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Abstract

The evaluation of interpretable machine learning systems is challenging, as ex-
planation is almost always a means toward some downstream task. In this work,
we carefully control a number of properties of logic-based explanations (overall
length, number of repeated terms, etc.) to determine their effect on human ability
to perform three basic tasks: simulating the system’s response, verification of a
suggested response, and counterfactual reasoning. Our findings about how each of
these properties affect the ability of humans to perform each task provide insights
on how we might construct regularizers to optimize for task performance.

1 Introduction

The relatively recent widespread adoption of machine learning systems in real, complex environ-
ments has lead to an increased attention to interpretable machine learning systems. Many forms of
explanation have been proposed, ranging from classical approaches such as decision trees [Breiman
et al., 1984] to input gradients or other forms of (possibly smoothed) sensitivity analysis [Selvaraju
et al., 2016; Ribeiro et al., 2016; Lei et al., 2016], generalized additive models [Caruana et al., 2015],
procedures [Singh et al., 2016], falling rule lists [Wang and Rudin, 2015], exemplars [Kim et al.,
2014; Frey and Dueck, 2007] and decision sets [Lakkaraju et al., 2016]—to name a few.

However, there has been relatively little attention given to what kind of explanation is best in what
situation, and relatedly, what are the properties of a good explanation. In this work, we make
modest but concrete strides toward the larger goal of quantifying what makes explanations human-
interpretable via carefully controlled experiments in which we systematically vary properties of an
explanation to measure their effect on the performance of several basic tasks. Our results help inform
what kinds of regularizers might help optimize the utility of the explanation in a variety of situations.

2 Related Work

The field of interpretable machine learning is large. Within interpretable machine learning, most
user-study based evaluations fall into an A/B testing framework, in which the user-study is used
to argue that a propsed form of explanation is better than some alternative (e.g. [Kim et al., 2014;
Lakkaraju et al., 2016; Subramanian et al., 1992; Huysmans et al., 2011; Hayete and Bienkowska,
2004; Freitas, 2014]). These are valuable for demonstrating the value of the proposed form of
explanation, but generalizing from these studies is often non-obvious.

In contrast, our work falls into a smaller category of literature that carefully varies explanation
properties to understand how those properties affect performance. In this vein, Kulesza et al. [2013]
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performed a qualitative study in which they varied the soundness (nothing but the truth) and the
completeness (the whole truth) of an explanation in a recommendation system setting. They found
completeness was important for participants to build accurate mental models of the system. Allahyari
and Lavesson [2011]; Elomaa [2017] also find that larger models can sometimes be more interpretable.
Schmid et al. [2016] find that human-recognizable intermediate predicates in inductive knowledge
programs can sometimes improve simulation time. Poursabzi-Sangdeh et al. [2017] manipulate the
size and transparency of an explanation and find that longer explanations and black-box models are
harder to simulate accurately on a real-world application predicting housing prices.

3 Methods

We conduct three experiments to test how increasing different types of complexity affects the usability
of explanations for three tasks. The explanations we use are decision sets, as they are easy for humans
to scan and parse [Lakkaraju et al., 2016], but also have a large number of potentially-relevant
properties that might make them easier or harder to use. The tasks we consider are: simulating the
system’s response, verification of a suggested response, and counterfactual reasoning because they
are general enough to be relevant across a variety of domains [Doshi-Velez and Kim, 2017]. Through
this work, we hope to gain an understanding of which types of complexity significantly increase the
cognitive burden of using explanations and in which contexts. In this section we describe the specific
explanations, types of complexity and tasks we study, as well as the metrics we record and the study
design. See Narayanan et al. [2018] for more details.

Figure 1: Screenshot of or interface for the verification task. The bottom left box shows the
observations we give participants about the alien, and a meal recommendation. They must then say
whether the machine learning system agrees with the recommendation based on the explanation.
Each task is coded in a different color (e.g. yellow) to visually distinguish them.

Domain In our study, participants were told they were assisting with a meal recommendation system.
The system made recommendations for an alien to avoid any biasing effects of prior knowledge.
All participants were given a set of observations about the alien–the input to the machine learning
system, and the alien’s preferences–the explanation of the system. Some tasks also required a
recommendation–the output of the machine learning algorithm. Figure 1 shows our experimental
interface. The form of this design was chosen based on feedback from pilot studies.

Tasks We consider three canonical tasks suggested in Doshi-Velez and Kim [2017] that are likely to
be relevant for a variety of specific situations:

• Simulation Forward simulating the system’s recommendation given an explanation and a
set of input observations. Participants were given observations about the alien and the alien’s
preferences and were asked select ingredients that would satisfy the alien. See Figure 3.
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• Verification Verifying whether the system’s recommendation is consistent given an expla-
nation and a set of input observations. Participants were given a recommendation as well as
the observations and preferences and asked whether it would satisfy the alien. See Figure 1.

• Counterfactual Determining whether the system’s recommendation changes given an
explanation, a set of input observations, and a perturbation that changes one dimension
of the input observations. Participants were given a change to one of the observations in
addition to the observations, preferences and recommendation and asked whether the alien’s
satisfaction with the recommendation would change. See Figure 4.

Types of Complexity To carefully control various properties of the explanation and the context, we
generated decision sets by hand that mimic those learned by machine learning systems. We conducted
3 experiments that varied the following sets of properties (all other factors were kept constant):

• V1: Explanation Size. We varied the size of the explanation across two dimensions: the
total number of lines in the decision set (2, 5, or 10), and the number of terms within the
output clause (2 or 5). For example, Figure 1 has 4 lines (in addition to the 3 lines defining
explicit cognitive chunks), and 3 terms in each output clause.

• V2: Creating New Types of Cognitive Chunks. We varied the total number of cognitive
chunks (1, 3, or 5), and whether they were implicitly or explicitly defined. For example,
Figure 1 has 3 explicit cognitive chunks, and Figure 4 has 3 implicit cognitive chunks.

• V3: Repeated Terms in an Explanation. We varied the number of times that input terms
were repeated in the decision set (2, 3, 4 or 5). For example, each of the observations in
Figure 1 appears twice in the explanation (the observations used in the explicit cognitive
chunks appear only once, but the final chunk appears twice).

Expt Condition Time Param P Val Subjective Param P Val Accuracy Param P Val
V1 Num. Lines 1.01 0.00317 0.0491 5.57E-11 0.00598 0.842
V1 Num Out. Terms 1.57 0.0378 0.116 2.54E-12 -0.117 0.0771
V1 Counterfactual 13.7 1.79E-06 1.04 1.5E-59 -1.7 1.24E-11
V1 Verification 4.11 0.121 0.169 0.00475 0.476 0.174
V2 Implicit -7.93 0.000489 -0.121 0.0171 -0.179 0.222
V2 Num. Chunks 5.88 4.45E-17 0.254 3.76E-54 -0.0364 0.416
V2 Counterfactual 19.9 6.65E-12 0.52 1.61E-16 -0.773 4.36E-06
V2 Verification 15.4 1.27E-08 0.092 0.14 0.532 0.00904
V3 Num. Reps 0.884 0.463 0.0676 0.00411 -0.0473 0.524
V3 Counterfactual 16.6 1.91E-06 0.767 2.41E-30 -0.67 0.00066
V3 Verification 13.7 3.03E-05 0.169 0.00899 0.196 0.371

Table 1: Significance tests for each factor. Linear regression weights were computed for response time
and subjective evaluations (treated as continuous). A regression was computed for each dependent
variable for each experiment (9 total). Highlighted p-values are significant at α = 0.05 with
Bonferroni correction across all tests of all experiments. The ‘param’ (or coefficient) indicates the
magnitude and direction of the effect. The null hypothesis is that the coefficient is zero. Counterfactual
and verification coefficients describe changes with respect to simulation.

Metrics To quantify the interpretability of the explanations, we recorded three metrics: response
time, accuracy, and subjective satisfaction. Response time was measured as the number of seconds to
respond; accuracy was the correctness of the response; and subjective satisfaction was measured on a
1 to 5 Likert scale from very easy to use to very hard to use. Subjective ratings were collected after
the response so as not to add to the response time.

Experimental Design Each experiment consisted of of a block of three questions—one for each
task—for each combination of complexity settings. For example, V1 had 6 blocks–1 for each
combination of number of lines and terms in the ouput clause. Within a block, the logical structure of
the questions was identical, but the questions used different literals (i.e. we changed the words used
in the observations) so that they would appear distinct to participants. (In pilot studies, we found this
level of obsfuscation was sufficient.) We randomized question order to avoid learning effects, but
they were always presented in this order: verification, simulation, counterfactual.
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Participants Participants were recruited via Amazon Mechanical Turk. Before starting the experi-
ment, they were given a tutorial on each task and practice questions. They were told that their primary
goal was accuracy, and their secondary goal was speed. Participants could only participate in one
experiment (V1, V2, or V3). The IRB of Harvard University approved this study.

4 Results and Discussion

We recruited 150 subjects for each of our three experiments for a total of 450 subjects. Participants
who did not answer sufficient practice questions correctly were not included in the analysis. We also
excluded 5 questions that took longer than 10 minutes to answer from the analysis. US and Canadian
participants with moderate to high education dominate this survey, so results may differ for different
populations. Our exclusion criteria may artificially increase accuracy, but this criterion helped filter
the participants breezing through the experiment for their payment. See appendix for table 2 that
summarizes the demographics of our subjects across the experiments, and table 3 that describes the
total number of participants that met our inclusion criteria.

Figure 2 presents the response time, subjective score and accuracy across all three experiments.
Response time is shown for subjects who correctly answered the questions. Response time and
subjective evaluation were normalized across participants by subtracting the participant-specific mean.
The statistical significance of each type of complexity’s affect on performance was assessed via linear
regression for response time and subjective score, and logistic regression for accuracy carried out
with the statsmodels library [Seabold and Perktold, 2010]. Table 1 summarizes these results. Bold
indicates significant at α = 0.05 after Bonferroni correction across all tests of all experiments, where
the null hypothesis is that the coefficient is zero.

(a) V1 (b) V2 (c) V3

Figure 2: Accuracy, response time and subjective evaluation. Vertical lines signify standard errors.

The magnitude of performance effect varies by the type of complexity. Across all tasks, across
all properties, we see a general trend that increasing complexity increases response time and subjective
scores (higher means greater dissatisfaction). However, changes in response time due to the number
of variable repetitions are much smaller than changes due to number of cognitive chunks. Subjective
response replicates most trends in response time with statistical significance, but fails to replicate the

4



counterintuitive finding described below. Finally, there exist fewer trends with respect to accuracy. We
hypothesize this may be because participants were tasked to be as fast as possible while being accurate.
That said, counterfactual questions have significantly lower accuracies across all experiments.

Surprisingly, implicit cognitive chunks were faster for people to process than explicit cognitive
chunks. Participants took significantly longer to answer when new cognitive chunks were made
explicit rather than implicitly embedded in a line. This is surprising because we might have expected
that even if the explanation took longer to process, it would have been subjectively easier to follow. It
would be interesting to unpack this effect in future experiments.

The type of question significantly impacted response time. Simulation questions were consistently
the fastest to answer, and the response times for counterfactual questions were consistently highest.
Verification and counterfactual reasoning both involve an extra checking step that seems to introduce
a higher cognitive burden. These results suggest that it is important to understand the downstream
application when designing interpretable machine learning systems, because the questions people ask
of explanations affect how easy they are to use.
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A Interface

Figure 3: Screenshot of our interface for the simulation task. Participants must give a valid recom-
mendation of ingredients that will satisfy the alien given the observations and the alien’s preferences.
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Figure 4: Screenshot of our interface for the counterfactual task. Participants must determine whether
the alien’s satisfaction with the meal changes under the change to the observations described in the
magenta box given the observations and the alien’s preferences.

B Participants

Feature Category : Proportion
Age 18-34 : 57.7% 35-50 : 36.7% 51-69 : 5.6%
Gender Male : 63.8% Female : 35.7%
Education High School : 34.7% Bachelor’s : 52.6% Masters and Beyond : 9.2%
Region US/Canada : 93.9% Asia : 4.1%

Table 2: Participant Demographics. There were no patients over 69 years old. 3.5% of participants
reported “other” for their education level. The rates of participants from Australia, Africa, Europe,
Latin America, and South America were all less than 1.0%. (All participants were included in the
analyses, but we do not list specific proportions for them for brevity.)

Experiment Number of Participants
Explanation Size (V1) N=59
New Cognitive Chunks (V2) N=62
Variable Repetition (V3) N=70

Table 3: Number of participants who met our inclusion criteria for each experiment.
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