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Théo Guénais * 1 Dimitris Vamvourellis * 1 Yaniv Yacoby 1 Finale Doshi-Velez 1 Weiwei Pan 1

Abstract
Traditional training of deep classifiers yields
overconfident models that are not reliable under
dataset shift. We propose a Bayesian framework
to obtain reliable uncertainty estimates for deep
classifiers. Our approach consists of a plug-in
“generator” used to augment the data with an ad-
ditional class of points that lie on the boundary of
the training data, followed by Bayesian inference
on top of features that are trained to distinguish
these “out-of-distribution” points.

1. Introduction
In high-risk domains, classifiers must provide predictive un-
certainty, so that decision making can be deferred to human
expertise when the model is in doubt. For humans to make
effective decisions under uncertainty, a classifier must fur-
thermore decompose uncertainty into: epistemic uncertainty,
uncertainty that can be reduced with more observations; and
aleatoric uncertainty, uncertainty that cannot be reduced due
to inherent noise in the system (Gal, 2016). For a classi-
fier, epistemic uncertainty can be further decomposed into
out-of-distribution (OOD) uncertainty arising in regions far
away from the high-mass regions, and model uncertainty
referring to uncertainty over the classification boundary in
the high-mass regions of the data space (Malinin & Gales,
2018). As such, OOD uncertainty depends on the expres-
siveness of the functions in the model class. The higher the
capacity of the model class, the more the models in this class
will extrapolate differently in data-scarce regions resulting
in higher OOD uncertainty.

Gaussian Processes (GPs) have long served as standard
method for providing both reliable and accurate estimates
of predictive uncertainty in classification. However, due
to their inability to scale with the number of observations,
Bayesian Neural Networks (BNNs) have been proposed as a
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scalable alternative (Neal, 2012; MacKay, 1992). BNNs pro-
vide a way to capture model uncertainty by placing a prior
distribution over network weights. Although more scalable
than GPs, inference for large BNNs remains challenging.
For this reason, Neural Linear Models (NLM) are becoming
a popular BNN replacement (Pinsler et al., 2019; Riquelme
et al., 2018). In a NLM, we place priors only on the last
layer of network weights and we learn point estimates for
the remaining weights. Inference for the last weight layer
can then be performed analytically.

Unfortunately, both BNNs and NLMs struggle with mod-
eling OOD uncertainty. While BNNs are equivalent to
GPs in the limit of infinite width (Neal, 1996), recent work
shows that, unlike GPs, the epistemic uncertainty of finite-
sized BNN classifiers does not increase in data-poor regions
(Vernekar et al., 2019b). In this work, we show that NLM
likewise struggles with providing high epistemic uncertainty
for OOD data, irrespective of the architecture chosen.

Our contributions in this paper are twofold. We first ex-
plain why, using pedagogical examples NLM classifiers are
unable to model OOD uncertainty. Specifically, we show
that in order to capture OOD uncertainty, the posteriors of
these models must include decision boundaries that prop-
erly bound the data. However, the training procedure of
NLM does not encourage learning such boundaries. Next,
we propose a novel scalable framework for training NLM
classifiers that provides reliable model uncertainty, OOD
uncertainty and aleatoric uncertainty.

On synthetic datasets we show that we attain uncertainty es-
timates comparable with that of GPs while baseline models
underestimate OOD uncertainty. On real datasets, we show
that our training framework attains higher AUC on observed
data and provides reliable epistemic uncertainty estimates
allowing for distinguish in-distribution and OOD test data.

Related Work Several non-Bayesian methods have been
proposed to model OOD uncertainty. They fall into two
categories. The first constrains a classifier to output high-
entropy predictions on a priori OOD examples (Liang et al.,
2017; Lee et al., 2017; Sricharan & Srivastava, 2018), and
the second trains a classifier on the original classes, plus an
additional class of OOD examples (Vernekar et al., 2019b;a).
However, these methods do not provide uncertainty decom-
position. In the first approach, points lying on the boundary
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(a) NN Decision Boundaries (b) GP Uncertainty (c) NLM Uncertainty (d) BNN Uncertainty

Figure 1. Neural network models cannot capture OOD uncertainty. The above shows the decision boundaries of a Neural Net (a)
along with entropy of the categorical distribution predicted by different methods: GP (b), NLM (c), BNN (d). GPs make high-entropy
(uncertain) predictions far from the training data while other models significantly underestimate OOD uncertainty.

between classes (which should have high aleatoric uncer-
tainty) and points lying on the boundary of the data (which
should have high epistemic uncertainty) both have high
predictive entropy, but the different sources of the uncer-
tainty (aleatoric and OOD) cannot be disentangled. Both
approaches do not account for uncertainty over model pa-
rameters which may lead a classifier to make overconfident
predictions for OOD points.

Background Let D = {(x1, y1), . . . , (xN , yN )} be a
dataset of N observations. Each input xn ∈ RD is a D-
dimensional vector and each output yn is a label correspond-
ing to one of K classes.

A Neural Linear Model classifier assumes the following
generative process:

y|x ∼ Cat
(
softmax(W>φθ(x))

)
, W ∼ p(W ), (1)

where φθ(x) is the output of a neural network with L num-
ber of output nodes and parameter θ, augmented with a 1 for
the bias term. We call φθ the feature map since it extracts
meaningful features from the data for the Bayesian linear
classifier. First, the feature map φθ is trained to maximize
the observed data log-likelihood:

θ∗ = argmax
θ,W

log p(y1, . . . , yN |x1, . . . , xN ; θ,W ). (2)

Then, fixing φθ∗ , we infer the posterior p(W |D, θ∗) for the
NLM classifier by either Hamiltonian Monte Carlo (Neal
et al., 2011) or mean-field Gaussian variational inference
(Ranganath et al., 2014). At test time, we make predictions
by computing the posterior predictive distribution:

p(y∗|x∗,D) =
∫
p(y∗|x∗,W )p(W |D, θ∗)dW. (3)

2. Analysis of the OOD Uncertainty of Neural
Linear Model Classifiers

In this section, we show that in order for posterior predic-
tives of NLMs to capture OOD uncertainty, these posteriors

must include decision boundaries that bound high likeli-
hood data regions. However, the training objective for NLM
classifiers does not encourage for learning these boundaries.

Neural Linear Model Classifiers are unable to model
OOD uncertainty.

In Figure 1, we visualize the entropy of the posterior predic-
tive mean of various classifiers over the input space. While
the GP classifier makes low-entropy (i.e. confident) predic-
tions for points close to the observed data and high-entropy
predictions for points far away, NLM classifiers make over-
confident low-entropy predictions far from the observed
data. The same failure can be observed in other models that
provide predictive uncertainty such as full BNN trained with
Black-Box Variational Inference (BBVI) (Ranganath et al.,
2014). The OOD uncertainty of the GP classifier comes
from the fact that a significant number of decision bound-
aries in the GP posterior properly bound each class in the
data and hence the predicted labels probabilities for points
far from the data have high variance. So why doesn’t the
posterior for NLM classifiers include such decision bound-
aries?

Neural Linear Model underestimates OOD uncertainty
because training does not encourage learning decision
boundaries that bound the data. The training objective
for the NLM model encourages φθ to extract features that
are predictive of y. But a φθ that is good for classification
(e.g. one that expresses only linear boundaries) is not neces-
sarily capable of expressing a decision boundary W>φθ(x)
that bounds the data. Hence, for these φθ’s, the resulting
NLM classifier will underestimate OOD uncertainty.

In a simple experiment, we demonstrate that the features
learned by an NLM classifier is good for classification
but is not useful for OOD detection. Consider a dataset
{(xn, yn, bn)}Nn=1, where xn is the input, yn is the label,
and bn is a binary indicator signaling whether the data-point
is OOD. We train an NLM classifier to predict y|x and en-
sure that the AUC is high. We then train a Naive Bayes
classifier to predict b given the features learned by φθ∗ .
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In Appendix E Figure 5, we see that the features learned
by φθ for classification are unable to predict the label b (i.e.
if a point is OOD). Furthermore, the posterior of the NLM
model underestimates OOD uncertainty.

In contrast, we train a neural network classifier to jointly
predict y, b given x. We then extract the learned features,
given by output of the last hidden layer φlatent(x), to predict
b. In this case, since the features are explicitly trained to
predict the OOD points, we can accurately predict b with a
Naive Bayes classifier fitted on these features. Appendix E
Figure 5 shows that the posterior of this model includes de-
cision boundaries that bound the data and thus the posterior
uncertainty is higher for OOD points. The intuition behind
this experiment forms the core of our inference framework
in Section 3.

We emphasize that we show a problem with the training
objective of NLMs and not an issue with the architecture of
the model. In fact, we show later that, given identical NLM
architectures, our training framework is able to capture OOD
uncertainty while traditional training cannot.

3. BaCOUn: Bayesian Classifier with OOD
Uncertainty

To ensure that the features of NLMs can be used to build
decision boundaries that separate data from OOD points, we
propose BaCOUn, a general training framework for NLMs:

1. Generate OOD samples on the boundary of the data.

2. Train a deterministic classifier to distinguish between the
original K classes and additionally between the generated
OOD samples.

3. Fix the features, φθ∗(x), learned by the deterministic
classifier, and fit a Bayesian logistic regression model (in
Equation 1) on these features.

By explicitly training a classifier on the boundary samples,
we show later that the learned features will be able to express
decision boundaries that bound the data, and hence the
posteriors of BaCOUn will capture OOD uncertainty.

Our framework is general, one can plug-in any method
for each step. Here, we propose one instantiation of this
framework that performs well in practice. For the first step –
generating OOD samples – we present a novel OOD sampler,
described below. For the second step, we train a deep neural
network with a softmax output activation, and for the final
step, we use Hamiltonian Monte-Carlo (HMC) as well as
mean-field BBVI on more taxing experiments.

Novel Method for Generating OOD Boundary Points
We propose a novel method to generate samples from the
boundary of a given data distribution based on Normalizing
Flows (Rezende & Mohamed, 2015; Dinh et al., 2016b;

Huang et al., 2018). In our method, we train a Real-
NVP (Dinh et al., 2016a) to maximize the log likelihood of
the data x. We then sample points on the boundary of the
latent space of the learned flow, mapping the samples back
into the data space. Details in Appendix D.

4. Experiments
Baselines. In our experiments, we compare BaCOUn with
NLM, BNN, and MC-Dropout on both synthetic and real
datasets. See Appendix B for details on each method.

Evaluation. We evaluate the fit of the learned models using
AUC. We quantitatively evaluate epistemic and aleatoric
uncertainties using in-distribution and OOD points. On
image data we additionally provide a qualitative evaluation.
We consider a model successful if it is able to have high
AUC while being uncertain about OOD points. We use the
uncertainty decomposition used by (Depeweg et al., 2017),
shown in Appendix C Equation 4.

Datasets We conduct experiments on two synthetic datasets:
the Gaussian Mixture Model dataset and the Moons dataset
(Appendix A). We also conducted experiments on two real
datasets: Wine Quality (Cortez et al., 1998) and MNIST
(LeCun & Cortes, 2010). On Wine Quality, we train our
classifier on only two of the K classes and used the re-
maining classes as OOD examples at test-time together with
artificially created OOD points (details in Appendix A.2).
On MNIST, we used examples from other datasets (CIFAR
(Krizhevsky et al.), USPS (Hull, 1994), EMNIST (Cohen
et al., 2017)), as well as boundary points created from the
normalizing flow) as example OOD points for evaluation.
See Appendix F and G for details.

5. Results
BaCOUn can capture OOD uncertainty whereas base-
lines struggle. Figure 2a shows the decision boundaries
learned by the K + 1-class classifier trained in Step 2 of
BaCOUn. The classifier labels points on the data boundary
as OOD and this labeling generalizes to regions far from
the data. The final hidden layer of this classifier encodes
these decision boundaries. Consequently, NLM trained with
BaCOUn expresses higher uncertainty far from the training
data, recovering the optimal GP behaviour. Appendix G
Figure 10 shows that BaCOUn captures OOD uncertainties
even in more complex data settings like the Moons dataset.
Appendix G Figure 11 and Figure 12 show that baselines
significantly underestimate OOD uncertainty.

BaCOUn provides simple decomposition of total uncer-
tainty. Using BaCOUn, we are able to reliably decompose
the total predictive uncertainty into: epistemic uncertainty
(Figure 2d), arising due to lack of knowledge in a region of
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(a) Decision Boundaries (b) Total Uncertainty (c) Aleatoric Uncertainty (d) Epistemic Uncertainty

Figure 2. Uncertainty decomposition provided by BaCOUn along with the decision boundaries learned in Step 2 of BaCOUn’s training
procedure (a). BaCOUn captures OOD uncertainty and decomposes uncertainty accurately, giving high aleatoric uncertainty in regions of
class overlap and high epistemic uncertainty in regions far from the observed data.
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Figure 3. Epistemic and aleatoric uncertainty of BNN, NLM, MC-
Dropout and BaCOUn for in-distribution points, instances of held-
out classes and OOD points on Wine Quality dataset. BaCOUn
provides reliable OOD uncertainty while maintaining accurate
aleatoric uncertainty. Specifically, epistemic uncertainty is maxi-
mized while aleatoric uncertainty is minimized for OOD points.

the feature space, and aleatoric uncertainty (2c), arising due
to class overlap. To our knowledge, there is no easy way to
decompose GP predictive uncertainty.

BacOUn provides interpretable uncertainty in real data
settings. Using Wine Quality, we show that BaCOUn pro-
vides uncertainties on real datasets that align with human
intuition. Figure 3 shows that BaCOUn returns higher epis-
temic uncertainty for instances of held-out classes (classes
3,4,8,9) compared to the uncertainty for in-distribution
points (class 5 or 7). As expected, BaCOUn gives even
higher epistemic uncertainty estimates for OOD points.
Only MC-Dropout achieves comparable performance in
terms of detecting OOD points using epistemic uncertainty;
however it fails to provide interpretable aleatoric uncer-
tainty, since it is maximized for OOD points where classes
do not overlap. In contrast, BaCOUn provides aleatoric
uncertainty that also aligns with human intuition: points
from held-out classes have comparable aleatoric uncertainty
to in-distribution samples, however aleatoric uncertainty is
much lower for OOD points, since they are sampled from

Figure 4. Aleatoric and epistemic uncertainty of rotated MNIST
images. When the rotated image looks like a known digit, both
types of uncertainties decrease; both uncertainties increase when
the rotated image does not look like a digit.

regions far from where the observed data overlap.

In Appendix F, Figure 7, we show that BaCOUn’s uncer-
tainty estimates for OOD data sampled from EMNIST, CI-
FAR and USPS align well with human intuition: BaCOUn
gives high epistemic uncertainty for CIFAR samples (which
do not contain digit-like images), whereas EMNIST sam-
ples (which has some data overlap with MNIST) are given
the highest aleatoric uncertainty. In comparison, baselines
either provide epistemic uncertainties that do not align with
intuition or aleatoric uncertainties that are hard to interpret.

In a qualitative experiment, we track changes in BaCOUn’s
resulting uncertainties as we rotate an image (Figure 4). We
see that, as expected, epistemic uncertainty is low when the
rotated image looks like a digit and is high when it does
not. Aleatoric uncertainty is high when a rotated image
can be ambiguously classified and low when it cannot. In
Appendix G, we describe additional similar experiments.

6. Conclusion
In this paper, we show that BNNs, NLMs and MC-Dropout
underestimate OOD uncertainty in classification tasks. We
propose a novel Bayesian classifier, BaCOUn, which ex-
plicitly encourages posterior to capture OOD uncertainty.
On synthetic and real datasets with complex patterns and
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sources of uncertainty, we demonstrate the ability of epis-
temic uncertainty produced by BaCOUn to distinguish in-
distribution and OOD points. We further show that the un-
certainty decomposition provided by BaCOUn aligns with
human intuition on image datasets.
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A. Data
A.1. Synthetic Datasets

Gaussian Mixture We generate points from a Gaussian
Mixture Model with 3 components corresponding to 3 dif-
ferent classes. The three classes are distributed with means
(0, 2), (−

√
3,−1) and (

√
3,−1) respectively, and identical

isotropic covariance matrices σ · IR2 . We set σ = 3 in order
to obtain class overlap. We generate 500 points per cluster,
for a total of 1500 training points.

We generate 2000 OOD points for BaCOUn by sampling
from a circle of radius 3 bounding the data distribution in
latent space, and then mapping the points into input space
using BaCOUn’s Normalizing Flow. See D for more details
about the generation of OOD points.

Uncertainties of BaCOUn and baseline methods are pre-
sented in F.

Moon-shaped data We use sklearn (Pedregosa et al.,
2011) and its built-in “two-moons” data generator to gener-
ate K = 2 classes, with 2000 points per class (for a total of
4000 data points), using a noise parameter of 0.05. For this
dataset, we generate 3000 OOD points. Uncertainties for
various models are presented in F and G.

A.2. Real Datasets

UCI Wine Quality This dataset (Cortez et al., 1998) con-
tains instances of wines with ratings ranging from 3 to 9.
All features are standardized to have zero mean and unit
standard deviation.

We use class 5, 7 during training and we test the model’s
predictions and corresponding uncertainties on held-out in-
stances of class 5, 7, as well as on instances of held-out
classes 3,4,8,9 and artificially created OOD points.

OOD points are created by inflating the first dimension with
Gaussian noise centered at 10 with unit variance (i.e. the first
dimension is larger by 10 standard deviations on average
compared to in-distribution points). Boundary points used
to train BaCOUn were generated by mapping shells of radii
5 and 5.1 in latent space into input space (see D for details).

Model uncertainties are presented in F.

Images We use instances from MNIST (LeCun & Cortes,
2010) as in-distribution points and points from USPS (Hull,
1994), EMNIST (Cohen et al., 2017), CIFAR (Krizhevsky
et al.) as OOD instances. All datasets are normalized using
the training set’s statistics, converted to grayscale and the
dimensions reduced to 28× 28 when necessary.

USPS consists of digits, similar to MNIST, however the im-
ages present patterns different from MNIST. Therefore, we

intuitively expect that epistemic and aleatoric uncertainties
should be relatively high for USPS instances compared to
in-distribution MNIST digits. EMNIST consists of some
digit images which are also part of MNIST, but also in-
cludes other categories such as hand-written characters. On
instances from EMNIST, we similarly expect both epistemic
and aleatoric uncertainties to be relatively high.

CIFAR on the other hand is made of images which are
significantly different from the training data. Intuitively,
on CIFAR instances, a well-calibrated model would output
higher epistemic uncertainty and lower aleatoric uncertainty
than for the rest of the image datasets.

Also, a model with well-calibrated uncertainty should assign
higher epistemic uncertainty to points on the data boundary
than to in-distribution points. The boundaries used to train
BaCOUn are generated by training one normalizing flow for
each class in the training data (id est 10 normalizing flows)
and mapping a shell of radii 3 and 3.1 in the latent space
into input space for each flow (see D for details). In total,
we generate 10,000 OOD samples.

Model uncertainties are presented in F and G.

Selecting the number of OOD points The number of
OOD points is selected with a simple heuristic: the OOD
class should be (approximately) balanced with the K initial
classes in order to avoid issues related to class imbalance.
Depending on the number of classes in the data, we may
want to generate more OOD samples than the number of
samples in each class (small K) in order to properly bound
the points in that class. As the number of classes K grows,
we ensure that the OOD samples do not over-dominate the
dataset. In addition, potentially negative outcomes caused
by the inclusion of a new class in the dataset (e.g degraded
training accuracy) is mitigated when we fit a Bayesian clas-
sifier that accounts for the uncertainty over the position of
the generated boundaries.

B. Implementation details
We implement deterministic Neural Networks using Py-
Torch (Paszke et al., 2019). Bayesian layers are imple-
mented using Pyro (Bingham et al., 2019).

GMM, Moons We use similar architectures for experi-
ments on both synthetic datasets. BaCOUn and NLM are
based on a feed-forward network with 4 hidden layers of
dimensions 64, 64, 64, 1024. We use a batch size of 256, a
L2 penalty term of 1 and a dropout rate (Srivastava et al.,
2014) of 0.1.

The deterministic network is trained for 500 epochs, using
Adam optimizer (Kingma & Ba, 2014) and a learning rate
of 10−3.
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Inference for the Bayesian logistic regression built on top of
the features of the deterministic network is performed using
Hamiltonian Monte-Carlo (HMC) (Neal et al., 2011), in par-
ticular, we use the No-U-Turn Sampler (NUTS) (Hoffman
& Gelman, 2014). We run NUTS for 1000 iterations, with
100 burn-in steps.

MC-Dropout and the BNN baselines are based on a net-
work of 4 hidden layers with dimension 512. A dropout rate
of 0.2 is used for MC-Dropout, with batch sizes, number of
epochs, and learning rates the same as for the determinis-
tic network. Inference for BNN is performed using BBVI
(Ranganath et al., 2014), with 10,000 total iterations, and a
learning rate of 10−2. LeakyRelu activation was chosen (for
all networks). In all cases, 200 samples from the posterior
distribution were used.

We run each baseline with the following architectures:

• 2 hidden layers of size 64

• 4 hidden layers of size 64

• 4 hidden layers with sizes 64, 64, 64, 1024

• 4 hidden layers with size 512

The best architecture is selected for testing.

The Real-NVP normalizing flow used to generate data
boundaries consists of 5 blocks with 64 hidden neurons
each. Batch Normalization (Ioffe & Szegedy, 2015) is used
to stabilize the training. We use a batch size of 256, L2
penalty term of 4 (GMM) and 5 (Moons) and 200 (GMM)
or 100 (Moons) epochs. The learning rate for training the
flows is set to 10−3. Hyperparameters are selected using
grid search.

We note that for a fair comparison we allow a larger parame-
ters budgets for MC-Dropout and BNN trained with BBVI,
since the speed of the inference for these models allows for
larger architectures. In realistic settings, HMC sampling for
BNNs is not efficient. On the other hand, for BaCOUn and
NLM, exact inference is feasible using HMC.

It is worth noting that the expressiveness of BaCOUn frame-
work depends on the width of the last layer of the base
neural network. This is expected since the final layer of the
neural network forms an information bottleneck making it
harder to encode the boundaries of K+1 classes with a small
number of nodes.

UCI Wine Quality All models were trained using 1238
points of class 5 and 1238 of class 7. For BaCOUn training,
we additionally generated 1400 boundary OOD points.

The base for all models is a neural network with 4 hidden lay-
ers of 64 nodes each. The deterministic network is trained

for 500 epochs with Adam optimizer and a learning rate
of 10−4 and L2 penalty equal to 1. For MC-Dropout, we
use a dropout rate of 0.4 and calculated posterior predictive
mean over 500 samples.

We train BNN with BBVI (Ranganath et al., 2014) for 2000
iterations and calculated posterior predictive mean over 500
samples. The inference for Bayesian layer in NLM and
BaCOUn is performed with NUTS for 1000 steps with
a burn-in of 100 steps. The posterior predictive mean is
computed over 500 samples from the Markov chain.

To generate boundary points for BaCOUn framework, we
use one Real-NVP of 5 blocks with 64 neurons per class,
trained for 100 epochs, with batch size equal to 256, learning
rate equal to 10−3 and L2 penalty equal to 1.

Image Datasets All methods except for BNN, use a neu-
ral network with 2 Convolutional layers (kernels of size 5),
Max Pooling followed by either one or two hidden layers
of size 50, 1024 (BaCOUn) or 50 (NLM, MC-Dropout).
As a matter of fact, an additional layer does not yield better
results for NLM and MC-Dropout.

We use a batch size of 64, L2 penalty term of 1 and a
dropout rate of 0.5. The deterministic network is trained
for 15 epochs, using Adam and a learning rate of 10−3.
Inference for the Bayesian layer in NLM and BaCOUn is
performed using BBVI (for all methods), with a learning
rate of 10−2 and for 30,000 iterations.

One Normalizing Flow per class in the training data is used
to generate boundary points. Each flow had the same ar-
chitecture, that is 5 blocks with 64 hidden neurons each,
trained for 250 epochs, with a batch size of 512, and a L2
penalty of 2.

C. Uncertainty measures
The output probabilities of a K-classes classifier can be
considered as the parameters of a Categorical distribution.
Thus, entropy of the predicted Categorical distribution is
a measure of the total uncertainty in predictions of a tradi-
tional non-Bayesian classifier. However, given an ensemble
of models (such as the models obtained by sampling from
the posterior distribution over the parameters of a BNN), the
entropy of the posterior predicted Categorical distribution is
a measure of the total predictive uncertainty.

The total uncertainty can be further decomposed into:
aleatoric uncertainty, arising due to noise, and epistemic
uncertainty, arising due to lack of knowledge when no data
are observed on a given region of the feature space. We can
calculate the expected entropy at a given point by averaging
the entropies of the Categorical distributions predicted by
each member of the ensemble. This is a measure of aleatoric
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uncertainty in predicting a single point. Finally, the Mutual
Information (MI) between the categorical label y and the pa-
rameters of the model W (i.e. in deep learning models these
are the weights of the network), calculated by subtracting
the expected entropy from total entropy, is a measure of the
spread of the ensemble, and in turn a measure of epistemic
uncertainty (Depeweg et al., 2017):

I(y,W |x∗,D)︸ ︷︷ ︸
Epistemic Uncertainty

=H[Ep(W |D)[p(y|x∗,W )]]︸ ︷︷ ︸
Total Uncertainty

− Ep(W |D)[H[p(y|x∗,W )]]︸ ︷︷ ︸
Expected Aleatoric Uncertainty

(4)

D. Generating boundary points with
Normalizing Flows

Normalizing Flows (Rezende & Mohamed, 2015; Dinh
et al., 2016b; Huang et al., 2018) are generative models
that use the change of variables theorem to transform a sim-
ple distribution p(z) into a complex distribution p(x) using
a function f−1φ (z), composed of a sequence of simple in-
vertible transforms with cheaply computable Jacobians (for
tractability). Since directly sampling from the “boundary”
of the data manifold in the original data space is a compli-
cated, we propose to train a normalizing flow to maximize
the log likelihood of the x’s, and then use the boundary in
the latent space of the flow to generate data lying on the
boundary of the data-space. Specifically, since we assume a
simple distribution over the latent space, f(X) ≈ N (0, σ)
in Z , we propose to sample z̃ ∈ BoundZ , the latent bound-
ary and use our flow to map it into the input space, obtaining
x̃ = f−1(z̃). In practice, we choose BoundZ to be a shell
of given inner and outer radii, that is, {z̃|α < d(0, z̃) < β}.
For example, in the case of a uni-dimensional standard
Gaussian distribution, since approximately 99% of the prob-
ability mass is in the interval [−3; 3], we may want to invert
points that are sampled at the boundary of this interval and
we consider BoundZ =]− 3− η;−3[∪]3; 3 + η[, where η
is a smoothing term.

E. Pathologies of the Neural Linear Model
In this section we show that in an NLM classifier, one gen-
erally does not learn features capable of expressing OOD
uncertainty. In NLM training, one learns features φθ by max-
imizing the log likelihood of the observed data, as shown
in Equation 2. While the learned φ∗ is good for classifi-
cation, it is not capable of expressing the boundary of the
high-mass region of the data. Specifically, the learned basis
can express functions that separate the classes, but not func-
tions that surround the data, and as a result cannot model
a distribution over decision boundaries that surrounnd the
data (corresponding to OOD uncertainty).

We verify this hypothesis as follows: consider a synthetic
dataset {(xn, yn, bn)}Nn=1, where xn is the input, yn is the
label, and bn is a binary indicator signaling whether the
data-point is OOD or not. We train a classifier to predict
y|x (as in Equation 2). We then fix the features given by
the last hidden layer of this classifier, φ(x; θ∗), and train a
logistic regressor to predict b|x. In other words, we train
a regressor to map φ(x) → b. As demonstrated in Figure
5, this learned classifier is incapable of learning b|x given
features useful for predicting y|x. Specifically, far from
the data, the learned classification boundaries incorrectly
generalize along the boundaries between the original K
classes, as opposed to between the in-distribution data and
the OOD data. As a result, a Bayesian logistic regression
model trained using this learned basis functions will not be
able to express functions that surround the data, and thus
will not model OOD uncertainty. In contrast, we train a
classifier to predict y, b|x and then use the learned features
to predict b|x (i.e φ(x)→ b). In this case, since the basis is
explicitly trained to predict the OOD points, the resultant
classifier predicts b|x accurately.

We emphasize that these findings show a pathology of the
training objective. Thus, increasing the dimensionality and
expressivity of the basis will not help. In fact, we show
later that BaCOUn is able to model OOD uncertainty while
remaining predictive of y for the same capacity networks.

Based on this evidence, we further hypothesize that with
finite-sized BNNs, the uncertainty over the weights does
not add enough diversity of features in order to model OOD
uncertainty, in contrast to a GP which has an infinite dimen-
sional basis.
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Figure 5. Comparison of features used to classify OOD points vs. non-OOD points. Left: We train the features to maximize the log
likelihood of the data (i.e. to classify the points into their respective mixture components correctly). We see that a classifier given these
features fails to classify points as OOD vs. non-OOD fails. Specifically, far from the data the learned classification boundaries generalize
along the boundaries between the original K classes as opposed to between the in-distribution data and the OOD data. Right: We train
the features using BaCOUn’s basis functions – i.e. we train on the original K classes (corresponding to the mixture components) and
additionally a class representing the boundary of the data. We see that using those features, a classifier trained to classify points as OOD
or non-OOD performs well.

F. Quantitative Results
F.1. BaCOUn models OOD uncertainty

GMM In Table 1, we present the aleatoric and epistemic
uncertainties obtained by BaCOUn on the GMM dataset.
We use a grid of the input space [15, 17.5]× [15, 17.5], “far”
from the observed data manifold (and consider it“OOD”).
We also take points from high data density with no class
overlap (“In”) as well as points from a region with high
class overlap (“Middle”).

We take 100 points from each region, and report averages
of the uncertainties obtained by the different methods, as
well as the classification accuracy for each method. The
models used are: the BaCOUn framework, a BNN fitted
with BBVI, MC-Dropout (MCD) and a Gaussian Process
(GP). All models provide relatively similar accuracies and
aleatoric uncertainties in all regions. However, only the
Gaussian Process (that we consider more or less as the gold
standard) and BaCOUn provides reliable epistemic uncer-
tainty in the OOD region. BNN, NLM and MC-Dropout
dramatically fail by providing excessively low epistemic
uncertainty for OOD points.

F.2. BaCOUn yields interpretable aleatoric and
epistemic uncertainty

In both our experiments on the Wine Quality dataset and Im-
ages datasets, BaCOUn is the only approach that provides
interpretable and accurate epistemic and aleatoric uncer-
tainty. Here, we define interpretable as aligned with human
intuition about what is considered OOD. Specifically, on

both datasets we construct OOD examples using either held-
out classes or other datasets, which a human would agree
are considered OOD with respect to the training data. We
then check whether models distinguish the original training
data (as in-distribution) from the held-out classes / different
datasets (as OOD data). In all cases, baselines systemat-
ically fail to decompose uncertainty accuracy, producing
over-confident predictions, while BaCOUn is able to cor-
rectly distinguish between OOD and in-distribution.

Wine quality dataset In Table 2 and 3, we show the ac-
curacy (as a goodness of fit indicator) and decomposition
of uncertainties obtained by BaCOUn and the baselines. In
Figure 6, we additionally present boxplots that summarize
the entire distribution of the uncertainties.

Image Datasets To check whether BaCOUn’s uncertainty
decomposition aligns with human intuition, we used MNIST
as the training data (and thus the “in-distribution” data), and
other datasets (CIFAR, USPS, EMNIST) as OOD examples,
since a human would regard those as qualitatively different
from MNIST. In Figure 7 and 8, we present the mean ±
standard deviation of the epistemic and aleatoric uncertain-
ties obtained on different image datasets. As shown in the
figures, uncertainties obtained using MC-Dropout or a BNN
(with BBVI) do not seem to align with human intuition, with
either the epistemic or aleatoric uncertainty being predomi-
nant and the other uncertainty being negligible. The Neural
Linear Model appears to have uncertainties that align better
with human intuition; however, for NLM, the uncertainties
on OOD points close to the data manifold (i.e. on the bound-
ary) extremely low, implying overconfident predictions. We
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Model Accuracy Aleatoric Epistemic

In-Dist In Out Middle In Out Middle
BaCOUn 0.94 0.11 0.15 0.30 0.03 0.74 0.08

BNN 0.93 0.10 8.7e-4 0.32 0.07 0.04 0.11
MCD 0.94 0.123 5.8e-05 0.40 0.01 8.4e-06 0.03
GP 0.95 0.42 1.1 0.54 0.42 1.1 0.54

Table 1. Results on synthetic GMM dataset. The uncertainty estimates are averaged over three types of regions: “In”, which corresponds
to in-distribution points in regions p(x) is high and the classes do not overlap, “Out”, which corresponds to OOD points far from the
observed data, and “Middle”, which correspond to in-distribution points in regions of high class overlap.

Model AUC Epistemic (×10−2) Epistemic Pct Change From In

In In Held-Out Classes OOD Held-Out Classes OOD
BaCOUn 0.862 0.089 0.121 0.667 0.357 6.479

BNN 0.854 1.719 1.492 0.96 -0.132 -0.441
MCD 0.852 3.225 3.622 9.19 0.123 1.85
NLM 0.856 0.049 0.046 0.02 -0.047 -0.581

Table 2. Epistemic uncertainty obtained by BaCOUn, BNN, MCD and NLM on the Wine Quality dataset. BaCOUn provides higher
epistemic uncertainty for points of held-out classes and much higher epistemic uncertainty for OOD points compared to in-distribution
points.

Model Aleatoric Aleatoric Pct Change From In

In Held-Out (3,4,8,9) Held-Out (6) OOD Held-Out (3,4,8,9) Held-Out (6) OOD
BaCOUn 0.308 0.269 0.392 0.031 -0.127 0.273 -0.899

BNN 0.245 0.212 0.320 0.112 -0.136 0.308 -0.543
MCD 0.392 0.354 0.45 0.413 -0.095 0.149 0.054
NLM 0.266 0.224 0.343 0.023 -0.159 0.291 -0.914

Table 3. Aleatoric uncertainty obtained by BaCOUn, BNN, MCD and NLM on the Wine Quality dataset. BaCOUn provides aleatoric
uncertainty which is higher for class 6 which contains many instances which are similar to both points of class 5 and class 7, while
aleatoric uncertainty is much lower for OOD points far from where classes overlap.
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Figure 6. Epistemic and aleatoric uncertainty of BNN, NLM, MC-Dropout and BaCOUn for in-distribution points (i.e. held-out instances
of class 5 and 7), instances of held-out classes (i.e. classes 3,4,8,9) and OOD points. BaCOUn provides reliable OOD uncertainty while
maintaining accurate aleatoric uncertainty. Specifically, epistemic uncertainty is maximized for OOD points while aleatoric uncertainty is
minimized in OOD regions where data have not been observed.

hypothesize that for robustness evaluations and downstream
tasks, the Neural Linear Model could be easily attacked with
adversarial samples, generated “close enough” to the data
manifold. Lastly, as desired, BaCOUn learns models with
low epistemic uncertainty on the in-distribution points and
high epistemic uncertainty on the OOD points (both close
to and far from the data).
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Figure 7. Mean ± standard deviation of the epistemic uncertainty obtained on the different datasets by BaCOUn and its competitors.
Despite the apparent good intuitive results obtained by the NLM and a BNN run with BBVI, those results are to be contrasted with the
inaccurate aleatoric uncertainty obtained below.
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Figure 8. Mean ± standard deviation of the aleatoric uncertainties obtained by different models on the image datasets.

G. Qualitative Results
G.1. BaCOUn provides GP-like behavior

Figure 9 shows that, on the moon-shaped clusters dataset
(see Appendix A), BaCOUn learns GP-like uncertainty
whereas MC-Dropout and NLM do not. Figures 10, 11,
12 show the uncertainty decomposition of BaCOUn, MC-
Dropout and NLM on the moons dataset, respectively. Ba-
COUn is the only model that has increasing epistemic un-
certainty as distance from the data increases; the remaining
models make overconfident predictions nearly everywhere
in the data-space. Moreover, MC-Dropout and NLM have
high aleatoric uncertainty in data-poor regions where the
classifier should only have high epistemic uncertainty. Sim-
ilarly, we present the uncertainty decomposition obtained
by the aforementioned methods on the GMM data (see Ap-

pendix A) in Figures 14, 15, 16, 17 and 18.

G.2. BaCOUn provides interpretable uncertainty

Individual Examples for Models Trained on MNIST
On a set of specific inputs, we demonstrate that in com-
parison to baselines, BaCOUn is able to obtain uncertainty
decomposition that align with human intuition. That is,
BaCOUn gives higher epistemic uncertainty on OOD data
points that are

• in the MNIST dataset but not in the training data (Fig-
ure 19)

• in the USPS dataset (Figure 20 and 21)

• artificially generated to lie on the boundary of the
MNIST data (Figure 22)
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(a) Gaussian Process (b) BaCOUn (c) MC-Dropout (d) NLM

Figure 9. Comparison of Total Uncertainty. BaCOUn is the only model which obtains GP-like uncertainty, with high uncertainty far
from the observed data as well as in regions of high class overlap.

(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 10. BaCOUn Uncertainty Decomposition. BaCOUn provides reliable OOD uncertainty while maintaining accurate aleatoric
uncertainty in regions with high class overlap.

(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 11. MC-Dropout Uncertainty Decomposition. The model overgeneralizes and produces overconfident predictions in regions of
low-data density, failing to provide well-calibrated OOD uncertainty.

(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 12. NLM Uncertainty Decomposition. Similarly to MC-Dropout, the model overgeneralizes and produces overconfident predic-
tions in regions of low-data density, failing to provide well-calibrated OOD uncertainty.
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(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 13. BNN Uncertainty Decomposition. A BNN provides the same pattern, as MC-Dropout and the NLM: the OOD uncertainty is
underestimated in some directions.

(a) Gaussian Process (b) BaCOUn (c) MC-Dropout (d) NLM

Figure 14. Comparison of Total Uncertainty. BaCOUn is the only model which obtains GP-like uncertainty, with high uncertainty far
from the observed data as well as in regions of high class overlap.

(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 15. BaCOUn Uncertainty Decomposition. BaCOUn provides reliable OOD uncertainty while maintaining accurate aleatoric
uncertainty in regions with high class overlap.

(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 16. MC-Dropout Uncertainty Decomposition. The model overgeneralizes and produces overconfident predictions in regions of
low-data density, failing to provide well-calibrated OOD uncertainty.
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(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 17. NLM Uncertainty Decomposition. Similarly to MC-Dropout, the model overgeneralizes and produces overconfident predic-
tions in regions of low-data density, failing to provide well-calibrated OOD uncertainty.

(a) Decision Boundary (b) Aleatoric Uncertainty (c) Epistemic Uncertainty

Figure 18. BNN Uncertainty Decomposition. A BNN provides the same pattern, as MC-Dropout and the NLM: the OOD uncertainty is
underestimated in some directions.

In all of these case, baselines consistently make over-
confident predictions (even when wrong), whereas BaCOUn
remains conservatively uncertain. We note that in Figures 19
and 21, baseline models make overconfident and incorrect
predictions.

Decomposition of uncertainty when crossing class
boundaries We use a Variational Autoencoder (VAE)
(Kingma & Welling, 2013), pre-trained on MNIST (Mi-
tra et al., 2019) 1 in order to to encode digits in a continuous
2D latent space. We then selected two points in the latent
space, one in each of two neighboring classes, linearly in-
terpolated between the two points, and decoded the points
in the trajectory. Figures 23 and 25 show two latent-space
trajectories, as well as the decoded digits and the uncertainty
decomposition along these trajectories. At the beginning
and end of each trajectory, BaCOUn is certain about the
digits (as it should be). In the middle of the trajectories,
when the trajectory crosses BaCOUn’s decision boundary,
we see both high epistemic uncertainty and aleatoric uncer-
tainty. This is because the classes are not perfectly separable
– digits in the middle of the trajectory look like an uncanny

1Pre-trained VAE from CreativeAI: Deep Learning
for Computer Graphics. See https://github.com/
smartgeometry-ucl/dl4g.

mixture of the two digits – leading to high aleatoric uncer-
tainty, and because between the classes there’s uncertainty
over the exact boundary, leading to high epistemic uncer-
tainty. Figures 24 and 26 show the corresponding behavior
of the NLM. They show that the NLM is over-confident
about digits in the middle of the trajectory, which do not
look realistic.

Decomposition of uncertainty when moving away from
data-rich regions In Figure 27, we demonstrate how Ba-
COUn’s aleatoric and epistemic uncertainty change when
moving away from the data-rich regions of the space. We do
this by taking a digit and adding more and more Gaussian
noise to it. We then examine the uncertainty decomposition
as the digit gets more noisy, and observe that epistemic un-
certainty increases drastically in comparison to aleatoric un-
certainty. Figure 28 shows the behavior of the NLM model
on the same noisy digits. It shows that NLM is unable to
distinguish between data-rich and data-poor regions.

BaCOUn is more certain about digits that look like they
should belong to the data In Figure 29, we present differ-
ent images from MNIST’s test set along with the uncertainty
obtained by BaCOUn as the image gets rotated by differ-
ent degrees. We observe that uncertainties increase as the
digit starts looking like an element that is not digit-like and

https://github.com/smartgeometry-ucl/dl4g
https://github.com/smartgeometry-ucl/dl4g
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Figure 19. Uncertainty decomposition on MNIST example not in MNIST training set. Given an image not in the training-set, the
BNN makes an overconfident and wrong prediction, the NLM correctly predicts the digit but does so with low uncertainty, whereas
BaCOUn provides higher epistemic uncertainty.

Figure 20. Uncertainty decomposition given USPS example for model trained on MNIST. Consider a digit that, according to a human
might or might not be a “6” (i.e. a human would have high uncertainty). On this example, BaCOUn is more uncertain (like a human)
whereas baseline methods are overconfident.

decreases back when the image looks like a MNIST digit.
These uncertainties reflect a human’s intuition of uncertain-
ties.

NLM fail to provide intuitive uncertainty decomposi-
tion In Figures, 28, 24 and 26 we present the uncertainty
metrics obtained by a NLM on the same examples as Ba-
COUn, namely, when we move away from the data-rich
regions of the space, or following a latent trajectory be-
tween two classes. We observe that the NLM often provides
overconfident predictions, even when the digits do not look
like digits from the training data (Figures 24 and 26) and fail
to provide a useful uncertainty decomposition as we move
away from the data manifold (Figure 28).
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Figure 21. Uncertainty decomposition given USPS example for model trained on MNIST. We present an example from USPS on
which all methods predict incorrectly. BaCOUn provides high epistemic uncertainty while BNN and NLM are overconfident in their
wrong prediction.

Figure 22. Uncertainty decomposition on artificially generated OOD MNIST images. We present the predictions of our methods on
points chosen from the “generated ood” dataset. We observe that the generated examples are very blurry images and thus should be
considered OOD. NLM and BNN are excessively confident in their predictions, whereas BaCOUn is appropriately more uncertain.
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(a) Linear interpolation in 2D latent space of
VAE trained on MNIST (b) Decomposition of uncertainty for digits along latent space interpolation.

Figure 23. BaCOUn’s decomposition of uncertainty across class boundaries: MNIST’s 0 and 5 classes. (a) We use a VAE to morph
a 0 into a 5 by linearly interpolating in the VAE’s latent space, (b) we present the uncertainty for the generated images. At the beginning
(and end) of the trajectory, we see that BaCOUn is confident that the digit is a 0 (and a 5). In the middle, when the trajectory crosses
BaCOUn’s decision boundary, we see both high epistemic uncertainty and aleatoric uncertainty. This is because the classes are not
perfectly separable – some digits look like both a 0 and a 5 – leading to high aleatoric uncertainty, and because between the classes there’s
uncertainty over the exact boundary, leading to high epistemic uncertainty.

(a) Linear interpolation in 2D latent space of
VAE trained on MNIST (b) Decomposition of uncertainty for digits along latent space interpolation.

Figure 24. NLM’s decomposition of uncertainty across class boundaries: MNIST’s 0 and 5 classes. We use a VAE to morph a 0 into
a 5 by linearly interpolating in the VAE’s latent space. We present the uncertainty for the generated images. NLM is highly uncertainty on
only one of the morphed digits, while it should be uncertain about several in the “middle” of the trajectory, where the digits look neither
like a 0 nor like a 5.
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(a) Linear interpolation in 2D latent space of
VAE trained on MNIST (b) Decomposition of uncertainty for digits along latent space interpolation.

Figure 25. BaCOUn’s decomposition of uncertainty across class boundaries: MNIST’s 0 and 6 classes. (a) We use a VAE to morph
a 0 into a 6 by linearly interpolating in the VAE’s latent space, (b) we present the uncertainty for the generated images. At the beginning
(and end) of the trajectory, we see that BaCOUn is confident that the digit is a 0 (and a 6). In the middle, when the trajectory crosses
BaCOUn’s decision boundary, we see both high epistemic uncertainty and aleatoric uncertainty. This is because the classes are not
perfectly separable – some digits look like both a 0 and a 6 – leading to high aleatoric uncertainty, and because between the classes there’s
uncertainty over the exact boundary, leading to high epistemic uncertainty.

(a) Linear interpolation in 2D latent space of
VAE trained on MNIST (b) Decomposition of uncertainty for digits along latent space interpolation.

Figure 26. NLM’s decomposition of uncertainty across class boundaries: MNIST’s 0 and 6 classes. We use a VAE to morph a 0 into
a 6 by linearly interpolating in the VAE’s latent space. We present the uncertainty for the generated images. NLM is highly uncertainty on
only one of the morphed digits, while it should be uncertain about several in the “middle” of the trajectory, where the digits look neither
like a 0 nor like a 6.
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Figure 27. BaCOUn’s decomposition of uncertainty when moving to data-poor regions. We take an MNIST image (left) and
progressively add more Gaussian noise to it (right) in order to move it farther and farther away from the high-mass region of the data. We
see that as we move farther from the data, epistemic uncertainty increases significantly while aleatoric uncertainty does not.

Figure 28. MLM’s decomposition of uncertainty when moving to data-poor regions. We take an MNIST image (left) and progres-
sively add more Gaussian noise to it (right) in order to move it farther and farther away from the high-mass region of the data. We see
that as we move farther from the data, epistemic uncertainty and aleatoric remains constant. As such the learned classifier is unable to
distinguish between data-rich and data-poor regions.



BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty

Figure 29. BaCOUn is certain about images that look like they belong in the training set. We take MNIST digits and rotate them.
We see that BaCOUn’s uncertainty is low when the rotated digit resembles another digit. Top: a “9” can be flipped upside-down to look
like a “6”. Bottom: a “1 ” can be flipped upside-down and will still look like a “1”.
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H. Robustness to Outliers
When dealing with OOD data and uncertainty, the question
of outliers arises and becomes an important one. Outliers
are often considered as perturbations or anomalies that one
should remove from a dataset as a pre-processing step. Even
if the border between OOD points and outliers is porous, we
present a simple and scalable approach to deal with outliers
in a dataset.

A recent line of work has focused on using Generative mod-
els for anomaly detection. For instance, (Schlegl et al., 2017)
present AnoGAN and use Generative Adversarial Networks
for Marker Discovery, whereas (Ryzhikov et al., 2019) pro-
pose to use Normalizing Flows for Bayesian inference and
deal with class imbalance. Our approach consists of using
the density modelled by BaCOUn’s Normalizing flow in or-
der to rank and remove the data points which are most likely
to be outliers. Despite its simplicity, our method provides
reliable anomaly detection in relatively simple settings and
is composed of the following steps:

• Train the Normalizing flow on the data (including po-
tential outliers).

• Compute the log probabilities of the data points under
the Normalizing low.

• Remove k data points with lowest probabilities.

To demonstrate our method, we design an experiment on
the Moons data (see Appendix A. Outliers are artificially
generated as x̃ = x + ε, where ε ∼ N (0, σ) (see Figure
30). 4000 data points are originally in the dataset, and 200
outliers are added. One Normalizing Flow is then trained on
the entire data. Due to its ability to model the data density
and the geometry of the space it assigns high probability
scores to points the closest to the data manifold and lower
probabilities to most outliers that are “far” from the data
manifold. The k points with highest probability are kept, or
equivalently, the card(X)− k are removed. We visualize
the remaining data at the end of the procedure, for different
values of k in Figure 31.

I. Future Work
In future work, we plan to address some the following
themes:

• Searching for adequate basis functions presents both
theoretical and practical challenges. As we aim to ap-
proximate a Gaussian Process, a better understanding
of the need for wider or deeper networks is of interest.

• In addition, our approach is motivated by the need
to obtain accurate uncertainty decomposition in real-

world critical applications like medical diagnosis. Us-
ing our framework in such context would be an end
goal.

• Ideally, a better theoretical understanding of the
method and the phenomenon at stake would be per-
formed, maybe in order to understand an implied rela-
tionship with Gaussian processes. We leave that aspect
to a future work.
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Figure 30. Data with outliers (a), Trained Normalizing flow and generated boundaries (b), (c) HeatMap of the Flow’s log probabilities.
Normalizing Flows are powerful tools to capture the global geometry of the problem without being overly sensitive to outliers, as shown
in (b). The boundary generated doesn’t play any role in the selection procedure, but it shows how robust the density estimation is.
Furthermore, the heatmap of the Normalizing Flow’s probabilities in (c) aligns with our intuition: points far from the training data have
lower probability under the flow.

Figure 31. k points with highest probability under the normalizing flow, for k=500 (Top left), k=2000 (Top right), k=3000 (Bottom left)
and k=4000 (Bottom right). The procedure successfully removes the points farthest away from the real data.


