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Abstract

In this work, we consider the problem of estimat-
ing a behaviour policy for use in Off-Policy Policy
Evaluation (OPE) when the true behaviour policy
is unknown. Via a series of empirical studies, we
demonstrate how accurate OPE is strongly depen-
dent on the calibration of estimated behaviour pol-
icy models: how precisely the behaviour policy is
estimated from data. We show how powerful para-
metric models such as neural networks can result
in highly uncalibrated behaviour policy models
on a real-world medical dataset, and illustrate how
a simple, non-parametric, k-nearest neighbours
model produces better calibrated behaviour pol-
icy estimates and can be used to obtain superior
importance sampling-based OPE estimates.

1. Introduction
In many decision-making contexts, one wishes to take ad-
vantage of already-collected data (for example, website in-
teraction logs, patient trajectories, or robot trajectories) to
estimate the value of a novel decision-making policy. This
problem is known as Off-Policy Policy Evaluation (OPE),
where we seek to determine the performance of an eval-
uation policy, given only data generated by a behaviour
policy. Most OPE procedures (Precup, 2000; Jiang & Li,
2015; Thomas & Brunskill, 2016; Farajtabar et al., 2018)
rely (at least partially) on the technique of Importance Sam-
pling (IS) which, when used in RL, requires the behaviour
policy to be known. However, for observational studies
in domains such as healthcare, we do not have access to
this information. One way to handle this is to estimate the
behaviour policy from the data, and then use it to do im-
portance sampling-based OPE. However, the quality of the
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resulting OPE estimate is critically dependent on the calibra-
tion of the behaviour policy – how precisely it is estimated
from the data, and whether the probabilities of actions under
the approximate behaviour policy model represent the true
probabilities.

In this work, we evaluate the sensitivity of off-policy evalua-
tion to calibration errors in the learned behaviour policy. In
particular, we perform a series of careful empirical studies
demonstrating that:

1. Uncalibrated behaviour policy models can result in
highly inaccurate OPE in a simple, controlled naviga-
tion domain.

2. In a real-world sepsis management domain, powerful
parametric models such as deep neural networks pro-
duce highly uncalibrated probability estimates.

3. A simple, non-parametric, k-nearest neighbours model
is better calibrated than all the other parametric models
in our medical domain, and using this as a behaviour
policy model results in superior OPE.

2. Background
In the reinforcement learning (RL) problem, an agent’s
interaction with an environment can be represented by
a Markov Decision Process (MDP), defined by a tuple
〈S,A, R, P, P0, γ〉, where S is the state space, A is the
action space, R(s, a, s′) is the reward function, P (·|s, a) is
the transition probability distribution, P0 is the initial state
distribution, and γ ∈ [0, 1) is the discount factor. A policy
is defined as a mapping from states to actions, with π(a|s)
representing the probability of taking action a in state s.

Let H := (s0, a0, r0, . . . , sT−1, aT−1, rT−1, sT ) be a tra-
jectory generated when following policy π, and R(H) =∑T−1
t=0 γtrt be the return of trajectory H . We can eval-

uate a policy π by considering the expected return over
trajectories when following it: V π = EH∼PπH

[
R(H)

]
. The

expectation is taken over the probability distribution of tra-
jectories under policy π. Let the value and action-value
functions of a policy π at a state s or state-action pair (s, a)
be V π(s) and Qπ(s, a) respectively. These are defined as
the expected return of a trajectory starting at state s or state-
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action pair (s, a), and then following policy π. We can write
V π = Es0∼P0

(
V π(s0)

)
.

In off-policy policy evaluation (OPE), we seek to estimate,
with low mean squared error (MSE), the value V πe of
an evaluation policy πe given a set of trajectories D =
{H(i)}ni=1 generated independently by following a (distinct)
behaviour policy πb.

Defining the importance weight (Precup, 2000),
ρt =

∏t−1
i=0

πe(a
H
i |s

H
i )

πb(aHi |sHi )
1, we can form the stepwise

Weighted Importance Sampling (WIS) estimator of V πe :

V̂ πestep-WIS =
∑n
i=1

∑T−1
t=0 γt

ρ
(i)
t∑n

i=1 ρ
(i)
t

r
(i)
t . In this work, we

consider using the Per-Horizon WIS (PHWIS) estimator,
which can handle differing trajectory lengths (Doroudi et al.,
2017), to evaluate medical treatment strategies for sepsis.
We also provide results using the Per-Horizon Weighted
Doubly Robust (PHWDR) estimator, which incorporates
an approximate model of Qπe(s, a) to lower the variance
of value estimates (Jiang & Li, 2015; Thomas & Brunskill,
2016). Further information is in the supplementary material.

3. Impact of Mis-Calibration: Toy Domain
We firstly consider the effect of poorly calibrated behaviour
policy models on OPE in a synthetic domain. The domain is
a continuous 2D map (s ∈ R2) with a discrete action space,
A = {1, 2, 3, 4, 5}, with actions representing a movement
of one unit in one of the four coordinate directions or staying
in the current position. Gaussian noise of zero mean and
specifiable variance is added onto the state of the agent after
each action. An agent starts in the top left corner of the
domain and receives a positive reward within a given radius
of the top right corner, and a negative reward within a given
radius of the bottom left corner. We set the horizon to be 15
in all experiments. A k-Nearest Neighbours (kNN) model
is used to estimate the behaviour policy distribution, and its
accuracy is varied by adjusting the number of neighbours
and training data points used.

The quality of OPE is strongly dependent on the quality
of behaviour policy estimation. Figure 1 illustrates this
via relating the average absolute error in the behaviour pol-
icy estimation 1

n

∑n
i=1 |π(a(i)|s(i)) − π̂(a(i)|s(i))|, to the

fractional error in OPE using the WIS estimator, for two
different behaviour policies. The error is calculated with re-
spect to using WIS with the true behaviour policy. Average
absolute errors in behaviour policy models of as small as
0.06 can incur errors of up over 50% in the estimated value
– having a well-calibrated model of the behaviour policy is
therefore critical for good OPE.

1We assume henceforth that for all state-action pairs (s, a) ∈
S ×A, if πb(a|s) = 0 then πe(a|s) = 0.

Figure 1. Mean and standard deviation of the fractional error in
OPE, V̂ −V

V
, as a function of the average absolute error in behaviour

policy estimation, 1
n

∑n
i=1 |π(a

(i)|s(i)) − π̂(a(i)|s(i))|, for two
different behaviour policies. The error is calculated with respect to
using WIS with the true behaviour policy. The quality of OPE is
strongly dependent on the quality of behaviour policy estimation.

4. Model calibration in the sepsis domain
As a case-study, we consider the challenge of obtaining well-
calibrated behaviour models on a real-world dataset, used in
Komorowski et al. (2016) and Raghu et al. (2017), dealing
with the medical treatment of sepsis patients in intensive
care units (ICUs). We use the same framing as Raghu et al.
(2017), where the medical treatment process for a sepsis pa-
tient is framed as a continuous state-space MDP. A patient’s
state is represented as a vector of demographic features, vital
signs, and lab values. Our state representation concatenates
the the previous three timesteps’ raw state information to the
current time’s state vector to capture trends over time. The
action space,A, is of size 25 and is discretised over doses of
two drugs commonly given to sepsis patients. The reward rt
is positive at intermediate timesteps when the patient’s well-
being improves, and negative when it deteriorates. At the
terminal timestep of a patient’s trajectory, a positive reward
is assigned for survival, and a negative reward otherwise.

4.1. Obtaining well-calibrated behaviour policy models

We consider modelling the behaviour policy, µ(a|s) via su-
pervised learning. Importantly, IS uses probabilities (rather
than class labels) and hence we require a well-calibrated
model, not just an accurate one. To evaluate calibration, we
draw a series of test states si from a held out test set, and
calculate the total variation distance between the predictive
distribution over actions from the estimated model, µ̂(·|si),
and a ground-truth distribution obtained by considering the
empirical distribution over actions from the k-nearest neigh-
bours of the state si on the held-out test set, using a custom
distance kernel that assesses physiological similarity. Intu-
itively, states that are physiologically similar should have
similar treatment (behaviour policy) distributions. For more
information, see the supplementary material.
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Approximate kNN produces better calibrated probabil-
ities than parametric models. Table 1 shows the average
total variation distance (over 500 test states) between the
estimated and target behaviour distributions for different
approximate behaviour policy models: logistic regression
(LR), random forest (RF), neural network (NN), and an
approximate kNN model using random projections (Indyk
& Motwani, 1998) (used instead of full kNN for its com-
putational efficiency). The parametric models are poorly
calibrated, especially for sampled states with high severity,
where there are fewer data points available for estimation.

Severity LR RF NN Approx kNN

0 - 4 0.249 0.214 0.213 0.129
5 - 9 0.269 0.254 0.246 0.152

10 - 13 0.309 0.309 0.399 0.210
14 - 23 0.356 0.337 0.426 0.199

Table 1. Average total variation distance between the estimated and
target behaviour policy distributions for different models; logistic
regression (LR), random forest (RF), neural network (NN), and
approximate kNN; stratified by patient severity score (SOFA). The
parametric models are surprisingly uncalibrated. Approximate
k-nearest neighbours has the best results.

Neural networks can produce overconfident and incor-
rect probability estimates. Figure 2 shows example pre-
dictive distributions over actions for the neural network
and approximate kNN as compared to the ground truth,
demonstrating over-confident predictions (a result noted by
Guo et al. (2017)) and incorrect predictions produced by
the neural network. Approx kNN may therefore be more
appropriate as a behaviour policy model for OPE.

5. OPE in the sepsis domain
We now use these behaviour policy models for OPE in the
sepsis domain. To obtain ground truth for evaluation, we
divide our dataset into two subsets D1 and D2. We can use
the behaviour policy from D1, π1, as the evaluation policy
with D2. As we have trajectories with π1 as the behaviour
policy in D1, we can average returns on these trajectories
to get an on-policy estimate of V π1 . Low mean squared
error between the OPE estimate and the on-policy estimate
provides an indication of correctness.

Two methods of splitting the trajectories are considered:
random and intervention splitting. In random splitting,
we randomly select half the trajectories to go in one set,
and half to go in the other. In intervention splitting, the
evaluation set contains half of the patients who were never
treated with vasopressors (chosen randomly from all such
patients), and the training set contains the remainder of pa-
tients. For both methods, results are averaged over different

(a) Overconfident predictions

(b) Incorrect predictions

Figure 2. Examples of how neural networks can suffer from poor
calibration as behaviour policy models, via overconfident (Figure
2a) and incorrect predictions (Figure 2b). The approximate kNN
model does not suffer from these issues.

behaviour/evaluation policy pairs – 50 for PHWIS and 10
for PHWDR.

In the limit of infinite data, random splitting results in iden-
tical behaviour and evaluation policies. In our setting, with
limited data, the two policies are close (average total varia-
tion distance ≈ 0.09) but this splitting method still permits
basic assessment of OPE quality. The average total variation
distance with intervention splitting is approximately 0.29.

We estimate MSE(V π1 , V̂ π1) using a bootstrapped method:

1. Sample n = 200 trajectories from D2.
2. Obtain V̂ π1 via an OPE method.
3. Repeat this process k = 500 times, representing sam-

ples from the distribution of V̂ π1 .
4. Compute the MSE between these samples and V π1 .

The approximate kNN behaviour policy model often re-
sults in the best OPE. Table 2 presents the MSE when
using the PHWIS and PHWDR estimators for OPE. The es-
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timate for Qπe(s, a) in the PHWDR estimator was obtained
using Fitted-Q Iteration (FQI) with random forests (Ernst
et al., 2005). When using the PHWIS estimator, approx-
imate kNN gives appreciably lower MSE than the neural
network (NN), reinforcing the idea that it is better calibrated
models can result in better OPE. The results with the PH-
WDR estimator do not show as clear a dependence on the
behaviour policy. This is because the Approximate Model
(AM) terms in one case (random splitting) give low MSE
estimates (MSE = 0.177), and in the other case (intervention
splitting) give high MSE estimates (MSE = 3.87). There
is therefore less of a dependence on the behaviour policy;
OPE is dominated by the AM terms.

Approx kNN NN

Random split, V̂ πePHWIS 2.48 4.04
Intervention split, V̂ πePHWIS 2.04 4.65
Random split, V̂ πePHWDR 2.04 2.02
Intervention split, V̂ πePHWDR 3.90 3.90

Table 2. Average MSE when using PHWIS and PHWDR to eval-
uate different behaviour policies (from random and intervention
splitting) in the medical domain with different behaviour policy
models: approximate kNN and neural network (NN). The approxi-
mate kNN behaviour policy model results in better OPE with PH-
WIS (pure importance sampling estimator). Approximate model
(AM) terms in the PHWDR estimator make the dependence on
behaviour policy less clear as the AM terms dominate.

6. Conclusion
In this work, we considered the problem of behaviour policy
estimation for Off-Policy Policy Evaluation (OPE), focusing
an application in healthcare – evaluating medical treatment
strategies for patients with sepsis. Via a series of empirical
studies, we showed how well-calibrated behaviour policy
models are highly important for good-quality OPE, and
powerful parametric models such as neural networks can
often give uncalibrated probability estimates. We demon-
strated that a simple, non-parametric, k-nearest neighbours
(kNN) behaviour policy model has better calibration than
parametric models and that using this kNN model for OPE
led to improved results in this real world domain. The pro-
posed procedure can be used in other situations where the
behaviour policy is unknown, and could improve the quality
of OPE estimates, which is an important step towards the
use of reinforcement learning in real-world domains.
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A Off-Policy Policy Evaluation estimators
In off-policy policy evaluation (OPE), we consider the situation where we would like to estimate the value V πe of
an evaluation policy πe given a set of trajectories D = {H(i)}ni=1 generated independently by following a (distinct)
behaviour policy πb. We would like the estimator V̂ πe to have low mean squared error (MSE), defined as follows:
MSE(V πe , V̂ πe) = EPπbH

(
(V πe − V̂ πe)2

)
. Note that when we have trajectories from πe, we can form an estimate of V πe

using V̂ πe = 1
N

∑N
i=1R(Hi), which is the Monte-Carlo estimator.

Let us define the quantity ρt =
∏t
i=0

πe(a
H
i |s

H
i )

πb(aHi |sHi )
. This is the importance weight (Precup, 2000), and is equal the ratio of the

probability of the first t+ 1 steps of trajectory H under πe to the probability under πb. 2. Using this definition, we can form
the importance sampling estimator of V πe : V̂ πeIS = 1

n

∑n
i=1 ρ

(i)
T−1

∑T−1
t=0 γt r

(i)
t

Let us also define V̂ πM (s) and Q̂πM (s, a) to be estimates of the state and action value functions for policy π respectively under
the approximate model (AM) of the MDP, M . We can use an approximate model M to directly find V πe . For example, we
can write:
V̂ πeAM = 1

n

∑n
i=1

∑
a∈A πe(a|s

(i)
0 )Q̂πeM (s

(i)
0 , a).

To estimate the quantity V πe , prior work has mainly used one or both of the techniques of Importance Sampling (IS) and
Approximate Model (AM) estimation (Thomas & Brunskill, 2016). The IS approach to evaluation relies on using the
importance weights ρt to adjust for the difference between the probability of a trajectory H under the behaviour policy πb
and the probability under the evaluation policy πe. Two commonly used estimators in the IS family, which improve on the
simple IS estimator are the step-wise IS and step-wise WIS estimators, defined as follows (with i indexing the trajectories in
D):

V̂ πestep-IS =
1

n

n∑
i=1

T−1∑
t=0

γtρ
(i)
t r

(i)
t V̂ πestep-WIS =

n∑
i=1

T−1∑
t=0

γt
ρ
(i)
t∑n

i=1 ρ
(i)
t

r
(i)
t

The step-IS estimator is an unbiased estimator of V πe but suffers from high variance (due to the product of importance
weights). The step-WIS estimator is biased, but consistent, and has lower variance than step-IS. However, its variance
can often still be unacceptably high (Thomas & Brunskill, 2016). These IS estimators can have significant bias when the
behaviour policy is unknown.

In AM estimation, we use the approximate model M to directly find V πe , as defined earlier. It may be difficult to trust these
estimators, however, given that we cannot always find their bias and variance.

Doubly Robust methods (Jiang & Li, 2015; Thomas & Brunskill, 2016) combine IS and AM techniques together in order to
reduce the variance of the resulting estimator. The Weighted Doubly Robust (WDR) estimator, which has demonstrated

effective empirical performance (Thomas & Brunskill, 2016), is defined as follows, with w(i)
t =

ρ
(i)
t∑n

i=1 ρ
(i)
t

:

V̂ πeWDR =
1

n

n∑
i=1

T−1∑
t=0

(
γtw

(i)
t r

(i)
t − γt

(
w

(i)
t Q̂πeM (s

(i)
t , a

(i)
t )− w(i)

t−1 V̂
πe
M (s

(i)
t )
))

Note that these estimators are valid for trajectories with the same length; extensions to handle trajectories of different
length can be found in Doroudi et al. (2017) – this is called the Per-Horizon extension (resulting in the PHIS and PHWIS
estimators).

Doroudi et al. (2017) defined the Per-Horizon Weighted Importance Sampling (PHWIS) estimator as follows:

V̂ πePHWIS =
∑
l∈L

Wl
1∑

{τi|Ti=l} ρ
(i)
Ti−1

∑
{τi|Ti=l}

ρ
(i)
Ti−1

Ti−1∑
t=0

γt r
(i)
t

where L is the set of all trajectory lengths, and Wl is the fraction of the total number of trajectories n with length equal to l:
Wl =

| {τi|Ti=l} |
n

2We assume henceforth that for all state-action pairs (s, a) ∈ S ×A, if πb(s|a) = 0 then πe(s|a) = 0.
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This estimator has high variance; we can define a lower variance equivalent by considering a step-wise version:

V̂ πestep-PHWIS =
∑
l∈L

Wl

∑
{τi|Ti=l}

Ti−1∑
t=0

ρ
(i)
t∑

{τi|Ti=l} ρ
(i)
t

γt r
(i)
t

We can also introduce control variates into the estimator and form the Per-Horizon Weighted Doubly Robust (PHWDR)
estimator, as follows. First, let us define V̂ πeWDR, l to be the WDR estimator given all trajectories of length l. We can write this

as follows, with w(i)
t,l =

ρ
(i)
t∑

{τi|Ti=l}
ρ
(i)
t

:

V̂ πeWDR, l =
∑

{τi|Ti=l}

T−1∑
t=0

(
γtw

(i)
t,l r

(i)
t − γt

(
w

(i)
t,l Q̂

πe
M (s

(i)
t , a

(i)
t )− w(i)

t−1,l V̂
πe
M (s

(i)
t )
))

Then, it is straightforward to write, with Wl as defined before:

V̂ πePHWDR =
∑
l∈L

Wl V̂
πe

WDR, l

B Assessing Behaviour Policy Calibration
To evaluate the calibration of models, we can calculate the distance between the estimated behaviour policy and target
behaviour policy. In order to calculate this distance, we require the target behaviour policy, which is unknown. However, we
can use domain knowledge to inform the choice of the target distribution. In this medical setting, we propose that what
governs the clinician’s choice of action is the physiological state of the patient, and that patients with similar physiological
states will be treated in similar ways. This is a reasonable approximation, given that the state encodes the patient’s physiology
effectively (Raghu et al., 2017).

We define similarity of patient states using a ‘physiological distance kernel’, which is based on Euclidean distance and
upweights certain informative features of the patient’s state. Informative features were the patient’s SOFA score, lactate
levels, fluid output, mean and diastolic blood pressure, PaO2/FiO2 ratio, chloride levels, weight, and age. These are clinically
interpretable: the SOFA score and lactate levels provide indications of sepsis severity; careful monitoring of a patient’s fluid
levels is essential when managing sepsis (Marik et al., 2017); and blood pressure indicates whether a patient is in septic
shock. These features are upweighted by a factor of 2 in our distance kernel (where D = 198, the dimensionality of our
state representation):

k(s, s′) =

D∑
i=1

wi(si − s′i)2
{
wi = 2, for informative i
wi = 1, otherwise

To find the target distribution for a given test state, we use a k-nearest neighbour (kNN) estimate with this distance kernel
and form an empirical distribution of the actions taken from the test set neighbours. We consider 150 neighbours to
provide reasonable coverage in the estimate. A Ball Tree data structure is used for efficiency. Querying this data structure
is computationally expensive (∼1 second per query), so we sample 500 states for patients at different severities (range
of SOFA score) and average results for these sets. We use the total variation distance, defined as δ(πb(·|s), π̂b(·|s)) =
1
2

∑
a∈A |πb(a|s)− π̂b(a|s)| for the discrete action space, as the distance metric. Our approximate behaviour policies are

trained on a separate training dataset and we compare the predictive distribution over actions for the test states to the result
from the kNN estimate.


