially non-unique. Given any permutation matrix P and diagonal matrix D
with positive entries, we obtain an alternate factorization of X, namely, X = (AP>D−1)(DPW ). Since the
factorization (AP>D−1, DPW ) differs from (A, W ) by scaling and relabeling of the column vectors in A,
we consider them equivalent. Thus, we call an NMF unique if all solutions can be represented as AQQ−1W ,
where Q is a monomial matrix (i.e. a product of some P and some D).

Awareness and concerns of non-identifabiltity has been gaining attention among practitioners. For ex-
ample, Greene et al. (2008) use ensembles of NMF solutions to model chemical interactions, while Roberts
et al. (2016) conduct a detailed empirical study of multiple optima in the context of extracting topics from
large corpora. These approaches use random restarts to find multiple optima.

Bayesian Nonnegative Matrix Factorization Bayesian NMF approaches Schmidt et al. (2009); Mous-
saoui et al. (2006) promise to characterize parameter uncertainty in a principled manner by solving for
the posterior p(A,W |X) given priors p(A) and p(W ). Having such a representation of uncertainty in the
bases and weights can further assist with the proper interpretation of the factors: we may place more con-
fidence in subspace directions with low uncertainty, while subspace directions with more uncertainty may
require further exploration. Unfortunately, in practice, the uncertainty estimates are often of limited use:
sampling-based approaches Schmidt et al. (2009); Moussaoui et al. (2006) rarely switch between multiple
modes.
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In this case study, we will use the generative model of Schmidt et. al. in Schmidt et al. (2009). In this
case, we place exponential priors p(A) and p(W ) on A and W and choose a Gaussian likelihood. Thus, the
elements of W , A are sampled from a rectified normal distributions R(x;µ, σ2, λ), which is proportional to
the product of a Gaussian and an exponential N (x;µ, σ2)Exp(x;λ). The full condition for the entries in
A|Q is given by

p(Ad,r|X,A\(d,r),W, σ2) = R(Ad,r;µAd,r
, σ2
Ad,r

, λAd,r
)

µAd,r
=

∑
n(Xd,n −

∑
r′ 6=r Ad,r′Wr′,n)∑

nW
2
r,n

, σ2
Ad,r

=
σ2∑
nW

2
r,n

with a symmetric update for W .

3 Additional Measures of Sample Quality: Notions of Coverage

The measures in Section 2.1 largely focus on the independence of samples. However, even in relatively simple
models, such as Bayesian NMF, it is possible for a chain to mix quickly within a single mode and never reach
an alternate mode or region. What is often missing in our discussion of practical MCMC approaches is a
notion of coverage: In addition to moving in “independent” ways, how much of the posterior space does a
finite-length chain explore? (Obviously given infinite time, every correct MCMC procedure will find all the
modes.) In this section, we describe several easy-to-compute and principled measures of coverage that can
be applied to any set of samples, whether or not they come from a Markov Chain.

3.1 Measures of Similarity

To quantify the “diversity” of a set of samples , we first need a notion of distance or similarity between a
pair of samples. Below, we describe two matrix similarity measures, which can be meaningfully interpreted
in the context of Bayesian NMF. Later, we show that the choice of one similarity measure may be more
appropriate than another depending on the NMF model and the application.

Recall from Section 2.2 that we consider two basis matrices A and A′ to be equivalent (defining the
same factorization of X) when A′ = AQ for some monomial matrix Q. Thus, we need to ensure that each
similarity measure we construct is defined on equivalence classes of matrices; that is, the disimilarity of two
matrices in the same class should be zero. To do this, we scale each column in our matrices to be unit in some
norm and we use permutation invariant representations of matrices (e.g. matrices as unordered collections
of column vectors).

Minimum Matching Distance For a fixed metric m on RD, the minimum matching distance is a metric
supported on sets of vectors in RD Walters (2011). Given two subsets of RD, A = {A1, . . . , AR} and
A′ = {A′1, . . . , A′R}, their minimum matching distance is defined as

dMM(A,A′) = min
σ∈SR

R∑
r=1

d(Aσ(r), A
′
σ(r)) (1)

where SR is the set of of permutations of the index set {1, . . . , R}. Intuitively, the minimum matching
distance measures the total distance of the corresponding vectors of A in A′, minimized over all bipartite
matchings of the vectors. The minimum matching distance can be efficiently computed using the Kuhn-
Munkres algorithm Kriegel et al. (2003); Brecheisen et al..

`1 Matching We fix the metric as `1. Given A,A′ ∈ RR×D each with columns that are unit `1-norm, we
can compute their minimum matching distance as:

dMM`1
(A,A′) = min

P∈P
‖AP −A′‖1, (2)
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where P is the set of R×R permutation matrices. Note that since the columns of A and A′ are unit `1-norm,
dMM`1

(A,A′) is bounded between 0 and R.
The `1 minimum matching distance measurement is closely related to the total variation distance for

comparing discrete probability distributions. In the case of topic modeling, each column of A or A′ corre-
sponds to a “topic”, which can be interpreted as a probability distribution over words in a dictionary. The
`1 minimum matching distance is (up to scale) the total variation distance after pairwise matching topics in
A and A′ based on similarity.

Maximum Angle Similarity Masood et al Masood and Doshi-Velez (2016) defines an angle-based sim-
ilarity measurement that aims to capture the permutation ambiguity as well as the essence of a diverse
factorization. Given A,A′ ∈ RR×D, let σ̂ be a permutation of the columns of A′ that minimizes the average
angle between corresponding columns,

σ̂ = arg min
σ∈SR

1

R

∑
r∈R

cos−1

(
Ar ·A′σ(r)
‖Ar‖‖A′σ(r)‖

)
(3)

The maximum angle similarity of A and A′ is defined largest angle between corresponding columns, under
the permutation σ̂,

dAngle(A,A
′) = max

r∈R
cos−1

(
Ar ·A′σ̂(r)
‖Ar‖‖A′σ̂(r)‖

)
As the entries in A and A′ are non-negative, the above dot product must always be non-negative. Thus,
dAngle(A,A

′) is bounded between 0 and π/2.
Since the maximum angle similarity is measurement of orientation, we can apply the same measurement

to basis elements of different dimensions and interpret the results in a similar manner. By focusing only
on measuring the maximum angle, we allow for an extreme case where two factorizations only differ by one
basis element. This may well be the case in some scenario so we incorporate it as a feature of this distance
measurement.

In addition, by considering the maximum angle, our similarity measure gains a certain degree of robustness
to column perturbations. For example, a similarity measurement based on the sum of angles between basis
elements would not be successful in differentiating between a case where one basis element is significantly
different versus if all basis elements were just perturbed a little bit. We want our understanding of diversity
to be robust to perturbation of existing basis columns.

Notes and Observations about similarity in NMF basis factors: Consider as a baseline, measuring
the similarity as the Frobenius error of the difference i.e. dF (A,A′) = ‖A−A′‖F . Figure 1 shows two pairs
of matrices (A1, A2) and (A1, A3) that have the same difference in the naive Frobenius sense (dF = 0.122)
but different maximum angle and l1-minimum matching similarity scores. From figure 1 it is also clear that
the (A1, A3) pair is the more dissimilar. This example illustrate the fact that these measures of similarity
indeed capture the sense of diversity in solutions that is of interest to us.

Finally, we point out that the permutation computed in the minimum matching distance, which minimiz-
ing the total distance between matrices, is not necessarily the same as the permutation, which minimizes the
average angle between corresponding columns. In practice, this means that permutations used to compute
the minimum matching distance cannot be used to compute the maximum angle distance (and vice versa).
It also raises an interesting question about what is means in empirical work to ‘correct’ for the permutation
ambiguity since we’ve observed that this correction is metric-dependent.
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A1 A2

(a) dMM`1
(A1, A2) = 0.137, dAngle(A1, A2) = 6.38

A1 A3

(b) dMM`1
(A1, A3) = 0.400, dAngle(A1, A3) = 20.44

Figure 1: Comparison of max angle and `1-min match measures when ‖A1 −A2‖F = ‖A1 −A3‖F .

3.2 Measures of Coverage

Given a set, S, of samples from some parameter space explore by a sampler, and given a similarity measure
m for pairs of samples, we introduce three measurement of the diversity of the samples contained in S.

Maximum Pairwise Distance We define a notion of diversity for a set S based on the “diameter” of
S, that is, we compute the maximum distance between pairs of points points in S. The maximum pairwise
distance of S is defined as

MaxDist(S) = max
A,A′∈S

d(A,A). (4)

Mean Pairwise Distance We can alternatively quantify the diversity of S by approximating the “density”
of points in S. Motivate by this intuition, we define the mean pairwise distance of S as

MeanDist(S) =
1

|A|2
∑

A,A′∈S
d(A,A). (5)

Covering Number We quantify the amount of the parameter space explored by the sampler, by approxi-
mating a notion of“volume” for a set of samples S. For each ε > 0, we define the minimum covering number
of S, denoted Cε(S), as the cardinality of the smallest subset S′ ⊂ S such that

⋃
s∈S′

B(s, ε) covers S, where

B(s, ε) is the ε ball centered at s with respect to some metric or similarity measure. Our minimum covering
number can stated in terms of the covering number of graphs of the ε-neighbor graph of the points in S.
We note that the covering number is a frequently studied property of graphs in literature Abbott and Liu
(1979); Chepoi et al. (2007).

Clearly, Cε(S) depends on the choice of ε. When ε = 0, the minimum covering number is equal to the
cardinality of S; for sufficiently large ε, the minimum covering number is 1, since an ε-ball centered at any
element will contain the entire set S. It is also straightforward to see that Cε is a monotone increasing as a
function of ε.

Generally speaking, for a fixed ε, the larger the minimum covering number, the more of the parameter
space covered by the sampler. However, cases may arise, for ε1 < ε2 and sets S1, S2, where Cε1(S1) > Cε1(S2)
but Cε2(S1) < Cε2(S2). In Figure 2 and Figure 3, we see samples S1, S2 from a mixture of two Gaussians,
where S1 is concentrated in one mode and S2 is distributed amongst both modes. The latter is demonstrated
by the fact that Cε2(S2) > Cε2(S1) for sufficiently large choices of ε.

To avoid arbitrariness in selecting a single value for ε, we compute the minimum covering number for a
range for values between ε = 0 and ε = t, for t is sufficiently large that each ε-ball covers S. We interpret
covering numbers which “persists” for significant intervals of ε to be revealing the diversity of the sample set
and covering numbers which appear for small intervals of ε to be negligible (due to small variations in the
set). The motivation for our interpretation is based in the body of work on persistent topology Edelsbrunner
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and Harer (2008); Carlsson (2009); Ghrist (2008), in which topological features of manifolds are deduced
from an approximation given by a set of sample points by interpreting the features which persist in the
reconstruction across a number of resolutions.

We call the collection of the covering numbers which persists for large intervals of ε, or, in a slight abuse
of language, the collection of covering numbers for all ε, the persistent minimum covering numbers. Figure
4 shows the plots of the persistent minimum covering numbers of the sets S1 and S2, from Figure 2, as a
function of ε. These plots intuitively demonstrate the greater diversity of S2, as Cε(S2) persists above 1 for
a greater interval of ε-values.

(a) Sample S1 lie in a single mode. The minimum
covering number for ε = 1 is Cε(S1) = 3.

(b) Sample S2 lie in two modes. The minimum
covering number for ε = 1 is Cε(S2) = 2.

Figure 2: Comparison of minimum covering numbers of samples (ε = 1)

(a) Sample S1 lie in a single mode. The minimum
covering number for ε = 2.5 is Cε(S1) = 1.

(b) Sample S2 lie in two modes. The minimum
covering number for ε = 2.5 is Cε(S2) = 2.

Figure 3: Comparison of minimum covering numbers of samples (ε = 2.5)
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(a) The minimum covering number of S1 persists
at 3 for 6 ∆ε’s.
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(b) The minimum covering number of S1 persists
at 2 for more than 9 ∆ε’s.

Figure 4: Comparison of persistent minimum covering numbers (Cε as a function of ε) of samples.
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4 Case Study

In the following, we consider three different synthetic data sets with qualitatively different posterior structure:
one with a single mode, one with two modes, and one with an infinite number of modes (or rather, a connected
space of equally good solutions). We consider both a tiny version of the NMF problem, with only 4 or 5
observations and 6 or 7 dimensions, as well as larger one with 50 observations and 500 dimensions. We
evaluate a number of sampling algorithms with various measures of “diversity”, running each algorithm for
10 repetitions of 10,000 samples. To avoid questions of whether samplers like Gibbs and HMC have mixed,
we initialize them at one of the modes/maximum likelihood solutions.

4.1 Synthetic Data Sets

Unique Solution Laurberg gives the following example, X = WA, where the NMF solution is a unique
equivalence class of factorizations, for the value a = 0.3.

W =

(
a 1 1 a 0 0
1 a 0 0 a 1
0 0 a 1 1 a

)
, A = WT . (6)

Under our Bayesian model, the posterior space of this NMF is unimodal.

Two Solutions Simply by setting the value of a to be 0.5 in the previous example, Laurberg shows that
X will have two distinct solutions. In particular, these solutions are related by a change of basis matrix Q,
so the two factorization cones are in the same subspace.

W =

(
0.5 1 1 0.5 0 0
1 0.5 0 0 0.5 1
0 0 0.5 1 1 0.5

)
, A = WT ; Q = Q−1 =

1

3

(−1 2 2
2 −1 2
2 2 −1

)
. (7)

Under our Bayesian model, the posterior space of this NMF is bimodal.

Infinite Solutions Finally, for the following matrix,

X =



1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 1 1 1 1 1 1 1 1

 (8)

there are an infinite number of nonnegative factorizations. For any δ ∈ [0, 1], we have X = AδW , where

Aδ =



1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 1 0 0 0 1

1 − δ 1 − δ 1 − δ δ δ δ

 , W =


1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1

 (9)

Under our Bayesian model, the posterior space of this NMF contains an infinite number of modes that form
a connected subset of the parameter space.
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4.1.1 Larger Data Sets

The above examples of data sets are valuable performing diagnostics on sampling algorithms and comparing
diversity measures, because we know ground truth about the solution space for each example. The larger
data sets we work with are simply high dimensional embeddings of these small data sets, chosen such that
the desirable properties (such as the number of solutions) of the original data are preserved. To generate the
larger data sets, we take a small D×N data X and transform it using non-negative matrices B1 and B2 such
that Xlarge = B1XB2. For an NMF data set, the factors transform in a simple manner: Alarge = B1A and
WlargeB2. In our experiments, the larger data sets have dimensions D = 500 and N = 50 (while relatively
small, we show that even with data sets of this size samplers rarely move very far).

4.2 Inference Approaches

In constructing our chain of factorization matrices, we add Gaussian noise, with standard deviation σ, to
the data matrix X, for which we know the exact factorizations. We call the noisy data X̃.

Lower Bound: Single Mode To provide a reasonable lower bound on coverage, we establish the single-
mode baseline, wherein we generate a set of samples that only explore one mode or region. For this baseline,
we fix one known exact solution, X = WA; to generate samples consistent with the Gaussian noise model,
we initialize an NMF algorithm at (W,A) and iteratively generate factorizations for the data X with added
Gaussian noise. The procedure is as follows: we initialize the multiplicative update algorithm of Lee and
Seung Lee and Seung (1999) with (W,A); we then run the algorithm for the data X̃ + Ei, where Ei is the
noise matrix for the additional Gaussian noise added at the ith iteration. In this fashion, we obtain variation
in the entries of our factorization matrices (depending on the noise-level), but we know these variation is of
a limited scale and that the chain contain samples from only one mode.

Upper Bound: All Modes To provide a reasonable approximation of ideal coverage, we establish the
all-modes baseline, wherein generates a set of samples that covers the entire solution space. At each iteration
in the chain, we randomly pick one known exact solution. When the solutions are discrete, we uniformly
sample them. In the infinite solutions case, we pick δi independently from the uniform distribution over
[0,1]. We then apply the same perturb-and-factor methodology as in the single mode baseline to produce a
set of factors that approximate the modes of the parameter space.

Gibbs Schmidt et al propose a Bayesian approach to NMF in which each basis element Ad,r and each
weight Wr,n is sampled independently from an exponential prior. Combined with a Gaussian likelihood, the
updates for each element of A and W can be sampled element-wise from a rectified normal distribution,
which is proportional to the product of a Gaussian and an exponential.

We initialize with a sample from the All Modes baseline so that no burn-in needed. We fix σ, the noise
parameter in the Gaussian noise, as the same value used in generating X̃.

Hamiltonian Monte Carlo Hamiltonian Monte Carlo (HMC) is a Markov Chain Monte Carlo (MCMC)
procedure that simulates Hamiltonian dynamics over the target distribution state space. The time-reversibility
and volume preserving properties of the evolution of Hamiltonian systems ensure detailed balance Neal et al.
(2011). By incorporating gradient information, HMC suppresses the random walk behavior which contributes
to the inefficiency of many MCMC methods. Given a target density π(q), we define a Hamiltonian of the
form

H(q, p) = − log πH(q) +
1

2
p>p (10)

where − log π(q) is called the potential energy and the velocity, p, is given by a certain tangent vector at
q. We simulate the dynamics with a discretized integrator, called the leap-frog integrator. Given an initial
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state (q0, p0), a proposal state (qn, pn) is reached by a series of steps in the direction of ∇q log πH(q) Byrne
and Girolami (2013).

In the case of NMF, our target density, π(W,A), is the log posterior distribution corresponding to our
generative model. Since HMC have been demonstrated to be more successful than other MCMC methods in
crossing multiple modes, for low-dimensional posterior spaces, one might expect HMC to out-perform Gibbs
in finding multiple optima for NMF problems as well.

For our experiments, we implement HMC with adaptive step size and a fixed 100 leap count. We perform
the HMC on the entry-wise log of the factor matrices in order to keep our solutions feasible. We initialize
with a sample from the All Modes baseline and allow an additional burn-in period of 200 iterations so that
the we can adaptively find a reasonable step-size.

Non-MCMC Baseline: (Filtered) Random Restarts We run Lin’s projected gradient NMF algorithm
Lin (2007) with random initializations. We expect this algorithm to explore multiple solutions when they
exist because it is initialized at a random factor matrix each time. There are no asymptotic guarantees
for exploring all solutions nor is there an underlying probabilistic framework. However, random restarts
provides a baseline of how much coverage we might achieve in practice if we did not have access to the true
solution but were not constrained to a probabilistic MCMC framework.

In practice, deterministic optimization algorithms such as the projected gradient algorithm are prone to
get caught in very poor local optima Lin (2007). Thus, we report metrics for all random restart outputs as
well as the subset of random restarts results that achieve likelihoods comparable with the other samplers
(that is, we exclude random restarts results from local optima corresponding to very poor solutions). We
call this second baseline filtered random restarts. In our experiments, we allow for reconstruction errors in
the filtered samples to be up to ten times the maximum reconstruction error in the Gibbs chain.

4.3 Evalution Metrics

For our experiments, we report evaluation metrics measuring three key aspects of of sampling: quality of fit,
sample independence and coverage of the parameter space.

Quality of Fit We measure the quality of NMF solutions contained in a set of samples by computing
the mean likelihood of the samples. Because methods like random restarts can produce samples from low-
likelihood local optima that are widely distributed in the posterior space, the mean likelihood can be used
to distinguish samples from multiple modes from those from multiple local optima.

Sample Independence We measure the independence of the samples in a set using integrated autocor-
relation time. Although sample independence can be assessed in a number of different ways, we choose to
use only integrated autocorrelation time since previous work Cowles and Carlin (1996); Brooks and Roberts
(1998a); Kass et al. (1998); Brooks and Roberts (1998b) have shown IAT to be a reasonable representative
of this class of metrics.

Coverage To asses the amount of coverage achieved by a set of samples, we compute the maximum pairwise
distance, the mean pairwise distance, and the persistent minimum covering numbers. Furthermore, each
metric of coverage is calculated with respect to both maximum angle similarity and `1-minimum matching
distance.

The persistent minimum covering numbers are computed over a range of 100 ε values and for the first
1000 elements of each chain. For each ε value, the minimum covering number we record is the mean of
Cε over 10 repetitions of the same experiment. As the set cover problem is NP-hard, we employ a greedy
algorithm to approximate the coverage Chvatal (1979).
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5 Results

Quality of Fit: Log-Likelihoods By design, the one mode and all modes sampling algorithms fit the
data well (see Table 1 in Appendix A and Table 5 in Appendix B). Since the Gibbs sampler the HMC sampler
are initialized at a known mode, they also fit the data well while exploring the posterior space around that
mode.

Random Restarts, on the other hand, has much lower likelihoods than the samplers. This result is
expected (although perhaps not at this scale). It appears that, even on small toy data sets, Random
Restarts is prone to being trapped in local optima around low-quality solutions. The presence of such poor
factorizations in Random Restarts motivates the construction of the Filtered Random Restarts baseline,
which contains the subset of Random Restart samples whose reconstruction error in the Frobenius norm
‖X̃−AW‖F falls within a fixed threshold. In constructing the filtered samples, we note that a large proportion
of the Random Restarts samples from the toy-sized data sets fall within our allowable reconstruction criterion,
while significantly fewer samples are allowed to filter through when we consider the larger 500×50 data sets.
In particular, the worst performance of Random Restarts is observed in the enlarged version of the bimodal
data, wherein, within ten repetitions, the number of sample satisfying our filtering criteria ranged between
5 and 309 out of a total of 10,000 samples.

Sample Independence: IAT The MCMC algorithms show high degrees of autocorrelation rendering the
effective sample size of the 10,000 chain to be orders of magnitude smaller (Table 2 in Appendix A and Table
6 in Appendix B). Even on toy data sets with infinite number of connected solutions, the samples are highly
correlated. As expected, the non-MCMC samples are effectively independent.

Coverage: Pairwise Distance and Minimum Covering Numbers We note again that the likelihood
and sample independence does not necessarily provide information about the region of the posterior that
is being explored in these chains. For example, in the infinite solutions case, one can imagine a trajectory
through the line of solutions parameterized by δ that could generate a set of samples with high autocorrelation
but traverse along a large portion of the posterior. On the other hand, samples could appear uncorrelated
when a chain is only making local but indpendent moves around a single mode. To assess coverage, we study
the maximum/mean pairwise distance and persistent minimum covering numbers.

Both the pairwise distance measures (Table 3, Table 7, Table 4, Table 8) and the persistent covering
numbers (Figures 5 - 10) indicate that Random Restarts obtains the widest range of solutions. However,
because some (or many, depending on the data set) of the elements correspond to poor factorizations, they
do not represent samples from multiple modes of the posterior space.2 Thus, the Filtered Random Restart
samples reveals a better picture of the movement of this sampling algorithm through the posterior. The
coverage metrics indicate that the Filtered Random Restart samples still explore significantly more of the
posterior than the MCMC methods. In particular, in the toy sized bimodal data set, the Filtered Random
Restart samples appears to sample from both modes.

The persistence covering number plots of the All Modes samples establish clear visual baselines for
distinguishing sets containing samples from multiple modes in the posterior space. Comparing the plots
of the Gibbs sampler and HMC against those of All Modes, we see these asymptotically correct sampling
mechanisms tend to explore only a single mode (Figures 5 - 10).

6 Conclusion

We conclude from our experiments that the coverage metrics we introduce yield useful information regarding
sampling behaviors that cannot be assessed using traditional MCMC diagnostics, such as the ability of the
sampler to cover a large portion of the posterior space. We are able to evaluate and compare the exploratory

2Occasionally, Random Restarts yields a solution with a column of zeros in the basis matrix A, this sort of degenerate sample
gives rise to a maximum pairwise angle distance of 90 degree for the entire samples (Table 3).
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behavior of chains through these metrics. Within the sampling algorithms we study, it appears that a filtered
version of Random Restarts would show the best exploratory behavior while maintaining some quality of the
factorization. In the data sets explored, the quality of the factorization deteriorates for Random Restarts as
the scale of the data grows.

Both MCMC approaches, Gibbs and HMC, produce factorizations of excellent quality but IAT shows
that effective sample size is very small. Furthermore, our coverage analysis reveals that neither Gibbs nor
HMC are able to explore the multiple modes in very small toy data sets. As the scale of the data set grows,
we expect the Gibbs sampler to be more vulnerable to becoming trapped in a single mode due of the local
nature of its updates.

For the practitioner of NMF, these results first demonstrate that random restarts of some sort—such
as running multiple chains—can still be important for covering the posterior space, even for very small
problems. More importantly, we argue for adding coverage analysis of solutions to the standard diagnostic
process evaluating sampling-based approches, since solution set diversity is an unavoidable questing arising
from the identifiability of NMF and other problems. These multiple solutions can lead to very different
interpretations of the data and effect subsequent modeling decisions. We hope that the metrics introduced
in this work to quantify the notion of sample diversity begins to fill the gap left by current performance
measurement of sampling algorithms.
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Appendix A Comparison of Metrics and Algorithms (Small Dataset)

Table 1: Comparison of Performance of Sampling Method: Likelihood

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

-1.74e+01 -1.74e+01 -1.12e+03 -2.30e+02 -2.38e+01 -1.93e+01
-1.84e+01, -1.84e+01, -1.22e+03, -2.34e+02, -2.52e+01, -2.02e+01,

-1.73e+01, -1.73e+01, -1.09e+03, -2.32e+02, -2.46e+01, -1.92e+01,

-1.65e+01 -1.65e+01 -1.02e+03 -2.27e+02 -2.34e+01 -1.88e+01

Two
Modes

-1.72e+01 -1.70e+01 -2.17e+03 -2.81e+02 -2.38e+01 -1.88e+01
-1.80e+01, -1.80e+01, -2.24e+03, -2.85e+02, -2.51e+01, -2.00e+01,

-1.71e+01, -1.69e+01, -2.18e+03, -2.79e+02, -2.43e+01, -1.93e+01,

-1.62e+01 -1.63e+01 -2.07e+03 -2.77e+02 -2.32e+01 -1.75e+01

Infinite
Modes

-2.20e+01 -2.18e+01 -1.20e+05 -3.20e+02 -4.21e+01 -2.09e+01
-2.37e+01, -2.31e+01, -1.22e+05, -3.23e+02, -4.30e+01, -2.20e+01,

-2.18e+01, -2.15e+01, -1.21e+05, -3.21e+02, -4.17e+01, -2.05e+01,

-1.94e+01 -2.01e+01 -1.20e+05 -3.19e+02 -4.15e+01 -1.92e+01

Table 2: Comparison of Performance of Sampling Method: IAT

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

IAT

1.009 1.009 1.014 1.014 728.498 837.699
1.01, 1.01, 1.01, 1.01, 584.8875, 822.665,

1.01, 1.01, 1.015, 1.015, 727.725, 865.465,

1.01 1.01 1.02 1.02 850.7075 940.6925

Two
Modes

IAT

1.009 1.004 1.013 1.013 677.867 813.753
1.01, 1.0, 1.01, 1.01, 643.415, 726.395,

1.01, 1.0, 1.01, 1.01, 686.235, 831.19,

1.01 1.01 1.0175 1.0175 719.4575 890.53

Infinite
Modes

IAT

1.008 1.008 1.009 1.009 313.22 710.851
1.01, 1.01, 1.01, 1.01, 292.9875, 681.7575,

1.01, 1.01, 1.01, 1.01, 306.475, 703.79,

1.01 1.01 1.01 1.01 320.755 724.35
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Table 3: Comparison of Performance of Sampling Method: Max

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

Angle
Max

0.185 0.185 34.763 4.184 0.289 0.221
0.18, 0.18, 28.395, 3.995, 0.28, 0.21,

0.18, 0.18, 39.565, 4.055, 0.285, 0.215,

0.19 0.19 39.6225 4.315 0.2975 0.2275

MM `1
Max

0.0 0.0 0.697 0.091 0.01 0.0
0.0, 0.0, 0.575, 0.09, 0.01, 0.0,

0.0, 0.0, 0.79, 0.09, 0.01, 0.0,

0.0 0.0 0.79 0.09 0.01 0.0

Two
Modes

Angle
Max

0.152 36.965 38.132 37.895 0.278 0.219
0.15, 36.9525, 37.8775, 37.7375, 0.27, 0.21,

0.15, 36.96, 37.915, 37.89, 0.28, 0.21,

0.15 36.9775 38.155 37.95 0.2875 0.2275

MM `1
Max

0.0 0.67 0.738 0.694 0.01 0.0
0.0, 0.67, 0.73, 0.69, 0.01, 0.0,

0.0, 0.67, 0.73, 0.69, 0.01, 0.0,

0.0 0.67 0.7375 0.7 0.01 0.0

Infinite
Modes

Angle
Max

0.187 44.973 90.0 44.99 1.187 16.229
0.18, 44.9375, 90.0, 44.9725, 0.985, 6.625,

0.185, 44.975, 90.0, 44.99, 1.115, 17.605,

0.1975 45.0075 90.0 44.9975 1.355 22.2925

MM `1
Max

0.009 1.0 2.0 1.004 0.032 0.383
0.01, 1.0, 2.0, 1.0, 0.0225, 0.1825,

0.01, 1.0, 2.0, 1.0, 0.03, 0.425,

0.01 1.0 2.0 1.01 0.04 0.52
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Table 4: Comparison of Performance of Sampling Method: Mean

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

Angle
Mean

0.069 0.069 0.873 0.615 0.11 0.09
0.07, 0.07, 0.75, 0.6, 0.11, 0.09,

0.07, 0.07, 0.89, 0.61, 0.11, 0.09,

0.07 0.07 0.985 0.6275 0.11 0.09

MM `1
Mean

0.0 0.0 0.019 0.01 0.0 0.0
0.0, 0.0, 0.02, 0.01, 0.0, 0.0,

0.0, 0.0, 0.02, 0.01, 0.0, 0.0,

0.0 0.0 0.02 0.01 0.0 0.0

Two
Modes

Angle
Mean

0.06 18.467 18.61 18.563 0.102 0.089
0.06, 18.4725, 18.6025, 18.5625, 0.1, 0.09,

0.06, 18.48, 18.615, 18.575, 0.1, 0.09,

0.06 18.4875 18.6275 18.58 0.1 0.09

MM `1
Mean

0.0 0.33 0.34 0.34 0.0 0.0
0.0, 0.33, 0.34, 0.34, 0.0, 0.0,

0.0, 0.33, 0.34, 0.34, 0.0, 0.0,

0.0 0.33 0.34 0.34 0.0 0.0

Infinite
Modes

Angle
Mean

0.078 16.572 27.261 12.835 0.371 5.16
0.08, 16.485, 26.6225, 12.3425, 0.2925, 1.65,

0.08, 16.525, 27.33, 12.725, 0.315, 5.62,

0.08 16.6775 27.69 13.3525 0.4425 6.1625

MM `1
Mean

0.0 0.373 0.566 0.284 0.011 0.123
0.0, 0.37, 0.56, 0.27, 0.01, 0.0425,

0.0, 0.37, 0.56, 0.28, 0.01, 0.135,

0.0 0.3775 0.57 0.2975 0.01 0.1475
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Appendix B Comparison of Metrics and Algorithms (Large Dataset)

Table 5: Comparison of Performance of Sampling Method: Likelihood

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

-1.22e+04 -1.22e+04 -1.68e+06 -1.00e+06 -1.25e+04 -1.25e+04
-1.23e+04, -1.23e+04, -1.82e+06, -1.04e+06, -1.26e+04, -1.26e+04,

-1.22e+04, -1.22e+04, -1.63e+06, -9.99e+05, -1.24e+04, -1.24e+04,

-1.22e+04 -1.22e+04 -1.50e+06 -9.57e+05 -1.24e+04 -1.24e+04

Two
Modes

-1.22e+04 -1.22e+04 -3.60e+06 -1.09e+06 -1.25e+04 -1.25e+04
-1.23e+04, -1.23e+04, -3.74e+06, -1.14e+06, -1.26e+04, -1.26e+04,

-1.22e+04, -1.22e+04, -3.55e+06, -1.10e+06, -1.24e+04, -1.24e+04,

-1.22e+04 -1.22e+04 -3.21e+06 -1.04e+06 -1.24e+04 -1.24e+04

Infinite
Modes

-1.20e+04 -1.20e+04 -1.82e+06 -9.98e+05 -1.25e+04 -1.25e+04
-1.20e+04, -1.20e+04, -1.94e+06, -1.01e+06, -1.25e+04, -1.25e+04,

-1.20e+04, -1.20e+04, -1.82e+06, -9.93e+05, -1.25e+04, -1.25e+04,

-1.20e+04 -1.19e+04 -1.65e+06 -9.73e+05 -1.24e+04 -1.24e+04

Table 6: Comparison of Performance of Sampling Method: IAT

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

IAT

1.01 1.01 1.011 1.009 645.903 1173.558
1.01, 1.01, 1.0025, 1.0025, 600.07, 1115.425,

1.01, 1.01, 1.01, 1.01, 649.92, 1186.735,

1.01 1.01 1.0175 1.01 694.5775 1286.695

Two
Modes

IAT

1.01 1.011 1.012 1.082 524.915 1105.867
1.01, 1.01, 1.0025, 1.0625, 434.6325, 1046.2725,

1.01, 1.02, 1.01, 1.1, 530.575, 1124.91,

1.01 1.02 1.02 1.1175 563.32 1180.215

Infinite
Modes

IAT

1.01 1.008 1.005 1.014 1067.452 1077.456
1.01, 1.0, 1.0, 1.0025, 1059.7475, 1071.205,

1.01, 1.0, 1.005, 1.01, 1068.9, 1076.965,

1.01 1.025 1.01 1.02 1077.79 1086.3875
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Table 7: Comparison of Performance of Sampling Method: Max

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

Angle
Max

0.01 0.01 25.504 16.326 0.027 0.092
0.01, 0.01, 22.93, 14.705, 0.0225, 0.08,

0.01, 0.01, 25.68, 16.315, 0.03, 0.09,

0.01 0.01 28.15 17.7075 0.03 0.0975

MM `1
Max

0.0 0.0 0.444 0.258 0.0 0.0
0.0, 0.0, 0.4025, 0.24, 0.0, 0.0,

0.0, 0.0, 0.44, 0.255, 0.0, 0.0,

0.0 0.0 0.4825 0.285 0.0 0.0

Two
Modes

Angle
Max

0.01 10.779 22.131 5.084 0.02 0.072
0.01, 10.6525, 17.6125, 3.405, 0.02, 0.07,

0.01, 10.69, 23.08, 4.51, 0.02, 0.07,

0.01 11.0125 26.05 6.765 0.02 0.0775

MM `1
Max

0.0 0.16 0.382 0.075 0.0 0.0
0.0, 0.16, 0.2825, 0.05, 0.0, 0.0,

0.0, 0.16, 0.4, 0.07, 0.0, 0.0,

0.0 0.16 0.44 0.1 0.0 0.0

Infinite
Modes

Angle
Max

0.01 21.412 42.943 35.901 0.202 0.556
0.01, 21.2, 41.9175, 33.4125, 0.19, 0.525,

0.01, 21.41, 42.99, 35.68, 0.2, 0.555,

0.01 21.6175 43.86 38.1225 0.225 0.5875

MM `1
Max

0.0 0.348 0.985 0.796 0.0 0.01
0.0, 0.3425, 0.93, 0.7325, 0.0, 0.01,

0.0, 0.35, 0.98, 0.785, 0.0, 0.01,

0.0 0.35 1.0375 0.8375 0.0 0.01
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Table 8: Comparison of Performance of Sampling Method: Mean

One Mode All Modes Random
Restarts

Random
Restarts
(filtered)

Gibbs HMC

One
Mode

Angle
Mean

0.01 0.01 5.172 4.293 0.02 0.041
0.01, 0.01, 4.7825, 4.15, 0.02, 0.04,

0.01, 0.01, 5.075, 4.235, 0.02, 0.04,

0.01 0.01 5.635 4.29 0.02 0.04

MM `1
Mean

0.0 0.0 0.077 0.062 0.0 0.0
0.0, 0.0, 0.07, 0.06, 0.0, 0.0,

0.0, 0.0, 0.075, 0.06, 0.0, 0.0,

0.0 0.0 0.08 0.06 0.0 0.0

Two
Modes

Angle
Mean

0.01 5.38 3.467 2.457 0.02 0.033
0.01, 5.33, 3.1325, 1.97, 0.02, 0.03,

0.01, 5.35, 3.44, 2.75, 0.02, 0.03,

0.01 5.49 3.8375 3.0 0.02 0.04

MM `1
Mean

0.0 0.08 0.051 0.036 0.0 0.0
0.0, 0.08, 0.05, 0.03, 0.0, 0.0,

0.0, 0.08, 0.05, 0.04, 0.0, 0.0,

0.0 0.08 0.0575 0.04 0.0 0.0

Infinite
Modes

Angle
Mean

0.01 7.935 16.088 11.978 0.108 0.307
0.01, 7.8125, 15.7175, 11.665, 0.1, 0.285,

0.01, 7.905, 15.87, 11.885, 0.105, 0.305,

0.01 8.0175 16.6375 12.16 0.1175 0.32

MM `1
Mean

0.0 0.129 0.258 0.186 0.0 0.001
0.0, 0.13, 0.25, 0.18, 0.0, 0.0,

0.0, 0.13, 0.26, 0.185, 0.0, 0.0,

0.0 0.13 0.2675 0.19 0.0 0.0
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Appendix C Persistent Minimum Covering Number Plots (Small
Dataset)

(a) Similarity measure: Max Angle (b) Similarity measure: MinMatch (`1)

Figure 5: Unique Mode

(a) Similarity measure: Max Angle (b) Similarity measure: MinMatch (`1)

Figure 6: Two Modes
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(a) Similarity measure: Max Angle (b) Similarity measure: MinMatch (`1)

Figure 7: Infinite modes
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Appendix D Persistent Minimum Covering Number Plots (Large
Dataset)

(a) Similarity measure: Max Angle (b) Similarity measure: MinMatch (`1)

Figure 8: Unique Mode

(a) Similarity measure: Max Angle (b) Similarity measure: MinMatch (`1)

Figure 9: Two Modes
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(a) Similarity measure: Max Angle (b) Similarity measure: MinMatch (`1)

Figure 10: Infinite modes
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H.-P. Kriegel, S. Brecheisen, P. Kröger, M. Pfeifle, and M. Schubert, “Using sets of feature vectors for simi-
larity search on voxelized cad objects,” in Proceedings of the 2003 ACM SIGMOD international conference
on Management of data. ACM, 2003, pp. 587–598.

S. Brecheisen, H.-P. Kriegel, and M. Pfeifle, “Efficient similarity search on vector sets,” preprint.

M. Masood and F. Doshi-Velez, “Faster mixing of bayesian non-negative matrix factorization using geomet-
rically inspired metropolis hastings proposals within gibbs sampler,” Feburary 2016, preprint.

H. Abbott and A. Liu, “Bounds for the covering number of a graph,” Discrete Mathematics, vol. 25, no. 3,
pp. 281–284, 1979.

V. Chepoi, B. Estellon, and Y. Vaxes, “Covering planar graphs with a fixed number of balls,” Discrete &
Computational Geometry, vol. 37, no. 2, pp. 237–244, 2007.

H. Edelsbrunner and J. Harer, “Persistent homology-a survey,” Contemporary mathematics, vol. 453, pp.
257–282, 2008.

G. Carlsson, “Topology and data,” Bulletin of the American Mathematical Society, vol. 46, no. 2, pp. 255–
308, 2009.

R. Ghrist, “Barcodes: the persistent topology of data,” Bulletin of the American Mathematical Society,
vol. 45, no. 1, pp. 61–75, 2008.

D. Lee and H. Seung, “Learning the parts of objects by nonnegative matrix factorization,” Nature, vol. 401,
pp. 788–791, 1999.

R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of Markov Chain Monte Carlo, vol. 2,
pp. 113–162, 2011.

22



S. Byrne and M. Girolami, “Geodesic monte carlo on embedded manifolds,” Scandinavian Journal of Statis-
tics, vol. 40, no. 4, pp. 825–845, 2013.

S. P. Brooks and G. O. Roberts, “Assessing convergence of markov chain monte carlo algorithms,” Statistics
and Computing, vol. 8, no. 4, pp. 319–335, 1998.

R. E. Kass, B. P. Carlin, A. Gelman, and R. M. Neal, “Markov chain monte carlo in practice: a roundtable
discussion,” The American Statistician, vol. 52, no. 2, pp. 93–100, 1998.

S. P. Brooks and G. O. Roberts, “Convergence assessment techniques for markov chain monte carlo,” Statis-
tics and Computing, vol. 8, no. 4, pp. 319–335, 1998.

V. Chvatal, “A greedy heuristic for the set-covering problem,” Mathematics of operations research, vol. 4,
no. 3, pp. 233–235, 1979.

23


	1 Introduction
	2 Background
	2.1 Current Measures of Sampling Quality
	2.2 Bayesian Non-negative Matrix Factorization

	3 Additional Measures of Sample Quality: Notions of Coverage
	3.1 Measures of Similarity
	3.2 Measures of Coverage

	4 Case Study
	4.1 Synthetic Data Sets
	4.1.1 Larger Data Sets

	4.2 Inference Approaches
	4.3 Evalution Metrics

	5 Results
	6 Conclusion
	Appendix A Comparison of Metrics and Algorithms (Small Dataset)
	Appendix B Comparison of Metrics and Algorithms (Large Dataset)
	Appendix C Persistent Minimum Covering Number Plots (Small Dataset)
	Appendix D Persistent Minimum Covering Number Plots (Large Dataset)

