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Abstract

Algorithmic recourse is the task of generating a
set of actions that will allow individuals to achieve
a more favorable outcome under a given algo-
rithmic decision system. Using the Conditional
Subspace Variational Autoencoder (CSVAE), we
propose a novel algorithmic recourse generation
method, CRUDS, that generates multiple recourse
satisfying underlying structure of the data as well
as end-user specified constraints. We evaluate our
method qualitatively and quantitatively on several
synthetic and real datasets, demonstrating that
CRUDS proposes recourse that are more realistic
and actionable than baselines.

1. Introduction
Machine learning decision systems are increasingly being
applied to domains like finance and criminal justice (Dressel
& Farid, 2018), where outcomes have a significant social and
human impact. Often in these domains, the focus lies not
only in the outcomes themselves, but in the set of options
available to individuals wishing to improve unfavorable
outcomes. For instance, if a loan applicant is issued a denial,
the main point of interest is how the applicant might adjust
their applicant profile to increase future chances for approval.
This set of changes is known in the literature as recourse.
When the decision system is a complex machine learning
model, we want to find ways of algorithmically generating
recourse.
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In order for the recourse to be useful, it should be actionable,
in that the recommended changes are realistically achiev-
able. The suggested recourse should also be valid, in that
the recourse truly brings an individual closer to the desired
outcome. The main challenge of algorithmically generating
recourse is capturing the human heuristic definition of “ac-
tionable” in formal terms. In this work, we define actionable
recourse as those that obey the underlying dependencies be-
tween the data covariates in the spirit of Joshi et al. (2019)
(e.g. age positively correlates with years of education), in
addition to satisfying both causal constraints as in Karimi
et al. (2020) (e.g. more years of education necessitates an in-
crease in age) and specific constraint sets for each individual
seeking recourse (e.g. getting more education is impossible
for one individual but not another).

There is a broad class of algorithms that generate actionable
recourse by first modeling the underlying structure of the
data. However, these algorithms typically assume significant
amounts of prior knowledge of the inner-workings of the
decision making system or the underlying structure of the
data. Oftentimes in practice, the only information available
for recourse generation is a labeled dataset – we do not
have access to the classifiers themselves nor knowledge
of the underlying causal model for the data (Karimi et al.,
2020). In this work, we are precisely interested in generating
actionable recourse in this fully general setting.

Our contribution is two-fold: (1) we provide an analysis
of failure modes for a broad class of algorithms that gener-
ate recourse that lie on the learned data manifold, and (2)
based on this analysis, we provide a novel generative ap-
proach to the recourse suggestion problem that requires no
more than a labeled dataset. Using a Conditional Subspace
Variational Autoencoder (CSVAE) model that is capable
of extracting latent features that are relevant for prediction
(Klys et al., 2018), we propose a computationally efficient
method, Counterfactual Recourse Using Disentangled Sub-
spaces (CRUDS), for generating recourse that are actionable
and valid. That is, we generate recourse that obey the de-
pendencies between data covariates, as well as causal and
individualized constraint sets when such knowledge is avail-
able; our recourse also reverses the original decision under
the classifier in question. On synthetic and real datasets, we
compare CRUDS’s performance against baselines in terms
of actionability and validity. We show that CRUDS reliably
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produces high quality recourse without assuming access to
a classifier or the complete causal model for the data.

Related Works Following the literature on counterfactual
recourse, we define recourse as the difference between the
observed data and an observed or synthetic data point that is
likely to have the opposite label; the latter is called a coun-
terfactual. The body of works addressing counterfactual
generation falls largely into two categories. The first cate-
gory minimizes the magnitude of suggested changes in the
recourse, measured using a user-specified (often Euclidean)
distance between the counterfactual and the original data
point, subject to constraints that formalize user-specified
notions of actionability (Ustun et al., 2019; Wachter et al.,
2017; Kommiya Mothilal et al., 2019; Russell, 2019). In
the second category of work, one first learns the underly-
ing structure of the data, either implicitly as a manifold
supported distribution (Joshi et al., 2019; Liu et al., 2019;
Poyiadzi et al., 2020) or explicitly as a structural causal
model (Karimi et al., 2020; Louizos et al., 2017), and then
one generates counterfactuals that obey the learned struc-
ture. Recently, some works have combined unsupervised
learning of structures in the data with partial knowledge of
causal model for the data (Mahajan et al., 2019). In these
works, the notion of minimal change is defined with respect
to the learned structure rather than with respect to Euclidean
distance in input space.

The draw-backs of the existing approaches are the following:
(1) methods minimizing the magnitude of the suggested
changes in recourse assume that counterfactuals close in
Euclidean distance to the observed data represent action-
able recourse. However, changes suggested by the min-
imal Euclidean distance counterfactual may not obey de-
pendencies between the covariates in the data nor causal
constraints (Karimi et al., 2020); (2) most methods rely on
prior knowledge of causal structure in the data, similarity
measures on points in the input space, a priori examples
of real-counterfactual, and/or access to the gradients of the
classifier, none of which may be available in practice; (3)
furthermore, models that generate counterfactuals using the
gradient of the classifier over the data manifold are sensi-
tive to both the classification boundary and the geometry of
the manifold (Section 3); (4) lastly, most methods suggest
one “optimal” recourse satisfying causal or individualized
constraints. However, this prevents down-stream users from
ad-hoc modifying their constraints or exploring alternatives
to their a priori preference.

In this work, we propose a method to generate counterfactu-
als that obey dependencies between data covariates while
assuming nothing more than a labeled dataset. When causal
and individualized constraints are available, we satisfy them
without substantial additional computational costs. Our
method is not sensitive to the classification boundary nor

the geometry of the data manifold. Lastly, our method is
able to suggest multiple counterfactuals, allowing for easy
adaptation to individualized constraints or changes in user
preferences.

2. Background
We assume N observations D = {(x(n), y(n))}Nn=1, where
the input x is in RD and y(n) is a binary label.

A Variational Autoencoder (VAE) (Kingma & Welling,
2013) is deep generative latent variable model used for
estimating the density of x in the input space. It is comprised
of two models. The first is a generative model:

x|z ∼ N (fθ(z), σ
2
ε · I), z ∼ N (0, σ2

z · I) (1)

where fθ is a neural network parameterized by θ, which
transforms a simple latent p(z) distribution into a data dis-
tribution pθ(x). The second model is the inference model,
qφ(z|x), trained to approximate the posterior pθ(z|x). The
two models are trained jointly by maximize a lower bound
of the evidence log-likelihood (known as the ELBO):

pθ(x) ≥ Eqφ(z|x)
[
log

pθ(x, z)

qφ(z|x)

]
= ELBO(x; θ, φ) (2)

We suppose that the approximate posterior qφ(z|x) is a
mean-field Gaussian with mean and variance µφ(x), σ2

φ(x)
parameterized by neural networks with parameters φ.

The REVISE Algorithm (Joshi et al., 2019) is an example
of a class of algorithms that first learns the underlying struc-
ture in the data by capturing p(x), say, by using a VAE. In
REVISE, given an observation x(n) and a corresponding
most likely latent representation z(n) (i.e. z(n) is the mean
of the variational posterior qφ(z|x)), a counterfactual is gen-
erated by performing gradient descent in the latent space,
starting at z(n) and maximizing p(y|x = f(z)) as well as
a user-specified similarity measure over the input space,
c(f(z), x). The stopping condition is when the probability
of the desired flipped outcome p(y|x = f(z)) is larger than
0.5. The intuition behind REVISE is that by optimizing
over the latent space, the counterfactual generated will lie
on the data manifold. While intuitive, in Section 3, we show
that algorithms like REVISE may fail to generate counter-
factuals that satisfy causal constraints even if the underlying
model (e.g. a VAE) is able to capture p(x).

The Conditional Subspace VAE (CSVAE) (Klys et al.,
2018) is a VAE-variant in which the latent space is par-
titioned into two parts – one to learn representations that
are predictive of the labels, and one to learn the remaining
latent representations necessary for generating the data:

w|y ∼ N (µy, σ
2
y · I), y ∼ Bern(p),

x|w, z ∼ N (fθ(w, z), σ
2
ε · I), z ∼ N (0, σ2

z · I),
(3)
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where (x, y) are labeled points, w is a latent variable that
is predictive of the label y, and z is a latent variable unre-
lated to the label. Like in VAE inference, we introduce an
inference model, qφ(w, z|x, y) = qφ(w|x, y)qφ(z|x), and
maximize a lower bound of the evidence log-likelihood:

pθ(x, y) ≥ Eqφ(w,z|x,y)
[
pθ(x, y, w, z)

qφ(w, z|x, y)

]
(4)

The right hand side of the inequality is the ELBO, denoted
ELBO(x, y; θ, φ). Since under the generative model, w and
z are independent, they should also be independent in the
learned model. Klys et al. (2018) explicitly enforce this
property by minimizing the mutual information between Y
and Z (Appendix A).

3. Issues with Counterfactual Recourse via
Optimization over Data Manifolds

In this section we describe three types of failures one may
encounter when using a broad class of existing, intuitive
algorithms for counterfactual generation – algorithms op-
timizing an objective function that includes the classifier’s
loss function as well as the Euclidean distance from the
starting point, in either observation or latent space. We
use REVISE as a specific example in our discussion. The
failures we identify are surprising because, in all cases, the
model (a VAE) approximates the data distribution correctly.

Counterfactuals may be out-of-distribution. While algo-
rithms such as REVISE propose counterfactuals that lie on
the data manifold and thus will obey the dependencies be-
tween the data covariates, not all counterfactuals generated
in this way will lie in a high data density region. As such,
REVISE may generate counterfactuals that are extremely
unlikely under p(x) and therefore look exceptionally differ-
ent from the observed data. Consider the “Mixture-Example”
in Figure 1a (details in Appendix B): REVISE stops right af-
ter the outcome is flipped, and the resultant counterfactual is
unlikely under p(x) due to the distance between the modes
in the data distribution. We can expect this pathology to
occur anytime x|y = 0 and x|y = 1 are easily separable, i.e.
there is a region between the classes with low data density.

Counterfactuals are sensitive to the decision boundary.
Algorithms that use the gradient of the classifier’s loss func-
tion are sensitive to the decision boundary. Consider the
“S-Example” in Figure 1b (details in Appendix B): REVISE
prefers to cross the classification boundary nearby, resulting
in an unlikely counterfactual instead of moving towards the
region in which p(x|y = 1) is high.

It may be impossible to flip the outcome. Algorithms
whose optimization trajectories are constrained to lie on
the data manifold can become “stuck” due to unfriendly
geometry and topology of these manifolds Consider the

“C-Example” in Figure 1c (details in Appendix B). In this
example, taking gradient steps towards the boundary leads
to a region where the manifold “ends” before the outcome
can be flipped. There do not exist points in latent space
in the direction of the optimization which correspond to
points in observation space that lie on a path to the decision
boundary. As such, REVISE gets stuck on the same side of
the boundary. This failure may occur on many non-linear
manifolds in which initial steps in the optimization must be
taken away from the boundary.

In the next section, we propose a method for generating
counterfactuals that obey the dependencies between the data
covariates and avoids the three failure modes outlined above.

4. CRUDS: Counterfactual Recourse Using
Disentangled Subspaces

The partitioned latent subspace structure of the CSVAE
suggests a natural method for generating counterfactual data
that target desirable outcomes. Our approach is simple.

Step 1: Disentangling latent features relevant for classi-
fication from those that are not. Given a labeled dataset
D, we first train a CSVAE to capture p(x) as well as learn a
latent subspace w that is predictive of the label y.

Step 2: Generating counterfactuals by changing only
relevant latent features. For a data point (xn, y = 0) with
corresponding approximate posteriors qφ(w|xn, y = 0) and
qφ(z|xn), we take S samples from the posterior qφ(z|xn)
over z and S samples from the prior p(w|y = 1) over w:

z(s) ∼ qφ(z|xn), w(s) ∼ p(w|y = 1).

The intuition is that, by sampling z from the posterior, we
preserve latent attributes of xn that do not affect the outcome
y; whereas by sampling from the prior over w, we generate
a diverse set of latent attributes that encode for a positive
outcome. Our set of counterfactuals is then given by

x
(s)
CF ∼ N (fθ(w

(s), z(s)), σ2
ε · I), s ∈ {1, . . . , S}.

Note that we are approximating the distribution over coun-
terfacturals p(xCF|xn, y = 1) with samples.

Step 3: Filtering counterfactuals given constraints.
When knowledge of causal constraints (e.g. more years
of education necessitates an increase in age), or individual
end-user preferences (e.g. getting more education is im-
possible for one individual but not another) are available,
we filter our counterfactuals for samples that satisfy those
constraints.

Step 4: Summarizing counterfactuals for interpretabil-
ity. Lastly, we approximate the distribution over counter-
factuals p(xCF|xn, y = 1) using a decision tree, and we
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(a) Mixture-Example (b) S-Example (c) C-Example

Figure 1. Failure cases for algorithms that perform gradient descent on the data manifold. (a) Algorithm produced counterfactual unlikely
under the data distribution. (b) Algorithm is sensitive to the classification boundary. (c) Algorithm could not flip outcome.

summarize paths in the decision tree model as decision rules.
We condense the clauses in the decision rule sets and sort
the rules by the likelihood of the counterfactuals generated
by each rule. This way, we obtain an interpretable discretiza-
tion of the input space that is ranked by the likelihood of
each region under p(xCF|xn, y = 1). See Appendix D for
a complete description.

By design, CRUDS offers four important improvements to
existing approaches:

A. CRUDS does not require significant prior knowledge
in order to preserve data covariate relationships in the
generated counterfactuals. To generate counterfactuals
that obey the relationship between the covariates in the data,
CRUDS only requires a labeled dataset. Unlike (Joshi et al.,
2019), we do not assume access to ground truth classifiers
or user-defined similarity measures; unlike (Mahajan et al.,
2019), we do not assume a priori examples of counterfactu-
als, or external oracles.

B. CRUDS is not sensitive to decision boundaries or ge-
ometry of data-manifolds. Instead of optimizing a syn-
thetic data-point to have the desired outcome, CRUDS al-
lows us to directly sample synthetic data-points with the de-
sired outcomes. A such, it is insensitive to the irregularities
in the classifier’s decision boundary and difficult geometries
of the data manifold that typically trouble optimization-
based algorithms. Figures 6, 7 and 8 in Appendix C demon-
strate that a CSVAE is able to model p(xCF|x, y = 1) on the
three pathological examples of Section 3, while algorithms
such as REVISE propose unrealistic or invalid counterfactu-
als.

C. CRUDS can satisfy additional causal or individual-
ized constraints on counterfactuals with ease. When ad-
ditional knowledge of causal constraints or user preferences
are available, CRUDS can suggest counterfactuals that sat-
isfy these constraints without significant additional compu-

tational cost, by filtering for satisfactory counterfactuals in
the generated set. This flexibility allows for end-users to
perform ad-hoc exploration.

D. CRUDS produces in-distribution counterfactuals. As
we noted in Section 3, algorithms that prioritize minimizing
distance (in observed or latent space) to the factual data may
propose counterfactuals that are located in low data density
regions. By sampling and filtering counterfactuals, CRUDS
only generates counterfactuals that are within the observed
data distribution.

5. Experiments
Data Sets We evaluate CRUDS on seven synthetically gen-
erated (described in Appendix B) and three real datasets,
the Credit Default dataset, the Wine Quality dataset, and the
South German Credit dataset (Dua & Graff, 2017). On the
“Mixture”, “C”, “S”, and “Overlap” Examples, we verify
that CRUDS does not suffer the failure modes we observed
in Section 3. On data generated from a simple causal model,
we check that CRUDS counterfactuals preserve the true de-
pendencies between the covariates in the data. On “Hidden
Confounding”, we show that when the data generating pro-
cess does not match that assumed by the CSVAE (a hidden
confounder is present), CRUDS counterfactuals can fail to
preserve the relationship between the covariates. On “Non-
linear”, we show that CRUDS is agnostic to the shape of the
decision boundary.

Baselines We compare the performance of CRUDS against
REVISE as well as against two gradient-based approaches
using a CSVAE (rather than a VAE). We refer to the latter
as Path-CRUDS (p-CRUDS) (details in Appendix E).

Evaluation We evaluate the validity by computing the frac-
tion of counterfactuals that actually flip the classifier’s deci-
sion, and by computing the average classification probability
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Figure 2. Recourse options produced by CRUDS on the South German Credit Example. Each row represents an option, consisting of
several clauses that must be satisfied to get the desirable outcome. Green/red means that the user does / does not satisfy the clause,
respectively.

on the generated counterfactuals. When the true structure
of the data is known and in cases where we have knowledge
of causal constraints, we evaluate how well counterfactuals
obey these relationships, by computing the constraint fea-
sibility score from Mahajan et al. (2019). We also inspect
some of the counterfactuals as a qualitative check. Finally,
we measure the “difficulty” of the recommended recourse
through several distance-based and percentile-shift-based
cost metrics (details in Appendix F.1).

6. Results and Discussion
CRUDS generates valid counterfactuals. CRUDS coun-
terfactuals are 100% valid on all real and synthetic datasets,
except for “Hidden Confounding”. Importantly, CRUDS
is able to produce valid counterfactuals for any decision
boundary, while REVISE becomes inefficient (w.r.t num-
ber of gradient steps) with a nonlinear decision boundary
(as in the “Nonlinear” Example, Figure 10, and as in the
“Overlap” Example, Figure 5), and fails to generate valid
counterfactuals in “C” Example (Figure 8).

Recourse proposed by CRUDS is more actionable than
that of baselines. While our CRUDS-based methods tend
to perform slightly worse overall on the distance based met-
rics, they perform better on the causal constraint feasibility
score. For example, on the Credit Default data-set, CRUDS
satisfies all causal constraints (listed in Appendix F.1) 100%
of the time, while REVISE satisfies the constraints only 69%
of the time. We note that this percentage is computed as an
average across a set of six causal constraints – the number
of counterfactuals that satisfy all constrains simultaneously
is substantially lower (refer to Table 3a for details). This
again reflects that distance based metrics alone do not cap-
ture actionability. The CRUDS-based methods also propose
recourse which are qualitatively reasonable.

Recourse proposed by CRUDS is more interpretable
than that of baselines. Figure 2 details the recourse options
for the South German Credit dataset (Dua & Graff, 2017),
produced by the interpretable summary of p(xCF|x, y = 1)

in step 4 of CRUDS (Section 4): each row represents an
option, consisting of several clauses that must be satisfied
for to get the desirable outcome. Overall, CRUDS recom-
mends increasing available funds within a checking account,
but gives several options for how to do this – one of which
may work for the user. For example, option 1 and option
8 represent a choice between increasing savings or obtain-
ing a better credit history while option 3 suggests that it
is sufficient to acquire a better credit history and increase
savings while ignoring the checking account funds. We
therefore see that CRUDS’s recommendations are aligned
with human judgement, whereas other methods often give
the end-user only a single (and potentially non-actionable)
recommendation. For example, for an applicant deemed as
high risk due to insufficient checking and savings account
funds, problems with credit history, a long loan duration,
and large amount of money requested, REVISE recommend
decreasing age (not possible), as well as increasing the in-
stallment payments and the loan amount, the latter of which
increases loan risk. More details in Appendix G.

Distance/shift minimization is a poor heuristic for ac-
tionability. As we discuss above, although REVISE tends
to score better on distance and percentile shift metrics,
CRUDS recourse better satisfy dependencies between the
covariates in the data and causal constraints. Recourse that
propose smaller amounts of change are not necessarily the
most actionable or valid.

CRUDS cannot recover covariate relationships under
model mismatch. “Hidden Confounding” illustrates the
challenge of learning data dependencies under hidden
confounding variables for all approaches (Table 1b); for
CRUDS in particular, target class validity is relatively low,
the distance-based metrics are higher, and the constraint
feasibility is low. Qualitatively, CRUDS proposes recourse
that are nonsensical (Table 2b).



CRUDS: Counterfactual Recourse Using Disentangled Subspaces

7. Conclusion
We show failure cases for a broad class of counterfactual
generation algorithms that optimize a classifier-based objec-
tive over the data manifold. We propose a novel method for
generating recourse, CRUDS, and demonstrate through ex-
periments that CRUDS consistently produces valid recourse
that respects dependencies in the data, as well as causal and
individualized constraints when available. In future work,
we aim to extend CRUDS to the semi-supervised case in
which labels are not available for all data points as well as
scenarios where the feature-set is of mixed type. We also
aim to formally evaluate the decision-rule summaries of
counterfactuals for interpretability with a user-study.
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A. Conditional Subspace VAE Inference
The Conditional Subspace VAE (CSVAE) (Klys et al.,
2018) is a VAE-variant in which the latent space is par-
titioned into two parts – one to learn representations that
are predictive of the labels, and one to learn the remaining
latent representations necessary for generating the data:

w|y ∼ N (µy, σ
2
y · I), y ∼ Bern(p),

x|w, z ∼ N (fθ(w, z), σ
2
ε · I), z ∼ N (0, σ2

z · I),
(5)

where (x, y) are labeled points, w is a latent variable that
is predictive of the label y, and z is a latent variable unre-
lated to the label. Like in VAE inference, we introduce an
inference model, qφ(w, z|x, y) = qφ(w|x, y)qφ(z|x), and
maximize a lower bound of the evidence log-likelihood:

pθ(x, y) ≥ Eqφ(w,z|x,y)
[
pθ(x, y, w, z)

qφ(w, z|x, y)

]
(6)

The right hand side of the inequality is the ELBO, denoted
ELBO(x, y; θ, φ).

We follow the inference proposed by Klys et al. (2018). We
maximize the CSVAE ELBO, averaged over the data:

M1 =
1

N

N∑
n=1

ELBO(xn, yn, θ, φ) (7)

Since in practice, maximizingM1 does not guarantee that
Z is independent of Y in the learned model (as specified by
the generative model), we maximizeM1 while minimizing
the information shared by Y and Z:

M2 = I(Y ;Z) (8)
= H(Y )−H(Y |Z) (9)

where

H(Y |Z) =

∫
z,y,x

pθ(z|x)p(x)pθ(y|z) log pθ(y|z)dxdydz.

(10)

Since the integral above is intractable, we substitute in ap-
proximate posteriors, pθ(z|x) ≈ qφ(z|x), and pθ(y|z) ≈
qδ(y|z):

H(Y |Z) ≈ H(Y )− 1

N

N∑
n=1

Eqφ(z|xn)qδ(yn|z) [log qδ(yn|z)]

(11)

wherein qδ(y|z) is trained to approximate pθ(y|z) by maxi-
mizing

M3 =
1

N

N∑
n=1

Eqφ(z|xn) [log qδ(yn|z)] (12)

x

wz

(a) Generative Model

x

wz

y

(b) Inference Model

Figure 3. CSVAE Model (Klys et al., 2018)

Putting it all together, the training objective is:

min
θ,φ
−β1M1 + β2M2, max

δ
β3M3 (13)

where the βi’s represent the relative importance of the terms.

B. Pedagogical Examples
Mixture Example Consider data generated from the fol-
lowing VAE model (visualized in Figure 6a):

z ∼ N (0, 1)

u(z) = 20.0 · (Φp(z)(z)− 0.5)

t(u) = tanh(u+ 0.5) + tanh(u− 0.5) + 0.001 · u

f(z) =

[
t (u(z))

0.0

]
x|z = N (f(z), σ2

ε )

(14)

where σ2
ε = 0.2 and Φp(z)(·) is the CDF of p(z). Equiv-

alently, consider the same data generated from a CSVAE
model (visualized in Figure 6c):

y ∼ Bern

(
1

2

)
w|y ∼ N (−1 + 2 · y, σ2

w)

z ∼ N (0, 1)

u(w) = 20.0 · (Φp(w)(w)− 0.5)

t(u) = tanh(u+ 0.5) + tanh(u− 0.5) + 0.001 · u

f(w, z) =

[
t (u(w))

0.0

]
x|w, z = N (f(w, z), σ2

ε )

(15)

where σ2
ε = 0.2, σ2

w = 0.01 and Φp(w)(·) is the CDF of
p(w). For these examples, the true classifier y|x is given
by:

p(y|x1, x2) =
1

1 + exp(−5.0 · x1)
(16)
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which for a threshold of 0.5 gives a classification boundary
at x1 = 0.0. Note that in this example, z, the latent code
not correlated with the label y, is ignored for simplicity.

S-Example Consider data generated from the following
VAE model (visualized in Figure 7a):

z1, z2 ∼ N (0, 1)

u(z) = 20.0 · (Φp(z)(z)− 0.5)

t(u) = tanh(u+ 0.5) + tanh(u− 0.5) + 0.001 · u

f(z1, z2) =

[
t (u(z1))
0.4 · z2

]
x|z1, z2 = N (f(z1, z2), σ2

ε )

(17)

where σ2
ε = 0.05 and Φp(z)(·) is the CDF of p(z). Equiv-

alently, consider the same data generated from a CSVAE
model (visualized in Figure 7c):

y ∼ Bern

(
1

2

)
w|y ∼ N (−1 + 2 · y, σ2

w)

z ∼ N (0, 1)

u(w) = 20.0 · (Φp(w)(w)− 0.5)

t(u) = tanh(u+ 0.5) + tanh(u− 0.5) + 0.001 · u

f(w, z) =

[
t (u(w))
0.4 · z

]
x|w, z = N (f(w, z), σ2

ε )

(18)

where σ2
ε = 0.05, σ2

w = 0.01 and Φp(w)(·) is the CDF of
p(w). For these examples, the true classifier y|x is given
by:

p(y|x1, x2) =σ(−5.0 · x1) · σ(5.0 ∗ (x2 − 1.0))

+ σ(5.0 · x1) · σ(5.0 ∗ (x2 + 1.0))
(19)

where σ represents the sigmoid function.

C-Example Consider data generated from the following
VAE model (visualized in Figure 8a):

z ∼ N (0, 1)

u(z) = π · (1.9− 1.8 · Φp(z)(z))

f(z) =

[
cos (u(z))
sin (u(z))

]
x|z = N (f(z), σ2

ε )

(20)

where σ2
ε = 0.1 and Φp(z)(·) is the CDF of p(z). Equiv-

alently, consider the same data generated from a CSVAE

model (visualized in Figure 8c):

y ∼ Bern

(
2

9

)
w|y ∼ N (−1 + 2 · y, σ2

w)

z ∼ N (0, 1)

u(w) = π · (1.9− 1.8 · Φp(w)(w))

f(w, z) =

[
cos (u(w))
sin (u(w))

]
x|w, z = N (f(w, z), σ2

ε )

(21)

where σ2
ε = 0.1, σ2

w = 0.01 and Φp(w)(·) is the CDF of
p(w). For these examples, the true classifier y|x is given
by:

p(y|x1, x2) =
1

1 + exp(−5.0 · x1)
· 1

1 + exp(−5.0 · x2)
(22)

which for a threshold of 0.5 gives a classification boundary
at,

x2 = −0.2 · log

(
2.0

1.0 + exp(−5.0 · x1)
− 1.0

)
(23)

Note that in this example, z, the latent code not correlated
with the label y, is ignored for simplicity.

Simple Causal Example We adopt a causal data genera-
tive process from Karimi et al. (2020) (Figure 4a):

U1 ∼ Pois(100000)

U2 ∼ N (0, 25002)

X1 = U1

X2 = 0.3 ∗X1 + U2

Y = Bern(σ(X1 + 5 ∗X2 − 225000))

(24)

where σ is the sigmoid function. We standardize the features
after generating them.

We consider the simple real world manifestation of this
causal structure as the process of making loan decisions,
where X1 represents income, X2 represents savings, and Y
represents the loan decision (Y = 1 being approval).

Hidden Confounding Example We extend the simple
causal example (24) with the inclusion of an additional
unobserved confounding variable (Figure 4b):

U1 ∼ Pois(100000)

U2 ∼ N (0, 25002)

U3 ∼ Clip(Pois(600), 300, 850)

X1 = U1

X2 = 0.3 ∗X1 + U2 + (−50000) ∗ N(U3)

Y = Bern(σ(0.4 ∗ S(X1 + 3 ∗X2) + 0.6 ∗ S(U3)))

(25)
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U2

U1

X2

X1

Y

(a) Simple causal

X1U1

X2U2

Y

U3

(b) Hidden confounding

Figure 4. Causal generative graphs. Shaded and unshaded nodes
represent observed and unobserved variables, respectively.

Figure 5. Nonlinear decision boundary example

where N(X) and S(X) refer to normalized and standardized
X , respectively, and Clip(X,min,max) clips the random
variable X such that values less than min are set to min
and likewise with max. We standardize the features after
generating them.

Extending the loan decision scenario, the hidden confounder
U3 represents an unobserved credit score. We assume that a
higher credit score increases the chance of the loan being
approved, and decreases the amount of savings available
because the higher credit score represents a more robust
credit history due to increased spending. The true effect of
savings on the outcome of the loan application is positive,
but looks negative due to the credit score confounder.

Nonlinear Example We generate data using a spherical
gaussian in R2 and a circular decision boundary (Figure 5):

x1, x2 ∼ N (0, 22)

y = Bern(σ(.5 ∗ (x21 + x22 − 8)))
(26)

Overlap Example Consider data generated from the fol-
lowing generative process, in which x|y = 0 and x|y = 1

overlap significantly:

y ∼ Bern

(
1

2

)
w ∼ N (−1 + 2 · y, 0.252)

z ∼ N (0, 1)

x|w, z ∼ N (f(w, z), 0.12)

(27)

where

a(w) = I(w ≥ 0) ·
(
0.5 · Φ(w; 1.0, 0.252) + 0.5

)
+ I(w < 0) ·

(
0.5 · Φ(w;−1.0, 0.252)

)
b(w) = B−1(a(w); 0.2, 0.2)

u0(z) = π ·
√

Φ(z; 0, 1)

u1(z) = π · (Φ(z; 0, 1))2

f(w, z) =

[
cos (b(w) ∗ u0(z) + (1.0− b(w)) ∗ u1(z))
sin (b(w) ∗ u0(z) + (1.0− b(w)) ∗ u1(z))

]
(28)

in which Φ(·;µ, σ2) is the CDF of N (·;µ, σ2), and
B−1(·;α, β) is the inverse-CDF of the Beta distribution
with parameters α, β.

C. A Case for Sampling-Based Recourse with
CSVAEs

As Section 3 demonstrates, obtaining recourse by perform-
ing gradient-descent in latent space is subject to several
problems: (1) the proposed counterfactual may be infeasible
(or unlikely), (2) the algorithm may fail to propose a counter-
factual, and (3) only one counterfactual is proposed, which
may not correspond to successful recourse. As we show
here, sampling-based recourse mitigates all of the above
issues. In sampling-based counterfactual generation, we
always sample from high regions of the space and are there-
fore not fooled by properties of the classification boundary.
Figures 6d, 7d and 8d all show that the two data conditionals
p(x|y) of the CSVAE sample points in the high-mass region
on the correct side of the boundary. Furthermore, due to
sampling, we generate a diverse set of valid counterfactuals,
some of which may correspond to actionable recourse.
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(a) Classifier boundary, and p(x), f(z)
of VAE

(b) REVISE generates unlikely coun-
terfactual

(c) Classifier boundary, and
p(x), f(w, z) of CSVAE

(d) CSVAE is able to partition the space into two regions: p(x|y = 0) on the
left and p(x|y = 1) on the right.

Figure 6. Mixture-Example. Although both VAE and CSVAE model p(x) perfectly, REVISE+VAE generates a counterfactual that is
extremely unlikely under the data distribution. CSVAE+Sampling, on the other hand, simply by conditioning on y = 1, guarantees that
generated counterfactuals are the correct side of the boundary and are likely.

(a) Classifier boundary and p(x) of
VAE

(b) REVISE is sensitive to the clas-
sification boundary

(c) Classifier boundary and p(x) of
CSVAE

(d) CSVAE is able to partition the space into two regions: p(x|y = 0) on the
left and p(x|y = 1) on the right.

Figure 7. S-Example. Although the VAE and CSVAE both model p(x) perfectly, because the classification boundary passes in a low-mass
region of p(x) near the high-mass region of p(x), REVISE+VAE flips the outcome trivially instead of moving towards where p(x|y = 1
is high. CSVAE+Sampling, on the other hand, simply by conditioning on y = 1, guarantees that generated counterfactuals are on the
correct side of the boundary.
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(a) Classifier boundary, and p(x), f(z)
of VAE

(b) REVISE cannot flip label

(c) Classifier boundary, and
p(x), f(w, z) of CSVAE

(d) CSVAE is able to partition the space into two regions: p(x|y = 0) on the
left and p(x|y = 1) on the right.

Figure 8. C-Example. Although the VAE and CSVAE both model p(x) perfectly, due to the curvature of the manifold, REVISE+VAE
is unable to flip the outcome. CSVAE+Sampling, on the other hand, simply by conditioning on y = 1, guarantees that generated
counterfactuals are the correct side of the boundary.

(a) Counterfactual distribution p(xCF|x, y′) (b) Approximation of p(xCF|x, y′) (c) Rules presented to user. Green means al-
ready satisfied by x = [0.5, 0.5], red means
is not yet satisfied.

Figure 9. Example of Counterfactual Distribution Summary. A target (synthetic) counterfactual distribution p(xCF|x, y′) (left) is
discretized using a decision tree (middle) and converted into a set of decision rules (right), sorted in order of most likely to least likely.
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D. Summarizing the Counterfactual
Distribution p(xCF|x, y′)

We need a human-understandable way of communicating to
a user x a distribution over counterfactuals xCF, for which
the outcome is flipped from y to y′. The problem with
having a distribution over xCF (as opposed to a single xCF
obtained via optimization), is that a distribution is hard to
summarize, especially in a high-dimensional and possibly
multi-modal setting. As an example, consider the case in
which we draw two samples x(1)CF and x(2)CF that are nearly
identical. A user looking at these two counterfactuals really
only needed to have seen one of them. So how do we
summarize the distribution concisely? We do this using the
following framework:

1. Partition: We partition the space of counterfactuals
based on the value of p(xCF|x, y′): ex. region 1 is when
p(xCF|x, y′) is high, region 2 is when p(xCF|x, y′) is
medium, and region 3 is when p(xCF|x, y′) is low.

2. Summarize: For each region, we summarize what
kinds of xCF define that region: ex. when xCF < 0.5 or
xCF > 1.0, we are in region 1.

3. Sort and Condense: We sort the summaries from
high-to-low p(xCF|x, y′) – this way, the user will first
look at a summary of the region mostly likely to be
applicable to them.

In this work, we chose to implement these three steps as
follows:

1. Partition: We sample S samples from p(xCF|x, y′)
and evaluate their probabilities under p(xCF|x, y′). We
then discretize the input space as well as the value
of the distribution by training a decision tree regres-
sor to map samples to their respective probabilities:
DecisionTree : xCF → p(xCF|x, y′). Figure 9a and 9b
show an example p(xCF|x, y′) we wish to summarize
and its approximation with the decision tree, respec-
tively.

2. Summarize: Each path from the root to a leaf corre-
spond to a set of conditions that all must be satisfied
for sample xCF to have the probability listed in the leaf
node. Each path therefore represents an AND of clauses
that, if the user satisfies, will be granted recourse.

3. Sort and Condense: We sort the paths by their proba-
bilities (most likely to least likely). We then condense
redundant information (ex. if a path contains two con-
ditions, x1 < 0.0 AND x1 < 1.0, we can instead just
write x1 < 0.0). Each option presented in the sum-
mary now has at most two clauses per feature of xCF.
Figure 9c shows the end result of this algorithm.

E. CRUDS-based Baselines
We propose two variants that use a REVISE-like algorithm
on a CSVAE as baselines:

p-CRUDS 1 performs gradient ascent steps in W space,
maximizing p(w|y = 1). It does so without making use
of an external classifier and halts when p(w|y = 1) >
p(w|y = 0).

p-CRUDS 2 also performs gradient ascent steps inW space,
maximizing p(w|y = 1). It does make use of an external
classifier and halts when classifier(y = 1|xCF) > 0.5.

F. Quantitative Results
For each dataset, we summarize the results of our experi-
ments in two tables: one comparing the evaluation metrics
across the REVISE baseline and CRUDS-based methods,
and a second presenting a sample data point along with
proposed recourse generated using different methods (Ta-
bles 1, 2, 3 and 4). In every case, the original features of
the sample data point result in an undesirable classification,
while the proposed recourse options all result in a desirable
classification. The sample recourse is presented for intuitive,
qualitative evaluation of the actionability and realism of our
proposed methods. A dash indicates that a metric does not
apply or was not computed due to lack of domain expertise
needed for reasonable evaluation.

F.1. Evaluation Metrics

LetXF be a factual observation andXCF be its correspond-
ing counterfactual obtained from an algorithm that produces
recourse through counterfactuals. Such algorithms as RE-
VISE and p-CRUDS also produce a set of intermediate
values that interpolate between XF and XCF , which we re-
fer to as path(XF , XCF ). Let clf(x) = I[clf prob(x) ≥ .5]
be a classifier. The metrics computed in the experiments are
the average of the following functions over all observations
in need of recourse under clf on a held out test set.

1. Target Class Validity: c(XCF ) = clf(XCF ), where
clf(x) = 1 is always assumed to be the desirable out-
come. Whether or not the recommended counterfactual
actually results in the better outcome under clf, a higher
target class validity is better.

2. Target Class Probability: c(XCF ) = clf prob(XCF ).
This metric provides a sense for how close to the de-
cision boundary the counterfactuals lie on average.
Whether closer or farther away is better depends on the
application.

3. `2 distance between the original and counterfactual:
c(XF , XCF ) = ‖XCF −XF ‖2. This metric provides
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us with a naive measure of similarity between factual
and counterfactual datapoints. Large values imply that
the counterfactual is more different than the original
point, but as we show in this paper this is not necessar-
ily worse.

4. Normalized `1: c(XF , XCF ) =
∑
i
|XiCF−X

i
F |

MAXi−MINi
where

MAXi and MINi are the max and min values for the
ith feature determined using the train set (from Karimi
et al. (2020)). This metric provides another measure
of similarity that weights each feature equally. Large
values imply that the counterfactual is more different
than the original point, but as we show in this paper
this is not necessarily worse.

5. Approximate geodesic length: the geometric notion
of shortest distance from the factual example to the
counterfactual while traversing the data manifold. This
is the sum of the `2 distance between subsequent points
in path(XF , XCF ). The path on the data manifold
from the factual to the counterfactual is not necessarily
a straight line so this cost metric gives a more realistic
measure of distance, since it may not be possible in real
life to “move in a straight line” to the counterfactual.
Large values imply that the counterfactual is more
different than the original point, but as we show in this
paper this is not necessarily worse.

6. Total Percentile Shift: c(XF , XCF ) =∑
i |ECDFi(Xi

CF ) − ECDFi(Xi
F )| where ECDFi is

the empirical CDF for the ith feature. Similar to the
normalized `1 metric, the total percentile shift gives us
a sense for how different the counterfactual is from
the original point relative to the rest of the population.
Large values imply that the counterfactual is more
different than the original point, but as we show in this
paper this is not necessarily worse.

7. Total Log Percentile Shift: c(XF , XCF ) =∑
i

∣∣∣ log(1−ECDFi(XiCF ))

log(1−ECDFi(XiF ))

∣∣∣. This metric takes into ac-
count that the difficulty of changing from one per-
centile to another depends on where one starts. For
example, going from the 50th percentile to the 55th is
typically easier than going from the 90th percentile to
the 95th. Large values imply that the counterfactual is
more different than the original point, but as we show
in this paper this is not necessarily worse.

8. Maximum Percentile Shift: c(XF , XCF ) =
maxi |ECDFi(Xi

CF ) − ECDFi(Xi
F )|. This gives a

sense of the largest effort exerted for a single change
relative to the entire population. Large values imply
more effort but are not necessarily worse.

9. Minimum Percentile Shift: c(XF , XCF ) =
mini |ECDFi(Xi

CF ) − ECDFi(Xi
F )|. This gives a

sense of the smallest amount of effort exerted for a
single change relative to the entire population. Large
values imply more effort but are not necessarily worse.

Additionally, we compute the constraint feasibility score as
the harmonic mean of the individual causal constraint satis-
faction rates. We compute a constraint feasibility score on
the Credit Default, simple causal, and hidden confounding
examples.

The individual causal constraints used for the Credit De-
fault dataset are:

• Age should not decrease too much. The fact that it
decreases at all is more a reflection of the error distri-
bution than a suggestion that one should decrease their
age

• Education level does not decrease

• Total months overdue going down implies that age
goes up to represent the passage of time

• The maximum bill amount over the past 6 months must
be at least as large as the most recent bill amount

• The maximum payment amount over the past 6 months
must be at least as large as the most recent payment
amount

The individual causal constraints used for the simple causal
and hidden confounding examples are:

• An increase in income implies an increase in savings

The individual causal constraints used for the South German
Credit examples are:

• Age cannot decrease

• The duration of the loan must be positive

• The amount of the loan must be positive

F.2. Datasets

Synthetic We use 7 synthetic datasets, described in Ap-
pendix B.

Real We use the Credit Default dataset (Dua & Graff,
2017) with the same pre-processing as in Ustun et al. (2019)
and sample 10% of the records at random to facilitate faster
experimentation. The Credit Default dataset has mixed con-
tinuous and categorical attributes. The CSVAE likelihood
assumes that all attributes are continuous. We use a small
likelihood variance and observe empirically that CRUDS
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and p-CRUDS largely respect the logical structure of the
categorical attributes, though we hope to extend CRUDS to
explicitly handle features of mixed type as future work. We
standardize the continuous attributes and represent the cate-
goricals with a one-hot encoding. The target of prediction
is whether the client ultimately defaulted on their credit.

We use the Wine Quality dataset (Dua & Graff, 2017) and
standardize the data. All attributes in the Wine Quality
dataset are continuous. The target of prediction is whether
the wine is of good quality or not.

Finally, we use the South German Credit dataset (Dua &
Graff, 2017), which is an updated version of the German
Credit dataset from Karimi et al. (2020). The dataset has
mixed continuous and categorical attributes. We use only the
7 most important features as determined by SHAP (Lund-
berg et al., 2020) and permutation importance. Three of
these are continuous: amount (of loan), duration (of loan),
and age (hoehe, laufzeit, and alter), and the other 4 are
categorical: checking account status, savings account sta-
tus, credit history, and installment rate (laufkont, sparkont,
moral, and rate). The categorical attributes have multiple
levels, but we binarize them by deriving indicators from
them for whether the applicant has the “best” (or “worst”
for installment rate) category for that attribute. For checking
account status, this means the applicant has at least 200
Deutsche Marks (DM) in their checking account or income
for at least one year. For savings account status, this means
the applicant has at least 1000 DM in their savings account.
For credit history, this means all credits from the bank to
the applicant have been paid back duly. For installment
rate, this means that the installment rate is less than twenty
percent of the applicant’s income. We standardize the con-
tinuous attributes and represent the remaining features as
binary indicators. We treat credit history as being mutable.
The target of prediction is whether the applicant is at low or
high risk of default.

G. Qualitative Analysis of the South German
Credit Dataset

We present here a qualitative analysis of CRUDS applied
to the South German Credit dataset. Table 4c details three
counterfactuals recommended by REVISE, p-CRUDS 1,
and CRUDS, respectively, for an applicant that was deemed
high risk due to insufficient checking and savings account
funds, problems with credit history, the long duration of
the loan, and large amount of money requested. REVISE
and p-CRUDS 1, due to a lack of explicit causal constraint
enforcement, both recommend decreasing age. REVISE
also recommends increasing the installment payments and
the loan amount, the latter of which increases loan risk.
p-CRUDS 1 and CRUDS both recommend decreasing the
loan amount and duration as well as obtaining more capital

before seeking the loan, all of which are interventions which
we would intuitively expect to decrease loan risk.

Figure 2 details the options produced by step 4 in section 4.
A decision tree of depth three was used to partition the sam-
pled counterfactuals. The leftmost conditions correspond
to the rules determined by the decision tree for a particular
leaf node and the remaining conditions correspond to the
values that the unused attributes take on within the set of
counterfactuals in that leaf node. Numeric attributes not
used in a decision rule are summarized with a range. Binary
attributes are included only if they do not vary within the
leaf node. We observe that it is almost always necessary
to increase available funds within a checking account, but
there is choice in how the other attributes are modified. For
example, option 1 and option 8 represent a choice between
increasing savings or obtaining a better credit history while
option 3 suggests that it is sufficient to acquire a better credit
history and increase savings while ignoring the checking
account funds. We note that there are redundancies in this
option set and that an investigation into how the decision
tree parameters affect the quality of the options as well
as alternative methods for summarizing the counterfactual
distribution remain as future work.

The seven attributes used in this qualitative analysis are
easily interpretable and their relationship with loan risk can
be reconciled with human judgment in a straightforward
manner. This example illustrates that CRUDS can provide
sensible recourse where other methods do not while also
giving the end user choice in how they achieve the recourse.



CRUDS: Counterfactual Recourse Using Disentangled Subspaces

H. Experimental Details
Architecture The VAE and CSVAE used the same archi-
tectures in all experiments. All encoders, decoders and the
qδ(y|z) inference network consisted of 1 hidden layer with
64 nodes and ReLU activations.

Hyper-parameters In the pedagogical examples in Ap-
pendix B, the VAE/CSVAE’s parameters were that of the
ground truth data generating process. In all other exper-
iments, σ2

z = 0.25, w is 1-dimensional, drawn from a
mixture of Gaussians with means −1, 1 (corresponding to
y = 0, y = 1) and with σ2

w = 0.25. For REVISE, we used
λ = 10−5. A logistic regression was used as the classifier
for all experiments except the nonlinear decision boundary
synthetic example which used a 3 hidden layer MLP with
ReLU activations. For the real datasets, the latent dimen-
sions were chosen using the “ELBOW” method.

For the CSVAE model, the βi’s were selected to ensure
that the z’s are uncorrelated with the y’s, and so that the
posterior aggregated over the data matched the prior – both
checks were performed visually in the simple models. For
the remainder of the hyper-parameters, refer to Table 5.

Optimization We used the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 1e− 3 in all experiments.

Data For the synthetic datasets, train sets consisting of
3000 observations and test sets consisting of 100 obser-
vations were generated. For the real datasets, an 80-20
train-test split was performed.
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Metric REVISE p-CRUDS 1 p-CRUDS 2 CRUDS
Target Class Validity 1.00 1.00 1.00 1.00
Classifier Probability 0.52 0.64 0.52 0.63
`2 1.16 1.62 1.14 1.66
normalized `1 0.23 0.34 0.22 0.33
Geodesic (Approx.) 1.27 1.84 1.15 -
Max Percentile Shift 0.28 0.43 0.26 0.43
Min Percentile Shift 0.19 0.35 0.19 0.34
Total Percentile Shift 0.47 0.78 0.45 0.77
Total Log Percentile Shift 0.29 0.75 0.34 0.66
Constraint Feasibility Score 1.00 1.00 1.00 1.00

(a) Simple causal example

Metric REVISE p-CRUDS 1 p-CRUDS 2 CRUDS
Target Class Validity 0.95 0.71 0.90 0.90
Classifier Probability 0.50 0.51 0.51 0.55
`2 0.73 0.75 0.81 1.54
normalized `1 0.12 0.15 0.16 0.30
Geodesic (Approx.) 0.85 0.79 0.86 -
Max Percentile Shift 0.18 0.18 0.19 0.34
Min Percentile Shift 0.03 0.12 0.13 0.26
Total Percentile Shift 0.21 0.39 0.32 0.60
Total Log Percentile Shift 0.32 0.34 0.35 1.11
Constraint Feasibility Score 0.45 0.11 0.02 0.02

(b) Hidden confounding example

Metric REVISE p-CRUDS 1 p-CRUDS 2 CRUDS
Target Class Validity 1.00 0.98 1.00 1.00
Classifier Probability 0.93 0.77 0.77 0.90
`2 2.96 2.01 2.02 2.40
normalized `1 0.27 0.19 0.19 0.23
Geodesic (Approx.) 3.13 2.07 2.08 -
Max Percentile Shift 0.23 0.23 0.23 0.25
Min Percentile Shift 0.13 0.13 0.13 0.15
Total Percentile Shift 0.36 0.36 0.36 0.41
Total Log Percentile Shift 1.27 0.36 0.36 0.39
Constraint Feasibility Score - - - -

(c) Nonlinear example

Metric REVISE p-CRUDS 1 p-CRUDS 2 CRUDS
Target Class Validity 1.00 0.98 1.00 1.00
Classifier Probability 0.51 0.52 0.53 0.64
`2 0.79 0.89 0.89 1.87
normalized `1 0.54 0.59 0.59 0.95
Geodesic (Approx.) 0.93 0.97 0.98 -
Max Percentile Shift 0.45 0.46 0.46 0.73
Min Percentile Shift 0.25 0.28 0.28 0.27
Total Percentile Shift 0.70 0.74 0.74 1.01
Total Log Percentile Shift 1.08 1.13 1.14 1.73
Constraint Feasibility Score - - - -

(d) Overlap example

Table 1. Evaluation metrics - synthetic datasets

Attribute Original REVISE p-CRUDS 1 CRUDS
Income 67522.0 93354.0 107010.0 102481.0
Savings 21028.0 27967.0 30142.0 30689.0

(a) Simple causal example

Attribute Original REVISE p-CRUDS 1 CRUDS
Income 60000.00 96050.82 87129.77 104434.91
Savings -1445.94 -4017.33 -10217.36 -17154.71

(b) Hidden confounding example

Attribute Original REVISE p-CRUDS 1 CRUDS
x1 1.08 2.98 1.88 2.08
x2 1.38 3.07 2.81 3.14

(c) Nonlinear example

Attribute Original REVISE p-CRUDS 1 CRUDS
x1 1.16 0.19 0.20 -1.07
x2 0.12 0.99 1.05 0.17

(d) Overlap example

Table 2. Proposed recourse - synthetic datasets

Metric REVISE p-CRUDS 1 p-CRUDS 2 CRUDS
Target Class Validity 1.00 1.00 1.00 1.00
Classifier Probability 0.52 0.76 0.52 0.88
`2 1.41 2.90 1.28 4.03
normalized `1 0.68 1.03 0.55 1.43
Geodesic (Approx.) 1.67 3.31 1.53 -
Max Percentile Shift 0.73 0.73 0.70 0.89
Min Percentile Shift 0.00 0.00 0.00 0.00
Total Percentile Shift 2.37 2.72 2.68 3.54
Total Log Percentile Shift 0.13 0.23 0.10 0.32
Constraint Feasibility Score 0.69 0.81 0.82 1.00

(a) Credit default dataset

Metric REVISE p-CRUDS 1 p-CRUDS 2 CRUDS
Target Class Validity 1.00 0.95 1.00 1.00
Classifier Probability 0.56 0.59 0.54 0.83
`2 1.60 1.77 1.61 2.74
normalized `1 0.46 0.51 0.46 0.82
Geodesic (Approx.) 2.08 2.39 2.13 -
Max Percentile Shift 0.35 0.38 0.35 0.53
Min Percentile Shift 0.01 0.01 0.01 0.02
Total Percentile Shift 1.33 1.44 1.31 2.26
Total Log Percentile Shift 0.30 0.36 0.34 0.51
Constraint Feasibility Score - - - -

(b) Wine quality dataset

Table 3. Evaluation metrics - real datasets
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Attribute Original REVISE p-CRUDS 1 CRUDS
Max Bill Amount (last 6 mos.) 3690.0 3656.0 4454.0 4366.0
Max Payment Amount (last 6 mos.) 310.0 251.0 185.0 267.0
Mos. w/ High Spending (last 6 mos.) 6.0 5.0 5.0 5.0
Most Recent Bill Amount 3430.0 3499.0 4141.0 3808.0
Most Recent Payment Amount 0.0 107.0 104.0 149.0
Total Overdue Counts 1.0 1.0 0.0 0.0
Total Months Overdue 11.0 5.0 1.0 0.0
Age 53.0 53.0 53.0 53.0
Married 1.0 1.0 1.0 1.0

(a) Credit default dataset

Attribute Original REVISE p-CRUDS 1 CRUDS
Fixed Acidity 8.20 7.90 7.98 7.75
Volatile Acidity 0.52 0.42 0.46 0.41
Citric Acid 0.34 0.34 0.30 0.31
Residual Sugar 1.20 4.96 3.90 4.92
Chlorides 0.04 0.04 0.04 0.03
Free Sulfur Dioxide 18.00 21.68 25.24 30.95
Total Sulfur dioxide 167.00 140.60 147.29 132.29
Density 0.99 0.99 0.99 0.99
pH 3.24 3.14 3.15 3.13
Sulphates 0.39 0.52 0.50 0.49
Alcohol 10.60 11.56 11.62 12.80

(b) Wine quality dataset. We take the rating threshold for desir-
able quality to be ≥ 6.

Attribute Original REVISE p-CRUDS 1 CRUDS
Duration of Loan (months) 60 57 49 48
Amount of Loan (DM) 7297 7403 5876 5738
Age of Applicant 36 35 35 36
High Checking Account Funds 0 0 1 1
High Savings Account Funds 0 0 1 1
Good Credit History 0 0 0.0 0.0
Low Installment Rate 1 0 1.0 1

(c) South German credit dataset

Table 4. Proposed recourse - real datasets

Parameter Simple causal Hidden confounding Nonlinear Overlap Credit default Wine quality South German Credit
VAE z dimensionality 1 2 2 2 6 5 4
VAE Training Epochs 500 500 500 500 500 200 500
VAE σ2

ε 0.252 0.12 0.252 0.12 0.12 0.252 0.12

CSVAE z dimensionality 1 1 1 1 6 5 3
CSVAE Training Epochs 500 500 500 500 1000 200 1000
CSVAE σ2

ε 0.252 0.12 0.252 0.12 0.12 0.252 0.12

CSVAE β1 10 5 10 10 10 10 5
CSVAE β2 5 10 5 5 8 10 15
CSVAE β3 5 5 5 5 8 5 10
CSVAE β4 10 100 10 20 100 100 100
CSVAE β5 1 10 1 2 10 10 10
Classifier LR LR MLP LR LR LR MLP
REVISE Step Size 0.05 0.05 0.1 0.05 0.05 0.05 0.05
p-CRUDS Step Size 0.01 0.1 0.2 0.05 0.01 0.05 0.1
Train Size 3000 3000 3000 3000 2400 3168 800
Test Size 100 100 100 100 600 793 200

Table 5. Experiment Parameters
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(a) REVISE takes more gradient steps to produce a counterfactual
that flips the classifier’s decision in cases where it can’t move directly
to the decision boundary.

(b) p-CRUDS overcomes this problem easily, owing to its optimiza-
tion with respect to W space which has a clear correlation with the
value of y.

Figure 10. Comparison of Recourse Paths.. Teal and salmon colored points respectively represent actually observed examples of the
two classes and the green to purple gradation represents the transformation from a factual observation to a counterfactual one.
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Figure 11. p-CRUDS path for simple causal synthetic dataset
which follows the generative process in 4a. The path is concise
and precise, following the linear structure of the generated data.
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(a) Scatterplot of savings vs income (b) Linear Decision Rule for hidden confounding dataset

(c) p-CRUDS counterfactuals recommend increasing income and
decreasing savings. The true relationship between savings and loan
acceptance rate is positive.

(d) SHAP values on XGBoost confirm negative relationship between
savings and loan acceptance

Figure 12. Hidden Confounding Example. This dataset was constructed to demonstrate that CRUDS only recovers correlations in the
dataset and not the underlying causal structure.

Figure 13. Evolution of pclassifier(y = 1|xCF) for decoded values
xCF as latent representation w varies while z is fixed. w is strongly
correlated with y.
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Figure 14. Evolution of the two most important features, total months overdue and months with high spending, for determining whether
someone will default on their loan under p-CRUDS for a randomly chosen case in need of recourse. The green to purple path follows
the counterfactuals generated from decoding the latent attributes w and z as z is fixed and w is moved from regions of high density
for p(w|y = 0) to p(w|y = 1). The salmon and turquoise points represent the joint distribution for these two features. p-CRUDS
recommends decreasing both as much as possible. The feature values in this example are normalized.
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Figure 15. Distribution of encoded z marginals for the credit default dataset. As seen from the tightly overlapping distributions, z
contains negligible information about y. The marginals also match the prior well.
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Figure 16. Distribution of encoded w values for the credit default dataset. As seen from the notable distance between the distributions, w
contains nearly all of the information about y. The encoded w values also match the prior distribution well.


