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abstractBig data (BD) in pediatric medication safety research provides many
opportunities to improve the safety and health of children. The number of
pediatric medication and device trials has increased in part because of the
past 20 years of US legislation requiring and incentivizing study of the effects
of medical products in children (Food and Drug Administration
Modernization Act of 1997, Pediatric Rule in 1998, Best Pharmaceuticals
for Children Act of 2002, and Pediatric Research Equity Act of 2003).
There are some limitations of traditional approaches to studying medication
safety in children. Randomized clinical trials within the regulatory
context may not enroll patients who are representative of the general
pediatric population, provide the power to detect rare safety signals, or
provide long-term safety data. BD sources may have these capabilities. In
recent years, medical records have become digitized, and cell phones and
personal devices have proliferated. In this process, the field of
biomedical science has progressively used BD from those records
coupled with other data sources, both digital and traditional. Additionally,
large distributed databases that include pediatric-specific outcome
variables are available. A workshop entitled “Advancing the Development of
Pediatric Therapeutics: Application of ‘Big Data’ to Pediatric Safety Studies”
held September 18 to 19, 2017, in Silver Spring, Maryland,
formed the basis of many of the ideas outlined in this article, which
are intended to identify key examples, critical issues, and future directions
in this early phase of an anticipated dramatic change in the availability and
use of BD.

Big data (BD) in pediatric medication
safety research provides many
opportunities to improve the overall
safety and health of children. In this
article, we provide the unique
perspective of a group of experts in this
field convened at a workshop designed
to give a picture of some of the major
current pediatric BD systems and to give
an overview of gaps in pediatric BD
going forward. Topics covered include
sample size, generalizability, and

duration of observation, all of which can
be improved when traditional
randomized clinical trials in children are
supplemented with data from routine
clinical practice and other settings
outside of research facilities and trials.
In this article, our objectives are to
outline our functional definition of BD
for medication safety, describe why we
need BD to help evaluate pediatric
medication safety, give examples to
describe the current state of using BD to
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evaluate pediatric medication safety,
and discuss future directions.

OUR DEFINITION OF BD FOR
MEDICATION SAFETY

In 2005, Roger Magoulas1 coined the
term BD to describe data that were
too large and complex for traditional
data-processing software to manage
and analyze. But, given the ever-
expanding capabilities of computer
processing and data storage capacity,
this concept no longer applies. A
definition that better reflects our
understanding of current data
streams in the health care arena
might read as follows: BD in health
care refers to real-world data (RWD)
as well as genomics and other
“-omics” data (eg, proteomics,
transcriptomics). RWD includes
digitized health data generated
outside of traditional randomized
clinical trial settings that can help
inform health status. Examples
include data collected from biological
samples, physiologic monitoring,
electronic health records (EHRs),
claims data and billing activities, and
product and disease registries; data
generated by patients; and data
gathered from other sources such as
mobile devices. Real-world evidence
(RWE) is the clinical evidence derived
from the application of a proper study
design and analysis to RWD to inform
the potential benefits or risks of
a medical product. RWE includes not
only observational analysis but also
various types of randomization, such
as cluster, stepped-wedge, and
individual-person randomization.2

The expansion of measurement in
multiple dimensions is at the core of
both the BD and the RWD concepts.
For example, the National Institutes
of Health All of Us Research Program
(Fig 1)3 is an effort to gather data
over many years from $1 million
people living in the United States,
with the ultimate goal of accelerating
public health and medical research.
Unlike research studies that are
focused on a specific disease or

population, All of Us will serve as
a national research resource to
inform thousands of studies. Pilot
studies under development in the All
of Us program use rich analysis of
EHR and claims data, health
applications, and fitness wearables.
Computational power no longer
seems to be a limiting factor, and
social media have dramatically
changed our ability to assess the time
dimension because data collection is
no longer limited to periodic physical
visits to a clinic or intermittent recall
of past events.

WHY WE NEED BD TO HELP EVALUATE
PEDIATRIC MEDICATION SAFETY

Studies of medication safety in
children present special challenges
often not faced in studies done in
adults. Pediatric development spans
from life in utero, potentially affected
by maternal medication exposure, to
at least 18 years of age. Although the
stages of pediatric development
involve rapid alterations in somatic
and neurologic growth,
neurocognitive development,
endocrine functions, and medication
metabolism, the most widely used
measurements in pediatrics are still
weight, height, and BMI. There is
a paucity of age-dependent or
developmental stage–specific
standards against which thousands of
developmentally influenced changes
could be measured. As a result,
although the limited standard
parameters have been important,
traditional approaches to pediatric
study designs often lack the statistical
power or phenotypic detail needed to
detect differences in important
subcategories of children. Children
are also less likely than adults to take
prescription medications and have
fewer chronic diseases, limiting the
numbers of individual medication
exposures. As a result, pediatric
clinical trials are typically relatively
small compared with adult trials.
Although enormous data streams are
now available in inpatient and

outpatient settings in an appropriate
time frame to support medical
decisions, availability alone is not
sufficient. For example, in the current
routine NICU workflow, much of the
waveform data (even those captured
at lower sampling frequencies) are
not captured and retained for
reanalysis but are reduced to
a handful of vital statistics for entry
into the EHR, thus missing potential
safety signals. In the future, in
addition to capturing these electronic
signals, pediatric medication safety
studies must necessarily draw from
large populations and encompass
many exposures and outcomes.

Today, more sophisticated
infrastructure is available so that BD
can be captured and analyzed in real
time to derive meaningful insight
from significant volumes of complex
sensor data,4 not only enhancing the
detection of safety signals but also
providing insight into associated risk
factors. And because of both the
enormous changes in storage capacity
and in the ability to align processors
for powerful depth of analysis,
modern computational systems can
process data in multiple dimensions
(number of patients, depth of
biological measurement, digital
phenotyping) that are orders of
magnitude beyond the size of data
that could be handled just a few years
ago. By processing many more
variables than in the recent past, it is
possible to facilitate the discovery of
patterns that reach beyond traditional
boundaries of our understanding of
human biology, clinical outcomes, and
medical practice.5–7 These patterns
provide a data-driven way to define
cohorts of patients with similar
biological, clinical, or behavioral and
social characteristics and to evaluate
health by using sensors and devices
that enable measurement of a more
continuous time dimension.

Nevertheless, computational methods
pose challenges themselves, beyond
the technical complexity of the
algorithms, especially in specific
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demographic populations such as
pediatrics. Outcomes such as chest
pain have 1 meaning in adults and
a different meaning in children and
adolescents. Decisions about how to
represent data and the populations
being studied strongly affect the
kinds of causal claims that can be
made, and predictions from models
can be biased by inclusion or
exclusion of some populations.

THE CURRENT STATE OF USING BD TO
EVALUATE PEDIATRIC MEDICATION
SAFETY

Across organized health systems,
infrastructure is under development
in support of analyzing BD by using
tools such as traditional biostatistics,
Bayesian methods, machine learning,
and artificial intelligence, although
the importance of these tools in
research involving pediatric patients
may be underrecognized.8 As
a deeper understanding is gained of
systems biology, much more intensive
study will be possible of the impact of
genetic polymorphisms on clinical

outcomes and of the interaction of
medications with complex systems
such as the microbiome. Additionally,
until recent advances in computing,9

the complex biological relationship
between mother and fetus was
beyond the scope of deep study. Thus,
we can expect a new era of
understanding of the biological
effects of medications and the
relationships between these effects
and clinical outcomes. In addition,
study linkages can be performed to
enhance study power (eg, school
performance, vital statistics, EHRs).

During the last 10 years, as medical
records and pediatric clinical practice
have become digitized, the fields of
biomedical science and clinical
practice have increasingly included
EHRs. This trend holds promise that
age-specific, developmental
stage–specific, and ethnic
group–specific standards can be
developed from EHR and other BD
repositories. One of the most rapidly
growing areas of digital interactions
is the study of the impact of behavior

and environment on health
outcomes.10 Applications that can
guide parents in detecting childhood
illnesses, such as autism, or in
managing diseases, such as diabetes,
will also generate growing volumes of
data that can potentially be harvested
for research. In addition, especially in
the United States, linkages among
disparate databases, such as school
performance and vital statistics and
EHRs, hold significant promise, but
the process of linkage is complex and
can be labor intensive because of the
lack of common identifiers and
important privacy considerations
when multiple sensitive data are
joined together from their primary
repositories of consented data
management.11 However, in a US
project linking the Cystic Fibrosis
Foundation Registry with EHR data
on those same patients, ∼10 000
patients were successfully linked,12

and technical “workarounds” are
being developed by using federated
analysis methods (Sentinel
Coordinating Center, Cambridge,

FIGURE 1
All of Us Research Program protocol: actions and data types that participants in the All of Us Research Program may be asked to complete or donate
based on the program’s protocol as of September 2018. The program may expand to collect additional data types in future iterations of the protocol.
(Reprinted with permission from National Institutes of Health. All of Us Research Program. This figure has been shared publicly, but has not previously
been published.)
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MA).13,14 These linkage studies are
more commonly performed in parts
of Europe,15 where national patient
identifiers are available. Whereas
unique identifiers to enable linkage
are often available in the United
States, governance and privacy
policies hinder efficient linkage
across US health systems.

Some examples follow that depict
national and international networks
and data warehouses to highlight
aspects of BD medication safety
research in children. The particular
examples were chosen to be some of
the prominent and successful systems
in pediatric BD safety research, and
some representatives of these
systems were invited to the workshop
“Advancing the Development of
Pediatric Therapeutics: Application of
‘Big Data’ to Pediatric Safety Studies,”
which was held on September 18 to
19, 2017, in Silver Spring, Maryland.
The systems are grouped by
geographic area. A summary of
highlights and current strengths and
gaps going forward is described at the
end of each section.

US PEDIATRIC NETWORKS

PEDSnet, Part of PCORnet

PCORnet is a program of the Patient-
Centered Outcomes Research
Institute, a public and private entity
funded through US taxes and
governed by a board representing
government, industry, academia, and
patients and their families. PCORnet
combines a base of curated EHRs and
claims data from 34 large health
systems that were initially organized
into 13 clinical data research
networks. Dozens of patient-led
groups are funded to organize
disease-specific information. The
network has now evolved into 9
clinical research networks and 2
payer networks. The combination of
a disease-specific clinical focus,
curated data on .120 million
Americans, and interactions among
patient groups and clinicians is

intended to produce accelerated,
lower-cost, patient-centered research.

One important component of the
PCORnet is its sizable pediatric
network, PEDSnet, which is
producing results after 3 years of
infrastructure building.16–18 The
network contains EHR data on .6
million children and has accumulated
longitudinal information on 362550
children. These data can be used to
perform association studies such as
a recent one on the relationship
between antibiotic use and change in
weight over a 4-year period.19

PEDSnet also offers promise for
supporting long-term follow-up.19

Undiagnosed Disease Network

The Undiagnosed Disease Network,20

sponsored by the National Institutes
of Health Common Fund, is a national
network of 12 clinical sites that
addresses the problem of
undiagnosed diseases that can cause
suffering, even death, while incurring
significant health costs.
Approximately half of the patients
seen in this network are children.
Because a child’s genomic sequence is
more informative when interpreted in
the context of the parental genomes,
the network sequences these “trios,”
providing superior information,
especially when combined with the
curated clinical information. Clinical
and genomic data are stored in a third
party–hosted cloud that meets all
relevant security and confidentiality
standards. Only authorized users can
access these data and collaborate on
both the clinical diagnosis and
downstream research using the data,
a multidisciplinary approach that
underscores the importance of both
BD and human expertise in
diagnosing often-difficult cases.21

Medicaid

Much pediatric
pharmacoepidemiology has been
performed in the Medicaid
system.22,23 The sample size and
long-term follow-up in some

populations23 provided by Medicaid
is an advantage. In 1 example, the
cumulative incidence of first
psychiatric diagnosis and
psychotropic medication use
(monotherapy or concomitant use of
psychotropic medications) was
obtained from Medicaid from birth
through age 7 years.22 A challenge to
using Medicaid data is that this
program is state run, and therefore it
is difficult to combine data from .1
state because of the absence of
uniform identifiers. Therefore, even
when 1 state provides a substantial
sample size, child missingness or
duplication can be a problem.

Sentinel System

The Sentinel System, initiated by the
US Food and Drug Administration
(FDA), uses electronic health care
data to monitor the performance of
FDA-regulated medical products.24

The Sentinel database contains
information for .300 million health
plan members, including 13%
individuals ,19 years of age and
Medicare participants who are
65 years and older.25 Sentinel
maximizes local control of data in
a federated model in which health
systems and insurers retain their data
and curate them so that questions can
be asked of the data and results can
be summarized across the network.
In an example of a pediatric
medication safety project launched in
Sentinel, Raebel et al26 found that,
despite FDA guidelines
recommending glucose monitoring in
persons starting second-generation
antipsychotics, only 11% of children
initiating therapy had baseline
glucose measured.

Postlicensure Rapid Immunization
Safety Monitoring

The Postlicensure Rapid
Immunization Safety Monitoring
(PRISM) program is a subcomponent
of the Sentinel System. PRISM is
focused on vaccine safety
surveillance. The data in PRISM can
support assessments of vaccine use in
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pediatric populations and
longitudinal follow-up of patients
after vaccine exposure.27 An example
of the use of this technology was the
finding of Yih et al28 that RotaTeq
was associated with ∼1.5 (95%
confidence interval [CI] 0.2–3.2)
excess cases of intussusception per
100 000 recipients of the first dose.29

The most practical and easily used
data in Sentinel are the billing data,
which do not always reflect clinical
detail. Some clinical detail may only
be accessed through manual medical
record searches.30

FREESTANDING CANADIAN RESEARCH
NETWORK: PAN-CANADIAN NETWORK

The Canadian Pharmacogenomics
Network for Drug Safety includes
clinical surveillance, largely with
EHRs and site-specific funded
personnel, located at 13 pediatric and
13 adult academic health centers
across Canada. The Canadian
Pharmacogenomics Network for Drug
Safety collects detailed information
on adverse drug reactions (ADRs)
identified from electronic and
nonelectronic medical records,
patients and families, and other
sources.31 As of June 2018, the
network database contained 9910
ADR cases and 89 263 medication-
matched controls with detailed
clinical data and DNA collected from
each patient. The goal is to find high-
association pharmacogenomic
biomarkers of clinical ADR
phenotypes (odds ratios of $3),
create innovative tools (eg,
pharmacogenomic tests) to predict
the likelihood of ADR risk, and
implement medication safety solution
strategies. A success from the
network of these strategies was the
study of anthracycline-induced
cardiotoxicity,32 in which the most
important risk factor in children was
high cumulative dose, although no
dose was absolutely safe. The
Canadian, multisite, primary data,
collection model collects detailed
clinical data and obtains specimens

for genetic analysis, requiring manual
support for data collection. This may
limit the ultimate sample size because
of cost.

EUROPEAN LONG-TERM CARE SYSTEMS
WITH PEDIATRIC DATA

Swedish Cancer Register

Several Nordic countries, including
Sweden, have longitudinal health data
on their entire populations of adults
and children. These networks provide
an excellent opportunity to follow
children into adulthood who may
have been exposed to a medical
product in childhood. In 1 illustrative
study, the Swedish National Patient
Register 1964–2014 and the Swedish
Cancer Register were used to study
the risk of cancer among children and
adults who had inflammatory bowel
disease as children (median age at the
end of follow-up: 27 years). Data from
administrative and clinical national
registers on demographics,
medications, morbidity, and mortality
were linked by using the Swedish
personal identifier. Sample sizes
included thousands of patients with
inflammatory bowel disease and
comparators from the general
population. The hazard ratio (HR) for
first all-cancer was 2.2 (95% CI
2.0–2.5).15 Combining these 2
networks enabled demonstration of
the feasibility of long-term follow-up
of children into adulthood in the
context of RWD. Personal identifiers
also enable analysis of
multidimensional data.15

Clinical Practice Research Datalink

Another example of a long-term and
large database containing children is
the Clinical Practice Research
Datalink, formerly the General
Practice Research Database, which is
based on the health care delivery
system and has collected primary
care data in the United Kingdom since
1987.33 In a pediatric cohort study,
conducted by using the Clinical
Practice Research Datalink

(1987–2009), a total of 11 934 people
with epilepsy, aged 1 to 24 years at
diagnosis, and 46 598 people without
epilepsy were followed for a median
(interquartile range) of 2.6 (0.8–5.9)
years. The risk of fractures, thermal
injuries, and poisonings was
estimated. The authors found that
children and young adults with
epilepsy were at significantly greater
risk than those without epilepsy, and
the greatest risk was from medicinal
poisonings.33

EUROPEAN INITIATIVE EVALUATING
PEDIATRIC PUBLIC HEALTH: GLOBAL
RESEARCH IN PEDIATRICS

Global Research in Pediatrics is
a European Commission–funded
Network of Excellence that has
completed a 6-year project that
included building a pediatric
pharmacoepidemiology platform for
collaborative studies on medication
use, safety, and effectiveness. As part
of a gap analysis, Global Research in
Pediatrics investigators reviewed the
literature and observed that the
number of pediatric
pharmacoepidemiological safety
studies is low, but has increased
steadily, and that these studies were
concentrated in the United States and
European Union. Unfortunately,
although they have the majority of the
world’s pediatric population, low-
and middle-income countries have
little representation in available
pharmacoepidemiological data.34

JAPANESE MEDICAL RECORD NETWORK
WITH PEDIATRIC DATA: MEDICAL
INFORMATION DATABASE NETWORK

Japan’s Pharmaceuticals and Medical
Devices Agency has developed a new
database system that is used to
analyze diverse electronic health care
data from multiple Japanese medical
institutions. Through collaboration
with 10 cooperating medical
institutions nationwide, the Medical
Information Database Network (MID-
NET) is able to collect and analyze
medical information (eg, EHRs, claims
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data) on a scale exceeding 4 million
people. Recently, a project was
designed to use MID-NET to identify
the risk of respiratory depression
associated with codeine-containing
products in children. MID-NET will be
useful as a tool for assessing other
adverse reactions in children.35 The
federation of Japanese health care
institutions allows searching by
billing codes and EHRs to assess the
frequency with which an adverse
reaction occurs in children.

ISSUES RELATED TO INTERPRETING
PEDIATRIC BD

As pediatric RWE has evolved,
questions arise about the
characteristics of the underlying RWD
and how the methods of analysis can
affect the interpretation of results.
For example, what is the size of the
database? The incidence and
prevalence of the disease studied and
the frequency of adverse events
dictate the adequacy of the sample
size. Also, it is often difficult to ensure
that individual patient follow-up is
complete. Does the database have
personal identifiers for each patient
allowing linkage of information to .1
data source? These linkages will be
more commonly performed in parts
of Europe,17 where, unlike in the
United States, patient identifiers are
available across systems.

Does the data capture specific clinical
and laboratory data that might be
needed for conclusions related to
effectiveness or safety?
Characterization of complex clinical
outcomes can be difficult and/or may
be inconsistent from patient to
patient because of variability in how
clinicians record unstructured data in
an EHR. Also, what level of
granularity is sufficient? Adult studies
suggest that each incremental
increase in the temporal granularity
of the data improves predictive
performance,36 but little empirical
evidence exists about the level of
granularity needed for predictions at
different stages of childhood.

Some issues are specific to the
situation in which an attempt is made
to make a causal inference from
nonrandomized data. Confounding
due to differences in demographics,
underlying illness, or other variables
between comparison groups and
difficulty establishing an inception
time for the cohort make such
analyses risky unless effect sizes are
large. Follow-up data are also
variable, with some European and
Korean systems having longer-term
follow-up and many US systems
having shorter-term follow-up.37 A
system that collects data in
a predefined manner may have more
easily interpretable data, but such
a mechanism may be costly, thereby
limiting sample size. Today, in the
United States and elsewhere,
industry, investigators, and regulators
are grappling with the need beyond
data collected separately by
a professional research team for
traditional randomized trials for more
generalizable, less expensive, and
easily accessed data that are
scientifically valid and useable for
regulatory decisions.38

Finally, 1 of the major barriers to
participation in BD consortia is the
concern about data privacy and
security. These issues are being
addressed in many sectors,39,40 but
the solutions will vary depending on
the cultural beliefs and health
systems in different countries. Within
the United States, concerns about
privacy seem to be increasing just
when the benefits of identifiable data
are becoming clearer: benefits such as
identifying drug toxicities, as in
Sentinel; best clinical practice, as in
PCORnet; or even making individual
diagnoses, as in the Undiagnosed
Disease Network. Even when linkage
is possible, depending on the
purpose, consent may not be in place
to allow for identification of an
individual within a database.

Strengths to date in pediatric BD
medication safety research include the
existence and continuing expansion of

large databases with the capacity for
long-term follow-up in some
populations. Gaps include the need to
develop more pediatric-specific
networks in almost all countries, but
especially in low- and middle-income
countries, and the inability to easily
identify the duration of individual
patient observation in many systems.
Also, the personal identifier, present in
health care databases in some
countries, is not universally present.

WHERE ARE WE HEADED IN USE OF BD
TO STUDY PEDIATRIC MEDICATION
SAFETY?

Large pediatric-specific databases
with long-term follow-up, using
pediatric-specific outcome variables,
and containing high-quality data are
needed to continue to improve
pediatric medication safety
assessments. These networks are
currently being built, and some of the
results are impressive. Long-term
follow-up of patients with childhood
cancer is increasingly possible. In
a follow-up study, Lega et al41 studied
10 438 1-year survivors of childhood
cancer who were diagnosed before
age 21. The mean follow-up was 11.2
years. Cancer survivors had a 55%
increased rate of developing diabetes
compared with matched controls (HR
1.51; 95% CI 1.28–1.78). Individuals
treated for cancer between the ages 6
and 10 had the highest increased
rates of diabetes (HR 3.89; CI
2.26–6.68).

Another critical issue in drug safety is
pregnancy exposure. Using RWD
through chart review and clinical
assessment, the authors of 1
observational study demonstrated
that children exposed to valproate in
utero experienced decreased IQ at
6 years of age. High doses of
valproate were negatively associated
with IQ (r = 20.56; P , .001), verbal
ability (r = 20.40; P = .005),
nonverbal ability (r = 20.42; P =
.003), memory (r = 20.30; P = .04),
and executive function (r = 20.42;
P , .001), whereas in utero exposure
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to carbamazepine, lamotrigine, or
phenytoin was not negatively
associated.42

Despite the notable progress, several
areas need more thought on the part
of researchers before large-scale
conversion to pediatric BD safety
research. One area includes
overcoming cultural and political
barriers to collaboration across
health systems, countries, and
continents. The vast majority of the
published literature on the use of BD
in pediatric research comes from the
United States and Europe, and
barriers to those countries sharing
information are formidable at every
level.15,26 In addition, to be able to
realize the potential of BD in the area
of pediatric research, given our
evolving technological and computing
environments, a much more
coordinated approach is needed. For
example, an established reference set
of pediatric-specific outcomes for BD
health care research will be critical.
Moreover, for both rare and more
common pediatric diseases and
adverse events, genomic
considerations are often critical.
Privacy issues remain a serious

barrier to the use of BD regarding
pediatric health research as well as to
our daily health care lives.

CONCLUSIONS

Tremendous progress has been made
during the last 20 years in the ability
to develop drugs and devices that can
be safely used in children. We have
also seen key advances in computer
processing and data storage capacity
along with the ubiquitous digitization
of health care–related information.
Many national and international
networks and data warehouses
already are making use of these
advances to apply BD in medication
safety research in children. However,
now that a comprehensive
understanding of children, their
biology, their systems pharmacology,
their interactions, and their behaviors
is possible, acceleration of the
development of interoperable, large-
scale networks is needed. To be able
to expand our capabilities in this field
and address the many important
pediatric-specific safety issues of the
future, researchers will have to be
able to easily access multiple types of

BD, including biological, clinical,
behavioral, and social data, collected
over the long-term and shared in
a manner that enables sophisticated
analysis without compromising
privacy or security.
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