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1 Introduction

From autonomous cars and adaptive email-filters to predictive policing systems, machine
learning (ML) systems are increasingly commonplace; they outperform humans on specific
tasks [Mnih et al., 2013, Silver et al., 2016, Hamill, 2017] and often guide processes of human
understanding and decisions [Carton et al., 2016, Doshi-Velez et al., 2014]. The deployment of
ML systems in complex, realworld settings has led to increasing interest in systems optimized
not only for expected task performance but also other important criteria such as safety [Otte,
2013, Amodei et al., 2016, Varshney and Alemzadeh, 2016], nondiscrimination [Bostrom and
Yudkowsky, 2014, Ruggieri et al., 2010, Hardt et al., 2016], avoiding technical debt [Sculley
et al., 2015], or satisfying the right to explanation [Goodman and Flaxman, 2016]. For
ML systems to be used robustly in realworld situations, satisfying these auxiliary criteria
is critical. However, unlike measures of performance such as accuracy, these criteria often
cannot be completely quantified. For example, we might not be able to enumerate all unit
tests required for the safe operation of a semi-autonomous car or all confounds that might
cause a credit scoring system to be discriminatory. In such cases, a popular fallback is
the criterion of interpretability : if the system can explain its reasoning, we then can verify
whether that reasoning is sound with respect to these auxiliary criteria.

Unfortunately, there is little consensus on what interpretability in machine learning is—
let alone how to evaluate it for benchmarking or reason about how it may generalize to
other contexts. Current interpretability evaluation typically falls into two categories. The
first evaluates interpretability in the context of an application: if the interpretable system
provides human-understandable explanation in either a practical application or a simplified
version of it, then it must be interpretable (e.g. [Ribeiro et al., 2016, Lei et al., 2016,
Kim et al., 2015a, Doshi-Velez et al., 2015, Kim et al., 2015b]). The second evaluates
interpretability via a quantifiable proxy: a researcher might first claim that some model
class—e.g. sparse linear models, rule lists, gradient boosted trees—are interpretable and
then present algorithms to optimize within that class (e.g. [Buciluǎ et al., 2006, Wang et al.,
2017, Wang and Rudin, 2015, Lou et al., 2012]).
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To large extent, both evaluation approaches rely on some notion of “you’ll know it when
you see it.” Should we be concerned about a lack of rigor? Yes and no: the notions of
interpretability above appear reasonable because they are reasonable: they pass the first
test of having face-validity on the correct test set of subjects: human beings. However, this
basic notion leaves many kinds of questions unanswerable: Are all models in all defined-to-
be-interpretable model classes equally interpretable? Quantifiable proxies such as sparsity
may seem to allow for comparison, but how does one think about comparing a model sparse
in features to a model sparse in prototypes? Moreover, if one builds and evaluates an
interpretable machine learning model from a particular dataset for a particular application,
does that provide insights on whether the model will be similarly interpretable with a different
dataset or different application? If we are to move this field forward—to compare methods
and understand when methods may generalize—we need to formalize these notions and make
them evidence-based.

The objective of this chapter is to describe a set of principles for the evaluation of in-
terpretability. The need is urgent: European Union regulation may require algorithms that
make decisions based on user-level predictors and “significantly affect” users to provide expla-
nation (“right to explanation”) [Parliament and of the European Union, 2016]. Meanwhile,
interpretable machine learning is an increasingly popular area of research, with forms of in-
terpretability ranging from regressions with simplified functions (e.g. [Caruana et al., 2015,
Kim et al., 2015a, Rüping, 2006, Buciluǎ et al., 2006, Ustun and Rudin, 2016, Doshi-Velez
et al., 2015, Kim et al., 2015b, Krakovna and Doshi-Velez, 2016, Hughes et al., 2016]), vari-
ous kinds of logic-based methods (e.g. [Wang and Rudin, 2015, Lakkaraju et al., 2016, Singh
et al., 2016, Liu and Tsang, 2016, Safavian and Landgrebe, 1991, Wang et al., 2017]), meth-
ods of probing black box models (e.g. [Ribeiro et al., 2016, Lei et al., 2016, Adler et al., 2016,
Selvaraju et al., 2016, Smilkov et al., 2017, Shrikumar et al., 2016, Kindermans et al., 2017,
Ross et al., 2017, Singh et al., 2016]). International conferences regularly have workshops
on interpretable machine learning, and Google Scholar finds more than 20,000 publications
related to interpretability in ML in the last five years. How do we know which methods work
best when? While there have been reviews of interpretable machine learning more broadly
(e.g. [Lipton, 2016]), the lack of consensus on how to evaluate interpretability limits both
research progress and the effectiveness of interpretability-related regulation.

In this chapter, we start with a short discussion of what interpretability is (section 2).
Next we describe when interpretability is needed, including a taxonomy of use-cases (Sec-
tion 3). In Section 4, we review current approaches to evaluation and propose a taxonomy for
the evaluation of interpretability—application-grounded, human-grounded and functionally-
grounded. Finally, we discuss considerations for generalization in Section 5. We review
suggestions for researchers doing work in interpretability in section 6.
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2 Defining Interpretability

According to the Merriam-Webster dictionary, the verb interpret means to explain or to
present in understandable terms.1 In the context of ML systems, we add an emphasis on
providing explanation to humans, that is, to explain or to present in understandable terms
to a human.

While explanation may be a more intuitive term than interpretability, we still must answer
what then is an explanation? A formal definition of explanation remains elusive; we turn to
the field of psychology for insights. [Lombrozo, 2006] argue that “explanations are more than
a human preoccupation—they are central to our senses of understanding, and the currency
in which we exchanged beliefs” and notes that questions such as what constitutes an expla-
nation, what makes some explanations better than others, how explanations are generated
and when explanations are sought are just beginning to be addressed. Indeed, the definition
of explanation in the psychology literature ranges from the “deductive-nomological” view
[Hempel and Oppenheim, 1948], where explanations are thought of as logical proofs to pro-
viding some more general sense of mechanism [Bechtel and Abrahamsen, 2005, Chater and
Oaksford, 2006, Glennan, 2002]. More recently [Keil, 2006] considered a broader definition
of explanations—implicit explanatory understanding. All the activities in the processes of
providing and receiving explanations are considered as a part of what explanation means.

In this chapter, we propose data-driven ways to derive operational definitions and eval-
uations of explanations. We emphasize that the explanation needs within the context of an
application may not require knowing the flow of bits through a complex neural architecture—
it may be much simpler, such as being able to identify to which input the model was most
sensitive, or whether a protected category was used when making a decision.

3 Defining the Interpretability Need

Interpretable Machine Learning as a Verification Tool In Section 1, we mentioned
that interpretability is often used as a proxy for some other criteria. There exist many
desiderata that we might want of our ML systems. Notions of fairness or unbiasedness imply
that protected groups (explicit or implicit) are not somehow discriminated against. Privacy
means the method protects sensitive information in the data. Properties such as safety,
reliability and robustness ascertain whether algorithms reach certain levels of performance
in the face of parameter or input variation. Causality implies that the predicted change
in output due to a perturbation will occur in the real system. Usable methods provide
information that assist users to accomplish a task—e.g. a knob to tweak image lighting—
while trusted systems have the confidence of human users—e.g. aircraft collision avoidance
systems.

There exist many ways of verifying whether an ML system meets such desiderata. In
some cases, properties can be proven. For example, formalizations of fairness [Hardt et al.,
2016] and privacy [Toubiana et al., 2010, Dwork et al., 2012, Hardt and Talwar, 2010] have

1Merriam-Webster dictionary, accessed 2017-02-07
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resulted in algorithms that are guaranteed to meet those criteria. In other cases, we can
track the performance of a system and validate the criteria empirically. For example, pilots
trust aircraft collision avoidance systems because they knew they are based on millions of
simulations [Kochenderfer et al., 2012] and these systems have an excellent track record.

However, both of these cases require us to be able to formalize our desiderata in advance,
and, in the case of empirical validation, accept the cost of testing the ML system to collect
data on its performance with respect to our desiderata. Unfortunately, formal definitions
of auxiliary desiderata are often elusive. In such cases, explanation can be valuable to
qualitatively ascertain whether desiderata such as fairness, privacy, reliability, robustness,
causality, usability and trust are met. For example, one can provide a feasible explanation
that fails to correspond to a causal structure, exposing a potential concern.

This observation, of interpretability as a verification tool, suggests that carefully thought-
out work in interpretable machine learning should be able to specify What are the downstream
goals of this interpretable machine learning system? and Why is interpretability the right
tool for achieving those goals?

When is Interpretability the Right Tool? As noted above, there are many tools for
verification. Not all ML systems require interpretability. Ad servers, postal code sorting,
air craft collision avoidance systems—all can be evaluated without interpretable machine
learning and perform their tasks without human intervention. In these cases, we have a
formal guarantee of performance or evidence that the problem is sufficiently well-studied
and validated in real applications that we trust the system’s decision, even if the system
is not perfect. In other cases, explanation is not necessary because there are no significant
consequences for unacceptable results (e.g. an occasional poor book recommendation).

We argue that the need for interpretability stems from an incompleteness in the problem
formalization, creating a fundamental barrier to optimization and evaluation. Indeed, in the
psychology literature, [Keil et al., 2004] notes “explanations may highlight an incomplete-
ness,” that is, explanations can be one of ways to ensure that effects of gaps in problem
formalization are visible to us.

Before continuing, we note that incompleteness is distinct from uncertainty: the fused
estimate of a missile location may be uncertain, but such uncertainty can be rigorously
quantified and formally reasoned about. In machine learning terms, we distinguish between
cases where unknowns result in quantified variance—e.g. trying to learn from small data
set or with limited sensors—and incompleteness that produces some kind of unquantified
bias—e.g. the effect of including domain knowledge in a model selection process.

Below we provide some illustrative scenarios in which incomplete problem specifications
are common:

• Scientific Understanding: The human’s goal is to gain knowledge. We do not have
a complete way of stating what knowledge is; thus the best we can do is ask for
explanations we can convert into knowledge.

• Safety: For complex tasks, the end-to-end system is almost never completely testable;
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one cannot create a complete list of scenarios in which the system may fail. Enumer-
ating all possible outputs given all possible inputs be computationally or logistically
infeasible, and we may be unable to flag all undesirable outputs.

• Ethics: The human may want to guard against certain kinds of discrimination, and
their notion of fairness may be too abstract to be completely encoded into the system
(e.g., one might desire a ‘fair’ classifier for loan approval). Even if we can encode
protections for specific protected classes into the system, there might be biases that
we did not consider a priori (e.g., one may not build gender-biased word embeddings
on purpose, but it was a pattern in data that became apparent only after the fact).

• Mismatched objectives: The agent’s algorithm may be optimizing an incomplete objective—
that is, a proxy function for the ultimate goal. For example, a clinical system may be
optimized for cholesterol control, without considering the likelihood of adherence; an
automotive engineer may be interested in engine data not to make predictions about
engine failures but to more broadly build a better car.

• Multi-objective trade-offs: Two well-defined desiderata in ML systems may compete
with each other, such as privacy and prediction quality [Hardt et al., 2016] or privacy
and non-discrimination [Strahilevitz, 2008]. Even if each objectives are fully-specified,
the exact dynamics of the trade-off may not be fully known, and the decision may have
to be case-by-case.

Additional taxonomies for situations in which explanation is needed, as well as a survey
of interpretable models, are reviewed in [Lipton, 2016]. In this work, we focus on making
clear that interpretability is just one tool for the verification, suited for situations in which
problems are incompletely specified, and focus most of efforts on its evaluation. To expand
upon our suggestion above, we suggest that research in interpretable machine learning should
specify How is the problem formulation incomplete?

4 Evaluation

Once we know that we need an interpretable machine learning approach from Section 3, the
next logical question is to determine how to evaluate it. Even in standard ML settings, there
exists a taxonomy of evaluation that is considered appropriate. In particular, the evaluation
should match the claimed contribution. Evaluation of applied work should demonstrate
success in the application: a game-playing agent might best a human player, a classifier may
correctly identify star types relevant to astronomers. In contrast, core methods work should
demonstrate generalizability via careful evaluation on a variety of synthetic and standard
benchmarks.

In this section we lay out an analogous taxonomy of evaluation approaches for in-
terpretability: application-grounded, human-grounded, and functionally-grounded (see fig-
ure 1). These range from task-relevant to general, also acknowledge that while human
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evaluation is essential to assessing interpretability, human-subject evaluation is not an easy
task. A human experiment needs to be well-designed to minimize confounding factors, con-
sumed time, and other resources. We discuss the trade-offs between each type of evaluation
and when each would be appropriate.

Application-grounded Evaluation: Real humans, real tasks As mentioned in Sec. 3,
interpretability is most often used a tool to verify some other objective, such as safety
or nondiscrimination. Application-grounded evaluation involves conducting human experi-
ments within a real application. If the researcher has a concrete application in mind—such as
working with doctors on diagnosing patients with a particular disease—the best way to show
that the model works is to evaluate it with respect to the task: doctors performing diagnoses.
This reasoning aligns with the methods of evaluation common in the human-computer in-
teraction and visualization communities, where there exists a strong ethos around making
sure that the system delivers on its intended task [Antunes et al., 2012, Lazar et al., 2010].
For example, a visualization for correcting segmentations from microscopy data would be
evaluated via user studies on segmentation on the target image task [Suissa-Peleg et al.,
2016]; a homework-hint system is evaluated on whether the student achieves better post-test
performance [Williams et al., 2016].

Specifically, we evaluate the quality of an explanation in the context of its end-task,
such as whether it results in better identification of errors, new facts, or less discrimination.
Examples of experiments include:

• Domain expert experiment with the exact application task.

• Domain expert experiment with a simpler or partial task to shorten experiment time
and increase the pool of potentially-willing subjects.

In both cases, an important baseline is how well human-produced explanations assist in other
humans trying to complete the task.

Finally, to make high impact in real world applications, it is essential that we as a
community respect the time and effort involved to do such evaluations, and also demand high
standards of experimental design when such evaluations are performed. As HCI community
recognizes [Antunes et al., 2012], this is not an easy evaluation metric. Nonetheless, it
directly tests the objective that the system is built for, and thus performance with respect
to that objective gives strong evidence of success.

Human-grounded Metrics: Real humans, simplified tasks Human-grounded eval-
uation is about conducting simpler human-subject experiments that maintain the essence of
the target application. Such an evaluation is appealing when experiments with the target
community is challenging. These evaluations can be completed with lay humans, allowing
for both a bigger subject pool and less expenses, since we do not have to compensate highly
trained domain experts. Human-grounded evaluation is most appropriate when one wishes to
test more general notions of the quality of an explanation. For example, to study what kinds
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Figure 1: Taxonomy of evaluation approaches for interpretability

of explanations are best understood under severe time constraints, one might create abstract
tasks in which other factors—such as the overall task complexity—can be controlled [Kim
et al., 2013, 2014, Lakkaraju et al., 2016]

The key question, of course, is how we can evaluate the quality of an explanation without
a specific end-goal (such as identifying errors in a safety-oriented task or identifying relevant
patterns in a science-oriented task). Ideally, our evaluation approach will depend only on
the quality of the explanation, regardless of whether the explanation is the model itself
or a post-hoc interpretation of a black-box model, and regardless of the correctness of the
associated prediction. Examples of potential experiments include:

• Binary forced choice: humans are presented with pairs of explanations, and must choose
the one that they find of higher quality (basic face-validity test made quantitative).

• Forward simulation/prediction: humans are presented with an explanation and an
input, and must correctly simulate the model’s output (regardless of the true output).

• Counterfactual simulation: humans are presented with an explanation, an input, and
an output, and are asked what must be changed to change the method’s prediction to
a desired output (and related variants).

As an example, the common intrusion-detection test [Chang et al., 2009] in topic models
is a concrete form of the forward simulation/prediction task: we ask the human to find the
difference between the model’s true output and some corrupted output as a way to determine
whether the human has correctly understood what the model’s true output is.

Functionally-grounded Evaluation: No humans, proxy tasks Functionally-grounded
evaluation requires no human experiments; instead, it uses some formal definition of inter-
pretability as a proxy for explanation quality. Such experiments are appealing because even
general human-subject experiments require time and costs both to perform and to get nec-
essary approvals (e.g., IRBs), which may be beyond the resources of a machine learning
researcher. Functionally-grounded evaluations are most appropriate once we have a class of
models or regularizers that have already been validated, e.g. via human-grounded experi-
ments. They may also be appropriate when a method is not yet mature or when human
subject experiments are unethical.
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The challenge, of course, is to determine what proxies to use. For example, decision
trees have been considered interpretable in many situations [Freitas, 2014]. In section 5,
we describe open problems in determining what proxies are reasonable. Once a proxy has
been formalized, the challenge is squarely an optimization problem, as the model class or
regularizer is likely to be discrete, non-convex and often non-differentiable. Examples of
experiments include

• Show the improvement of prediction performance of a model that is already proven to
be interpretable (assumes that someone has run human experiments to show that the
model class is interpretable).

• Show that one’s method performs better with respect to certain regularizers—for ex-
ample, is more sparse—compared to other baselines (assumes someone has run human
experiments to show that the regularizer is appropriate).

5 Considerations for Generalization

Identifying a need (Section 3) and being able to perform quantitative comparisons (Section 4)
allows us to know that we are justified in our use of an interpretable machine learning
approach and determine whether our approach is more interpretable than our baselines.
However, we are often interested in more than just a comparison; we want insights on how
our method might perform on other tasks.

For example, when it comes to the form of the explanation, [Subramanian et al., 1992]
found that users prefer decision trees to tables in games, whereas [Huysmans et al., 2011]
found users prefer, and are more accurate, with decision tables rather than other classifiers in
a credit scoring domain. [Hayete and Bienkowska, 2004] found a preference for non-oblique
splits in decision trees. When it comes to the amount of explanation, a number of human-
subject studies have found that longer or more complex explanations can result in higher
human accuracy and trust [Kulesza et al., 2013, Bussone et al., 2015, Allahyari and Lavesson,
2011, Elomaa, 2017], yet sparsity remains closely tied with interpretablity in the machine
learning community [Mehmood et al., 2012, Chandrashekar and Sahin, 2014] (often citing
the famous seven plus or minus two rule [Miller, 1956]). From this collection of results, are
there ways to infer what method might perform well on a new task?

In this section, we describe a taxonomy of factors to describe contexts within inter-
pretability is needed. These features can be used to link across experiments and the three
types of evaluations, and thus being able to generalize to new problems where interpretability
is needed. We also argue that a shared set of key terms for describing different interpretabil-
ity contexts is essential to other researchers being able to find other methods that they should
be including in their comparisons.

Task-related factors of interpretability Disparate-seeming applications may share com-
mon categories: an application involving preventing medical error at the bedside and an
application involving support for identifying inappropriate language on social media might
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be similar in that they involve making a decision about a specific case—a patient, a post—in
a relatively short period of time. However, when it comes to time constraints, the needs
in those scenarios might be different from an application involving the understanding of
the main characteristics of a large omics data set, where the goal—science—is much more
abstract and the scientist may have hours or days to inspect the model outputs.

Below, we list a set of factors that might make tasks similar in their explanation needs:

• Global vs. Local. Global interpretability implies knowing what patterns are present in
general (such as key features governing galaxy formation), while local interpretability
implies knowing the reasons for a specific decision (such as why a particular loan appli-
cation was rejected). The former may be important for when scientific understanding
or bias detection is the goal; the latter when one needs a justification for a specific
decision.

• Characterization of Incompleteness. What part of the problem formulation is incom-
plete, and how incomplete is it? We hypothesize that the types of explanations needed
may vary depending on whether the source of concern is due to incompletely specified
inputs, constraints, domains, internal model structure, costs, or even in the need to
understand the training algorithm. The severity of the incompleteness may also affect
explanation needs. For example, one can imagine a spectrum of questions about the
safety of self-driving cars. On one end, one may have general curiosity about how
autonomous cars make decisions. At the other, one may wish to check a specific list of
scenarios (e.g., sets of sensor inputs that causes the car to drive off of the road by 10cm).
In between, one might want to check a general property—safe urban driving—without
an exhaustive list of scenarios and safety criteria.

• Time Constraints. How long can the user afford to spend to understand the explana-
tion? A decision that needs to be made at the bedside or during the operation of a plant
must be understood quickly, while in scientific or anti-discrimination applications, the
end-user may be willing to spend hours trying to fully understand an explanation.

• Nature of User Expertise. How experienced is the user in the task? The user’s expe-
rience will affect what kind of cognitive chunks they have, that is, how they organize
individual elements of information into collections [Neath and Surprenant, 2003]. For
example, a clinician may have a notion that autism and ADHD are both develop-
mental diseases. The nature of the user’s expertise will also influence what level of
sophistication they expect in their explanations. For example, domain experts may ex-
pect or prefer a somewhat larger and sophisticated model—which confirms facts they
know—over a smaller, more opaque one. These preferences may be quite different from
hospital ethicist who may be more narrowly concerned about whether decisions are be-
ing made in an ethical manner. More broadly, decison-makers, scientists, compliance
and safety engineers, data scientists, and machine learning researchers all come with
different background knowledge and communication styles.
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Each of these factors an be isolated in human-grounded experiments in simulated tasks to
determine which methods work best when they are present; more factors can be added if
it turns out generalization within applications sharing these factors is poor. As mentioned
above, these factors can also be used as key terms when searching for methods that might
be relevant for a new problem.

Explanation-related factors of interpretability Just as disparate applications may
share common categories, disparate explanations may share common qualities that correlate
to their utility. As before, we provide a set of factors that may correspond to different
explanation needs. Here, we define cognitive chunks to be the basic units of explanation.

• Form of cognitive chunks. What are the basic units of the explanation? Are they
raw features? Derived features that have some semantic meaning to the expert (e.g.
“neurological disorder” for a collection of diseases or “chair” for a collection of pixels)?
Prototypes?

• Number of cognitive chunks. How many cognitive chunks does the explanation contain?
How does the quantity interact with the type: for example, a prototype can contain a
lot more information than a feature; can we handle them in similar quantities?

• Level of compositionality. Are the cognitive chunks organized in a structured way?
Rules, hierarchies, and other abstractions can limit what a human needs to process
at one time. For example, part of an explanation may involve defining a new unit (a
chunk) that is a function of raw units, and then providing an explanation in terms of
that new unit.

• Monotonicity and other interactions between cognitive chunks. Does it matter if the
cognitive chunks are combined in linear or nonlinear ways? In monotone ways [Gupta
et al., 2016]? Are some functions more natural to humans than others [Wilson et al.,
2015, Schulz et al., 2016]?

• Uncertainty and stochasticity. How well do people understand uncertainty measures?
To what extent is stochasticity understood by humans?

Identifying methods by their characteristics will also make it easier to search for general
properties of high-quality explanation that span across multiple methods, and facilitate
meta-analyses that study whether these factors are associated with deeper interpretability-
related universals. Ultimately, we would hope to discover that certain task-related properties
benefit from explanations with certain explanation-specific properties.

6 Conclusion: Recommendations for Researchers

In this work, we have laid the groundwork for a process performing rigorous science in in-
terpretability: defining the need; careful evaluation; and defining factors for generalization.
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While there are many open questions, this framework can help ensure that our research
outputs in this field are evidence-based and generalizable. Below, we summarize our recom-
mendations.

The claim of the research should match the type of the evaluation. Just as one would be
critical of a reliability-oriented paper that only cites accuracy statistics, the choice of evalu-
ation should match the specificity of the claim being made. A contribution that is focused
on a particular application should be expected to be evaluated in the context of that appli-
cation (application-grounded evaluation), or on a human experiment with a closely-related
task (human-grounded evaluation). A contribution that is focused on better optimizing a
model class for some definition of interpretability should be expected to be evaluated with
functionally-grounded metrics. As a community, we must be careful in the work on inter-
pretability, both recognizing the need for and the costs of human-subject experiments. We
should also make sure that these evaluations are on problems where there is a need for
interpretability.

We should categorize our applications and methods with a common taxonomy. In sec-
tion 5, we hypothesized factors that may be the factors of interpretability. Creating a shared
language around such factors is essential not only to evaluation, but also for the citation and
comparison of related work. For example, work on creating a safe healthcare agent might
be framed as focused on the need for explanation due to unknown inputs at the local scale,
evaluated at the level of an application. In contrast, work on learning sparse linear models
might also be framed as focused on the need for explanation due to unknown inputs, but
this time evaluated at global scale. As we share each of our work with the community, we
can do each other a service by describing factors such as

1. What is the ultimate verification (or other) goal? How is the problem formulation
incomplete? (Section 3)

2. At what level is the evaluation being performed? (Section 4)

3. What are the task-related and explanation-related factors in the experiments? (Sec-
tion 5)

These considerations should move us away from vague claims about the interpretability of a
particular model and toward classifying applications by a common set of generalizable terms.
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