
Defining Admissible Rewards for High-Confidence Policy
Evaluation in Batch Reinforcement Learning

Niranjani Prasad

Princeton University

Princeton NJ, USA

np6@princeton.edu

Barbara E. Engelhardt

Princeton University

Princeton NJ, USA

bee@cs.princeton.edu

Finale Doshi-Velez

Harvard University

Cambridge MA, USA

finale@seas.harvard.edu

ABSTRACT
A key impediment to reinforcement learning (RL) in real applica-

tions with limited, batch data is in defining a reward function that

reflects what we implicitly know about reasonable behaviour for a

task and allows for robust off-policy evaluation. In this work, we

develop a method to identify an admissible set of reward functions

for policies that (a) do not deviate too far in performance from prior

behaviour, and (b) can be evaluated with high confidence, given

only a collection of past trajectories. Together, these ensure that

we avoid proposing unreasonable policies in high-risk settings. We

demonstrate our approach to reward design on synthetic domains

as well as in a critical care context, to guide the design of a reward

function that consolidates clinical objectives to learn a policy for

weaning patients from mechanical ventilation.

CCS CONCEPTS
• Computing methodologies → Batch learning; Sequential
decision making; • Applied computing→ Health care informa-

tion systems.

KEYWORDS
reward design, off-policy evaluation, reinforcement learning

ACM Reference Format:
Niranjani Prasad, Barbara E. Engelhardt, and Finale Doshi-Velez. 2020. Defin-

ing Admissible Rewards for High-Confidence Policy Evaluation in Batch

Reinforcement Learning. In ACM Conference on Health, Inference, and Learn-

ing (ACM CHIL ’20), April 2–4, 2020, Toronto, ON, Canada. ACM, New York,

NY, USA, 9 pages. https://doi.org/10.1145/3368555.3384450

1 INTRODUCTION
One fundamental challenge of reinforcement learning (RL) in prac-

tice is specifying the agent’s reward. Reward functions implicitly

define policy, and misspecified rewards can introduce severe, un-

expected effects, from reward gaming to irreversible changes in

parts of the environment we do not want to influence [17]. How-

ever, it can be difficult for domain experts to distill multiple (and

often implicit) requisites for desired behaviour into a single scalar

feedback signal. This is exemplified by efforts towards the applica-

tion of reinforcement learning to decision-making in healthcare;

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada

© 2020 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7046-2/20/04.

https://doi.org/10.1145/3368555.3384450

in RL, an agent aims to choose the best action within a stochas-

tic process given inherent time delay in feedback from a decision,

making it an attractive framework for learning clinical treatment

policies [30]. However, this feedback can be received over various

timescales and represent clinical implications—such as treatment

efficacy, side effects or patient discomfort—with widely different,

and uncertain, priorities. Existing approaches to representing this

scalar feedback in healthcare tasks range from taking reward to be a

sparse, high-level signal such as mortality [15] or rewards based on

a single physiological variable or severity score of interest [20, 25]

to relatively ad-hoc weighting of clinically derived objectives [21].

Much work in reward design [26, 27] or inference using inverse

reinforcement learning [1, 4, 10] focuses on online, interactive

settings in which the agent has access either to human feedback

[5, 18] or to a simulator with which to evaluate policies and compare

against human performance. Here, we focus on reward design for

batch RL: we assume access only to a set of past trajectories collected

from sub-optimal experts, with which to train our policies. This is

common in many real-world scenarios where the risks of deploying

an agent are high but logging current practice is relatively easy, as

in healthcare, as well as education or finance [2, 6].

Batch RL is distinguished by two key preconditions when per-

forming reward design. First, as we assume that data are expensive

to acquire, we must ensure that policies found using the reward

function can be evaluated given existing data. Regardless of the

true objectives of the designer, there exist fundamental limitations

on reward functions that can be optimized and that also provide

guarantees on performance. There have been a number of meth-

ods presented in the literature for safe, high-confidence policy

improvement from batch data given some reward function, treating

behaviour seen in the data as a baseline [9, 16, 23, 28]. In this work,

we turn this question around to ask: What is the class of reward

functions for which high-confidence policy improvement is possible?

Second, we typically assume that batch data are not random but

produced by domain experts pursuing biased but reasonable policies.

Thus if an expert-specified reward function results in behaviour that

diverges substantially from past trajectories, we must ask whether

that divergence was intentional or, as is more likely, simply because

the designer omitted an important constraint, causing the agent to

learn unintentional behaviour. This assumption can be formalized

by treating the batch data as ε-optimal with respect to the true

reward function, and searching for rewards that are consistent with

this assumption [11]. Here, we extend these ideas to incorporate the

uncertainty present when evaluating a policy in the batch setting,

where trajectories from the estimated policy cannot be collected.

We note that these two constraints are not equivalent; the extent

of overlap in reward functions satisfying these criteria depends,

1

https://doi.org/10.1145/3368555.3384450
https://doi.org/10.1145/3368555.3384450

ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada Niranjani Prasad, Barbara E. Engelhardt, and Finale Doshi-Velez

for example, on the homogeneity of behaviour in the batch data: if

consistency is measured with respect to average behaviour in the

data, and agents deviate substantially from this average—as may be

across clinical care providers—then the space of policies that can be

evaluated given the batch data may be larger than the policy space

consistent with the average expert.

In this paper, we combine these two conditions to construct tests

for admissible functions in reward design using available data. This

yields a novel approach to the challenge of high-confidence policy

evaluation given high-variance importance sampling-based value

estimates over extended decision horizons—typical of batch RL

problems—and encourages safe, incremental policy improvement.

We illustrate our approach on several benchmark control tasks with

continuous state spaces, and in reward design for the health care

task of weaning a patient from a mechanical ventilator.

2 PRELIMINARIES AND NOTATION
A Markov decision process (MDP) is a tuple of the form M =

{S,A, P0, P,R,γ }, where S is the set of all possible states, and A

are the available actions. P0(s) is the distribution over the initial

state s ∈ S; P(s ′ |s,a) gives the probability of transition to s ′ given
current state s and action a ∈ A. The function R(s,a, s ′) defines
the reward for performing action a in state s , and observing new

state s ′. Lastly, the discount factor γ ≤ 1 determines the relative

importance of immediate and longer-term rewards.

Our objective is to learn a policy function π∗
: S → A mapping

states to actions that maximize the expected cumulative discounted

reward—that is, π∗ = argmaxπ Es∼P0
[V π (s)|M]—where the value

function V π (s) is defined as:

V π = EP0,P ,π

[
∞∑
t=0

γ tR(st ,at , st+1)

]
. (1)

In batch RL, we have a collection of trajectories of the form h =
{s0,a0, r0, . . . , sT ,aT , rT }. We do not have access to the transition

function P or the initial state distribution P0. Without loss of gen-

erality, we express the reward as a linear combination of some ar-

bitrary function of the observed state transition: R = wTϕ(s,a, s ′),

where ϕ ∈ Rk is a vector function of state-action features relevant

to learning an optimal policy, and | |w | |1 = 1, to induce invariance

to scaling factors in reward specification [4]. The value V π
of a

policy π with reward weightw can then be written as:

V π = EP0,P ,π

[
∞∑
t=0

γ twTϕ(·)

]
= wT µπ , where

µπ = EP0,P ,π

[
∞∑
t=0

γ tϕ(·)

]
. (2)

where the vector µπ denotes the feature expectations [1] of policy π ,
that is, the total expected discounted time an agent spends in each

feature state. Thus, µπ provides a representation of state dynamics

of a policy that is decoupled from the reward function.

To quantify confidence in the estimated value V π
of policy π ,

we adapt the empirical Bernstein concentration inequality [19] to

get a probabilistic lower bound Vlb on the estimated value [29]:

consider a set of trajectories hn, n ∈ 1...N and let V̂n be the value

estimate for trajectory n. Then, with probability at least 1 − δ :

Vlb =
1

N

N∑
n=1

V̂n −
1

N

√√√
ln(2

δ)

N − 1

N∑
n,n′=1

(V̂n − V̂n′)2 −
7b ln(2

δ)

3(N − 1)
, (3)

where b is the maximum achievable value of V (π).

3 ADMISSIBLE REWARD SETS
We now turn to our task of identifying admissible reward sets – that

is, defining the space of reward functions that yield policies that are

consistent in performance with available observational data, as well

as possible to evaluate off-policy for high-confidence performance

lower bounds. In Sections 3.1 and 3.2, we define two sets of weights

PC and PE to be the consistent and evaluable sets, respectively,

show that they are closed and convex, and define their intersection

PC ∩ PE as the set of admissible reward weights. In Sections 3.3

and 3.4, we describe how to test whether a given reward lies in the

intersection of these polytopes, and, if not, how to find the closest

points within this space of admissible reward functions given some

initial reward proposed by the designer of the RL agent.

3.1 Consistent Reward Polytope
Given near-optimal expert demonstrations, the polytope of consis-

tent rewards [11] may be defined as the set of all weight vectorsw
defining reward function R = wTϕ(s), that are consistent with the

agent’s existing knowledge. In the setting of learning from demon-

strations, this knowledge is the assumption that demonstrations

achieve ε-optimal performance with respect to the “true" reward.

We denote the behaviour policy of experts as πb with policy feature

expectations µb , whereV (πb) = w
T µb . The consistent weight vec-

tors for this expert demonstration setting are then allw such that

wT µ ≤ wT µb + ε, µ ∈ PF , where PF is the space of all possible

policy feature representations. It has been shown that this set is

convex, given access to an exact MDP solver [11].

Translating this to the batch reinforcement learning setting, with

a fixed set of sub-optimal trajectories, requires adaptations to both

the constraints and their computation. First, we choose to constrain

the relative rather than absolute difference in performance of the

observed trajectories and that of the learnt optimal policy, in or-

der to better handle high variance in the magnitudes of estimated

values. Second, we make our constraint symmetric such that the

value of the learnt policy can deviate equally above or below the

value of the observed behaviour. This reflects the use of this con-

straint as a way to place metaphorical guardrails on the deviation

of the behaviour of the learnt policy from the policy in the batch

trajectories—rather than to impose optimality assumptions that

only bound performance from above. That is, we want a reward

that results in performance similar to the observed batch trajecto-

ries, where performance some factor ∆c greater than or less than

this established baseline should be equally admissible. Our new

polytope PC for the space of weights satisfying this is then:

PC =

{
w :

1

∆c
≤

wT µb
wT µ

≤ ∆c

}
, (4)

where µ are the feature expectations of the optimal policy when

solving an MDP with reward weights w , and value estimates are

constrained to be positive, wT µ > 0 ∀µ ∈ PF . The parameter

2

Defining Admissible Rewards for High-Confidence Policy Evaluation in Batch Reinforcement Learning ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada

∆c ≥ 1 that determines the threshold on the consistency polytope

is tuned according to our confidence in the batch data; trajectories

from severely biased experts may warrant larger ∆c .
The batch setting also requires changes to the computation of

these constraints, as we do not have access to a simulator to calcu-

late exact feature expectations µ; we must instead estimate them

from available data. We do so by adapting off-policy evaluation

methods to estimate the representation of a policy in feature space.

Specifically, we use per-decision importance sampling (PDIS [22])

to get a consistent, unbiased estimator of µ:

µ̂ =
1

N

N∑
n=1

T∑
t=0

γ t ρ
(n)
t ϕ

(
s
(n)
t

)
(5)

where importance weights ρ
(n)
t = Πt

i=0
(π (ani |s

n
i)/πb (a

n
i |s

n
i)). To-

gether with the feature expectations of the observed experts (ob-

tained by simple averaging across trajectories), we can evaluate the

constraint in Eq 4.

Proposition 1. The set of weights PC defines a closed convex set,

given access to exact MDP solver.

Proof. The redefined constraints in Eq 4 can be rewritten as:

wT (µ − ∆c µb) ≤ 0;wT (µb − ∆c µ) ≤ 0, where µ = maxµ′∈PF w
T µ ′

is the feature expectations of the optimal policy obtained from the

exact MDP solver. As these constraints are still linear inw—that is,

of the formwTA ≤ b—the convexity argument in [11] holds. □

In Section 3.3, we discuss how this assumption of convexity

changes given the presence of approximation error in the MDP

solver and in estimated feature expectations.

Illustration. We first construct a simple, synthetic task to vi-

sualize a polytope of consistent rewards. Consider an agent in a

two-dimensional continuous environment, with state defined by

position st = [xt , yt] for bounded xt and yt . At each time t , avail-
able actions are steps in one of four directions, with random step

size δt ∼ N(0.4, 0.1). The reward is rt = [0.5, 0.5]T st : the agent’s
goal is to reach the top-right corner of the 2D map. We use fitted-Q

iteration with tree-based approximation [7] to learn a deterministic

policy πb that optimizes the reward, then we sample 1000 trajec-

tories from a biased policy (move left with probability ϵ , and πb
otherwise) to obtain batch data.

We then train policies πw optimizing for reward functions rt =
wTϕ(s) on a set of candidate weightsw ∈ R2

on the unit ℓ1-norm

ball. For each policy, a PDIS estimate of the feature expectations

µ̂w is obtained using the collected batch data. The consistency

constraint (Eq 4) is then evaluated for each candidate weight vector,

with different thresholds ∆c (Fig 1). Prior to evaluating constraints,

we ensure our estimateswT µ for discounted cumulative reward are

positive, by augmenting w and ϕ(s) with a constant positive bias

term:w ′ = [w, 1], ϕ ′(s) = [ϕ(s), B]where B = 14.0 for this task. For

large ∆c (∆c ≥ 17), the set of consistentw includes approximately

half of all test weights: given these thresholds, allw for which at

least one dimension of the state vector was assigned a significant

positive weight (greater than 0.5) in the reward function were

determined to yield policies sufficiently close to the batch data,

while vectors with large negative weights on either coordinate are

rejected. When ∆c is reduced to 3.0, only the reward originally

optimized for the batch data, (w = [0.5, 0.5]) is admitted by PC .

3.2 Evaluable Reward Polytope
Our second set of constraints on reward design stem from the need

to be able to confidently evaluate a policy in settings when further

data collection is expensive or infeasible. We interpret this as a

condition on confidence in the estimated policy performance: given

an estimate for the expected value E[V̂ π] = wT µ̂ of a policy π and

corresponding probabilistic lower boundV π
lb , we constrain the ratio

of these values to lie within some threshold ∆e ≥ 0. A reward func-

tion with weightsw lies within the polytope of evaluable rewards if

V π
lb ≥ (1 − ∆e)w

T µ̂, where µ̂ ∈ PF is our PDIS estimate of feature

expectations. To formulate this as a linear constraint in the space

of reward weightsw , the value lower bound V π
lb must be rewritten

in terms ofw . This is done by constructing a combination of upper

and lower confidence bounds on the policy feature expectations,

denoted µlb . Starting from the empirical Bernstein concentration

inequality (Eq 3):

Vlb =
1

N

N∑
n=1

V̂n−
1

N

√√√√√√√ ln(2

δ)

N −1︸︷︷︸
c1

N∑
n,n′=1

(V̂i − V̂j)
2 −

7b ln(2

δ)

3(N − 1)︸ ︷︷ ︸
c2

=
1

N

N∑
n=1

µ̂(n)w−sдn(w)·
1

N

√√√
c1

N∑
n,n′=1

(
µ̂(n)w− µ̂(n

′)w
)

2

−c2 (6)

=
1

N
w ·

N∑
n=1

µ̂(n) − sдn(w)·
1

N
w

√√√
c1 ·

N∑
n,n′=1

(
µ̂(n) − µ̂(n

′)
)
2

− c2

= wT µ̂lb − c2 (7)

where the kth element of µ̂lb—that is, the value of the kth feature

that yields the lower bound in the value of the policy—is dependent

on the sign of the corresponding element of the weights,w[k]:

µ̂lb [k]=



1

N


N∑
n=1

µ̂(n)−

√√√
c1

N∑
n,n′=1

(
µ̂(n) − µ̂(n

′)
)

2

k w[k]≥ 0

1

N


N∑
n=1

µ̂(n)+

√√√
c1

N∑
n,n′=1

(
µ̂(n) − µ̂(n

′)
)

2

k w[k]<0

(8)

The definition in Eq 8 allows us to incorporate uncertainty in µ̂
when evaluating our confidence in a given policy: a lower bound

for our value estimate requires the lower bound of µ̂ if the weight

is positive, and the upper bound if the weight is negative. Thus, the

evaluable reward polytope can be written as:

PE =
{
w : wT µlb ≥ (1 − ∆e)w

T µ
}

(9)

where µ = maxµ′∈PF w
T µ ′ is the expectation of state features for

the optimal policy obtained from solving the MDP with reward

weightsw , and µlb is the corresponding lower bound. The constant

c2 in the performance lower bound (Eq 7) is absorbed by threshold

parameter ∆e on the tightness of the lower bound.

Proposition 2. The set of weights PE defines a closed convex set,

given access to an exact MDP solver.

3

ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada Niranjani Prasad, Barbara E. Engelhardt, and Finale Doshi-Velez

Figure 1: Consistent and evaluable polytopes, with different thresholds ∆c > 1.0 and ∆e < 1.0 respectively, for a continuous
2D map environment with true reward rt = [0.5, 0.5]Tϕ(st), where ϕ(st) = [xt ,yt]. In both cases, increasing ∆ corresponds to
relaxing constraints and expanding the satisfying set of weightsw . Intersecting points comprise the final admissible set Padm .

Proof. The set PE contains all weights w that satisfy con-

straints linear in w : wT ((1 − ∆e)µ − µlb) ≤ 0. As in the case of

PC , it follows from [11] that the set described by these constraints

is convex. □

Illustration. In order to visualize an example polytope for evalu-

able rewards (Eq 9), we return to the two-dimensional map de-

scribed in Section 3.1. As before, we begin with a batch of trajecto-

ries collected by a biased ϵ-greedy expert policy trained on the true

reward. We use these trajectories to obtain PDIS estimates µ̂ for

policies trained with a range of reward weightsw on the ℓ1-norm

ball. We then evaluate µ̂lb , and in turn the hyperplanes defining

the intersecting half-spaces of the evaluable reward polytope, for

each w . Plotting the set of evaluable reward vectors for different

thresholds ∆e , we see substantial overlap with the consistent re-

ward polytope in this environment, though neither polytope is a

subset of the other (Fig 1(b)). We also find that in this setting, the

value of the evaluability constraint is asymmetric about the true

reward—more so than the the consistency metric—such that poli-

cies trained on penalizing xt (w[0] < 0), hence favoring movement

left, can be evaluated to obtain a tighter lower bound than weights

that learn policies with movement down, which is rarely seen in

the biased demonstration data (Fig 1(b)). Finally, tightening the

threshold further to ∆e = 0.1 (Fig 1(c)) the set of accepted weights

is again just the true reward, as for the consistency polytope.

3.3 Querying Admissible Reward Polytope
Given our criteria for consistency and evaluability of reward func-

tions, we need a way to access the sets satisfying these constraints.

These sets cannot be explicitly described as there are infinite policies

with corresponding representations µ, and so infinite possible con-

straints; instead, we construct a separation oracle to access points

in this set in polynomial time (Algorithm 1). A separation oracle

tests whether a given pointw ′
lies in polytope of interest P, and

if not, outputs a separating hyperplane defining some half-space

wTA ≤ b, such that P lies inside this half-space andw ′
lies outside

Algorithm 1: Separation oracle SOadm for admissiblew

Input: Proposed weightsw ∈ Rk , behaviour policy µb ,
threshold parameters ∆c ,∆e
1. Solve MDP with weightsw for optimal policy features

µ = argmaxµ′ w
T µ ′

2. Evaluate lower bound µlb for estimated policy features

if wT (µ − ∆c µb) > 0 then
w < PC ⇒ Rejectw
Output: Halfspace {wT (µ − ∆c µb) ≤ 0}

else if wT (µb − ∆c µ) > 0 then
w < PC ⇒ Rejectw
Output: Halfspace {wT (µb − ∆c µ) ≤ 0}

else if wT ((1 − ∆e)µ − µlb) > 0 then
w < PE ⇒ Rejectw
Output: Halfspace {wT ((1 − ∆e)µ − µlb) ≤ 0}

else
w ∈ PC ∩ PE = Padm ⇒ Acceptw

of it. The separation oracle for the polytope of admissible rewards

evaluates both consistency and evaluability to determine whether

w ′
lies in the intersection of the two polytopes, which we define as

our admissible polytope Padm . If a constraint is not met, it outputs

a new hyperplane accordingly.

It should be noted that the RL problems of interest to us are

typically large MDPs with continuous state spaces, as in the clinical

setting of managing mechanical ventilation in the ICU, and more-

over, because we are optimizing policies given only batch data, we

know we can only expect to find approximately optimal policies.

The use of PDIS estimates µ̂ of the true feature expectations in

the batch setting introduces an additional source of approximation

error. It has been shown that Algorithm 1 with an approximate

MDP solver produces a weird separation oracle [11], one that does

not necessarily define a convex set. However, it does still accept

all points in the queried polytope, and can thus still be used to test

whether a proposed weight vectorw lies within this set.

4

Defining Admissible Rewards for High-Confidence Policy Evaluation in Batch Reinforcement Learning ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada

Returning to our 2D map (Fig 1), the admissible reward poly-

tope Padm is the set of weights accepted by both the consistent

and evaluable polytopes. The choice of thresholds ∆c and ∆e re-

spectively is important in obtaining a meaningfully restricted, non-

empty set to choose rewards from. These thresholds will depend

on the extent of exploratory or sub-optimal behaviour in the batch

data, and the level of uncertainty acceptable when deploying a new

policy. We find that in this toy 2D map setting, there is consider-

able overlap between the two polytopes defining the admissible set,

though this is not always the case; from our earlier intuition, as

the behaviour policy from which trajectories were generated is the

same for all trajectories, there is limited “exploration", or deviation

from average behaviour across trajectories, and the therefore the

evaluability constraints admit reward weights that largely overlap

with those consistent with average behaviour.

3.4 Finding the Nearest Admissible Reward
With a separation oracle SOadm for querying whether a givenw
lies in the admissible reward polytope, we optimize linear functions

over this set using, e.g., the ellipsoid method for exact solutions

or—as considered here—the iterative follow-perturbed-leader (FPL)

algorithm for computationally efficient approximate solutions [13].

To achieve our goal of aiding reward specification for a designer

with existing but imperfectly known goals, we pose our optimiza-

tion problem as follows (Alg 2): given initial reward weights w0

proposed by the agent designer, we first test whetherw0, with some

small perturbation, lies in the admissible polytope Padm , which we

define by training a policy π0 approximately optimizing this reward.

If it does not lie in Padm , we return new weightsw ∈ Padm that

minimize distance ∥w−winit ∥2 from the proposed weights. This so-

lution is then perturbed and tested in turn. We note that constraints

posed based on the behaviour µb observed in the available batch

trajectories are encapsulated by this minimization over weights in

set Padm , that is, solving a constrained linear optimization defined

by the linear constraints on w from Eqs 4 and 9. The constraints

at each iteration do not fully specify Padm , but instead give us a

half-space to optimize over, at each step.

The constrained linear program solved at each iteration scales

in constant time with the dimensionality of w ; although we only

present results with functions ϕ(s) of dimensionality at most 3, for

the sake of visualization, the iterative algorithm presented can be

scaled to higher dimensional ϕ(s), as the complexity of the linear

program solved at each iteration is dependent only on the number

of constraints. Our final reward weights and a randomized policy

are the average across the approximate solutions in each iteration.

This policy optimizes a reward that is the closest admissible reward

to the original goals of the designer of the RL agent.

4 EXPERIMENT DESIGN
4.1 Benchmark Tasks
We illustrate our approach to determining admissible reward func-

tions on three benchmark domains with well-defined objectives:

classical control tasks Mountain Car and Acrobot, and a simulation-

based treatment task for HIV patients. The control tasks, imple-

mented using OpenAI Gym [3], both have a continuous state space

and discrete action space, and the objective is to reach a terminal

Algorithm 2: Follow-perturbed-leader for admissiblew .

Input: Initial weightsw0 ∈ Rk , iterations T , δ = 1

k
√
T
, t = 0

while t ≤ T do
1. Let rt =

∑t−1

i=1
(wi + pt) · ϕ(·), where pt ∼ U[0, 1

δ]
k
;

solve for πt = argmaxπ V π |rt 2. Let µt = µ(πt) + qt ,

where qt ∼ U[0, 1

δ]
k
; evaluate constraints defining

Padm 3. Solve forwt := argminw ∈Padm
∥w −winit ∥2 4.

Let t := t + 1

end

Output: π
final
= 1

T

T∑
i=1

πt ; w̄ =
1

T

T∑
i=1

wt

goal state. To explore how the constrained polytopes inform reward

design for these tasks, an expert behaviour policy is first trained

with data collected from an exploratory policy receiving a reward

of −1 at each time step, and 0 once the goal state is reached. A batch

of 1000 trajectories is collected by following this expert policy with

Boltzmann exploration, mimicking a sub-optimal expert. Given

these trajectories, our task is to choose a reward function that al-

lows us to efficiently learn an optimal policy that is i) consistent

with the expert behaviour in the trajectories, and ii) evaluable with

acceptably tight lower bounds on performance. We limit the reward

function rt = w
Tϕ(st) in each task to a weighted sum of three fea-

tures, ϕ(s) ∈ R3
, chosen to include sufficient information to learn a

meaningful policy while allowing for visualization. For Mountain

Car, we use quantile-transformed position, velocity, and an indica-

tor ±1 of whether the goal state has been reached. For Acrobot, ϕ(s)
comprises the quantile-transformed cosine of the angle of the first

link, angular velocity of the link, and an indicator ±1 of whether the

goal link height is satisfied. We sweep over weight vectors on the

3D ℓ1-norm ball, training policies with the corresponding rewards,

and filtering for admissiblew .

The characterization of a good policy is more complex in our

third benchmark task, namely treatment recommendation for HIV

patients, modeled by a linear dynamical system [8]. We have a

continuous state space and four discrete actions to choose from:

no treatment, one of two possible drugs, or both in conjunction.

The true reward in this domain is given by: R = −0.1V + 10
3E −

2 · 10
4(0.7d1)

2 − 2 · 10
3(0.3d2)

2
, where V is the viral count, E is the

count of white blood cells (WBC) targeting the virus, and d1 and d2

are indicators for drugs 1 and 2 respectively. We can rewrite this

function as r = wTϕ(s), where ϕ(s) = [V , c0E, c1d1 + c2d2] ∈ R
3
,

with constants c0, c1 and c2 set such that weightsw = [−0.1, 0.5, 0.4]

reproduce the original function. Again, the low dimensionality of

ϕ(s) is simply for interpretability. An expert policy is trained using

this true reward, and a set of sub-optimal trajectories are collected

by following this policy with Boltzmann exploration. Policies are

trained over weightsw, | |w | |1 = 1 and tested for admissibility.

4.2 Mechanical Ventilation in ICU
We use our methods to aid reward design for the management of

invasive mechanical ventilation in critically ill patients [21]. Me-

chanical ventilation refers to the use of external breathing support

to replace spontaneous breathing in patients with compromised

5

ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada Niranjani Prasad, Barbara E. Engelhardt, and Finale Doshi-Velez

Table 1: MDP state features taken as input for learning an optimal policy for management of mechanical ventilation in ICU.

State Features

Demographics Age, Gender, Ethnicity, Admission Weight, First ICU Unit

Ventilator Settings Ventilator mode, Inspired O2 fraction (FiO2), PEEP set, O2 Flow

Measured Vitals Heart Rate, Respiratory Rate, O2 saturation pulseoxymetry, Arterial pH, Richmond-RAS Scale,

Non Invasive Blood Pressure (systolic, diastolic, mean), Mean Airway Pressure, Tidal Volume,

Peak Insp. Pressure, Plateau Pressure, Arterial CO2 Pressure, Arterial O2 pressure

Input Sedation Propofol, Fentanyl, Midazolam, Dexmedetomidine, Morphine Sulfate, Hydromorphone, Lorazepam

Other Consecutive duration into ventilation (D), Number of reintubations (N)

lung function. It is one of the most common, as well as most costly,

interventions in the ICU [24]. Timelyweaning, or removal of breath-

ing support, is crucial to minimizing risks of ventilator-associated

infection or over-sedation, while avoiding failed breathing tests

or reintubation due to premature weaning. Expert opinion varies

on how best to trade off these risks, and clinicians tend to err to-

wards conservative estimates of patient wean readiness, resulting

in extended ICU stays and inflated costs.

We look to design a reward function for a weaning policy that

penalizes prolonged ventilation, while weighing the relative risks

of premature weaning such that the optimal policy does not rec-

ommend strategies starkly different from clinician behaviour, and

the policies can be evaluated for acceptably robust bounds on per-

formance using existing trajectories. We train and test our policies

on data filtered from the MIMIC III data [12] with 6,883 ICU admis-

sions from successfully discharged patients following mechanical

ventilation, preprocessed and resampled in hourly intervals. The

MDP for this task is adapted from [21]: the patient state st at time

t is a 32-dimensional vector that includes demographic data, venti-

lator settings, and relevant vitals (Table 1. We learn a policy with

binary action space at ∈ [0, 1], for keeping the patient off or on

the ventilator, respectively. The reward function rt = w
Tϕ(st ,at)

with ϕ(s,a) ∈ R3
includes (i) a penalty for more than 48 hours on

the ventilator, (ii) a penalty for reintubation due to unsuccessful

weaning, and (iii) a penalty on physiological instability when the

patient is off the ventilator based on abnormal vitals:

ϕ =


−min(0, tanh 0.1(Dt − 48)) · 1[at = 1]

−1[∃t ′ > t such that Nt ′ > Nt) · 1[at = 0]

− 1

|V |

∑V
v (v < vmin | |v < vmax) · 1[at = 0]

 (10)

where Dt is duration into ventilation at time t in an admission, Nt
is the number of reintubations, v ∈ V are physiological parameters

each with normal range [vmin,vmax], and V = {Ventilator settings,

Measured vitals}. The three terms in ϕ(·) represent penalties on
duration of ventilation, reintubation, and abnormal vitals, respec-

tively. Our goal is to learn the relative weights of these feedback

signals to produce a consistent, evaluable reward function and learn

a policy optimizing this reward. As before, we train our optimal

policies using Fitted Q-iteration (FQI) with function approximation

using extremely randomized trees [7]. We partition our dataset into

3,000 training episodes and 3,883 test episodes, and run FQI over

100 iterations on the training set, with discount factor γ = 0.9. We

then use the learnt Q-function to train our binary treatment policy.

5 RESULTS AND DISCUSSION
5.1 Benchmark Control Tasks
5.1.1 Admissiblew are clustered near true rewards. We analyze re-

ward functions from the sweep over weight vectors on the ℓ1-norm

unit ball for each benchmark task (Section 4.1) by first visualizing

how the space of weights accepted by the consistency and evalua-

bility polytopes—and therefore the space Padm at the intersection

of these polytopes—changes with the values of thresholds ∆c and
∆e . Alongside this, we plot the set of admitted weights produced

by arbitrarily chosen thresholds (Fig 2). In all three tasks, we find

that the admitted weights form distinct clusters; these are typi-

cally at positive weights on goal states in the classic control tasks,

and at positive weights on WBC count for the HIV simulator, in

keeping with the rewards optimized by the batch data in each case.

We could therefore use this naive sweep over weights to choose

a vector within the admitted cluster that is closest to our initial

proposed function, or to our overall objective. For instance, if in

the HIV task we want a policy that prioritizes minimization of side

effects from administered drugs, we can choose specifically from

admissible rewards with negative weight on the treatment term.

5.1.2 Analysis of admissible w can lend insight into reward shap-
ing for faster policy learning. We may wish to shortlist candidate

weights by setting more stringent thresholds for admissibility. We

mimic this design process as follows: prioritizing evaluability in

each of our benchmark environments, we choose the smallest pos-

sible ∆e and large ∆c for an admissible set of exactly three weights

(Table 2). This reflects a typical batch setting, in which we want

high-confidence performance guarantees; we also want to allow our

policy to deviate when necessary from the available sub-optimal

expert trajectories. For Mountain Car, our results show that two of

the three vectors assign large positive weights to reaching the goal

state; all assign zero or positive weight to the position of the car.

The third,w = [0.4,−0.4, 0.2] is dominated by a significant positive

weight on position and a significant negative weight on velocity;

this may be interpreted as a kind of reward shaping: the agent is en-

couraged to first move in reverse to achieve a negative velocity, as

is necessary to reach the goal state in the under-powered mountain

car problem. The top threew for Acrobot also place either positive

6

Defining Admissible Rewards for High-Confidence Policy Evaluation in Batch Reinforcement Learning ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada

Figure 2: Admissible polytope size for varying thresholds on consistency (∆c) and evaluability (∆e), and distribution of ad-
mitted weights for fixed ∆c ,∆e , in: (a) Mountain Car (b) Acrobot (c) HIV Simulator. Note that admitted rewards for each task
typically correspond to positive weights on the goal state.

7

ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada Niranjani Prasad, Barbara E. Engelhardt, and Finale Doshi-Velez

Table 2: Analysing top three admitted weightsw for each of the three benchmark control enviroments. Admissibility polytope
thresholds are set by choosing a small ∆c and required corresponding threshold ∆e for an admissible set of size |Padm | = 3.

Task Top 3 Admissible weights ∆c (PC) ∆e (PE)

Mountain Car [0.0, 0.2, 0.8]T , [0.2, 0.2, 0.6]T , [0.4,−0.4, 0.2]T 1.10 0.27

Acrobot [−0.2, 0.0, 0.8]T , [−0.8,−0.2, 0.0]T , [−0.2,−0.2, 0.6]T 1.10 0.29

HIV Simulator [0.0, 0.4, 0.6]T , [−0.6, 0.2, 0.2]T , [−0.2, 0.4,−0.4]T 1.20 0.28

weights on the goal state, or negative weights on the position of the

first link. Again, the latter reward definition likely plays a shaping

role in policy optimization by rewarding link displacement.

5.1.3 FPL can be used to correct biased reward specification in the
direction of true reward. We use the HIV treatment task to explore

how iterative solutions for admissible reward (Alg 2) can improve

a partial or flawed reward specified by a designer. For instance,

a simple first attempt by the designer at a reward function may

place equal weights on each component of ϕ(s), with the polarity of

weights—whether each component should elicit positive feedback

or incur a penalty—decided by the designer’s domain knowledge;

here, the designer may suggestw0 =
1

3
[−1, 1,−1]T . We run Alg 2

for twenty iterations with this initial vector and thresholds ∆c =
2.0,∆e = 0.8 and average over the weights from each iteration.

This yields weights w̄ = [−0.11, 0.57,−0.32]T , redistributed to be

closer to the reward function being optimized in the batch data. This

pattern is observed with more extreme initial rewards functions

too; if e.g., the reward proposed depends solely on WBC count,

w0 = [0, 1, 0], then we obtain weights w̄ = [−0.14, 0.83,−0.04] after

twenty iterations of this algorithm such that appropriate penalties

are introduced on viral load and administered drugs.

5.2 Mechanical Ventilation in ICU
5.2.1 Admissiblew may highlight bias in expert behaviour. We ap-

ply our methods to choose a reward function for a ventilator wean-

ing policy in the ICU, given that we have access only to historical

ICU trajectories with which to train and validate our policies. When

visualizing the admissible set, with ∆c = 1.8,∆e = 0.4, we find

substantial intersection in the consistent and evaluable polytopes

(Fig 3). Admitted weights are clustered at large negative weights on

the duration penalty term favouring policies that are conservative

in weaning patients (that is, those that keep patients longer on the

ventilator), which is the direction of bias we expect in the past clin-

ical behaviour. We can tether a naive reward that instead penalizes

duration on the ventilator, w = [1, 0, 0] to the space of rewards

that are consistent with this conservative behaviour as follows:

using FPL to search for a reward within the admissible set given

this initial vector yields w̄ = [0.72, 0.14, 0.14], introducing non-zero

penalties on reintubation and physiological instability when off

ventilation. This allows us to learn behaviour that is averse to pre-

mature extubation (consistent with historical clinical behaviour)

without simply rewarding long durations on the ventilator.

5.2.2 FPL improves effective sample size for learnt policies. To ver-

ify whether weights from the admissible polytope enable higher

Figure 3: Mechanical Ventilation in the ICU: Admitted re-
ward weights for fixed polytope thresholds ∆c ,∆e .

confidence policy evaluation, we explore a simple proxy for vari-

ance of an importance sampling-based estimate of performance: the

effective sample size N
eff

= (
∑N
n ρn)

2/
∑N
n ρ2

n of the batch data [14],

where ρn is importance weight of trajectory n for a given policy. In

order to evaluate the Kish effective sample size N
eff

for a given pol-

icy, we subsample admissions in our test data to obtain trajectories

of approximately 20 timesteps in length, and calculate importance

weights ρn for the policy considered using these subsampled tra-

jectories. Testing a number of naive initializations of w , we find

that effective sample size is consistently higher for weights follow-

ing FPL (Table 3). This indicates that the final weights induce an

optimal policy that is better represented in the batch data than the

policy from the original weights.

Table 3: Mechanical ventilation in the ICU: Influence of FPL
algorithm on Kish effective sample size of learnt policies.

Initialw Neff Finalw Neff

[1., 0., 0.] 8 [0.72, 0.14, 0.14] 14

[0., 1., 0.] 304 [-0.07, 0.77, 0.16] 352

[0., 0., 1.] 32 [0.15, -0.21, 0.66] 37

1

3
[1., 1., 1.] 16 [0.24, 0.51, 0.25] 33

8

Defining Admissible Rewards for High-Confidence Policy Evaluation in Batch Reinforcement Learning ACM CHIL ’20, April 2–4, 2020, Toronto, ON, Canada

6 CONCLUSION
In this work, we present a method for reward design in reinforce-

ment learning using batch data collected from sub-optimal experts.

We do this by constraining rewards to those yielding policies within

some distance of the policies of domain experts; the policies inferred

from the admissible rewards also provide reasonable bounds on

performance. Our experiments show how rewards can be chosen

in practice from the space of functions satisfying these constraints,

and illustrate this on the problem of weaning clinical patients from

mechanical ventilation.

Translating policies learned from retrospective (batch) data into

prospective results is a process that involves many parts and many

steps. Effective reward design for RL is one of those parts; using

admissible reward functions is one step toward not proposing prob-

lematic trajectories. Of course, it is not the only part: state spaces

must still be defined, confounders identified, etc. That said, our

approach to reward design provides a way to iteratively push the

space of observed behaviour towards policies consistent and evalu-

able with respect to some ideal reward. There are a number of ways

in which the methods here could be extended however, to better

use the information available in existing data on what constitutes

a safe policy, and in turn what reward function can ensure this. For

instance, different care providers in clinical settings likely follow

policies with different levels of precision, or perhaps even opti-

mize for different reward functions; modeling this heterogeneity in

behaviour and weighting experts appropriately can enable learnt

behaviour closer to the best, rather than the average, expert. In addi-

tion, going beyond the use of summary statistics provided by policy

feature expectations to explore more complex representations of

behaviour that are still decoupled from rewards, and in turn better

metrics for similarity in behaviour, can aid in more meaningful

choices in reward function.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first International Conference

on Machine Learning. ACM, 1.

[2] Onur Atan, William R Zame, and Mihaela van der Schaar. 2018. Learning Optimal

Policies from Observational Data. arXiv preprint arXiv:1802.08679 (2018).

[3] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-

man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. arXiv preprint

arXiv:1606.01540 (2016).

[4] Daniel S Brown and Scott Niekum. 2018. Efficient probabilistic performance

bounds for inverse reinforcement learning. In Thirty-Second AAAI Conference on

Artificial Intelligence.

[5] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario

Amodei. 2017. Deep reinforcement learning from human preferences. InAdvances

in Neural Information Processing Systems. 4299–4307.

[6] Shayan Doroudi, Kenneth Holstein, Vincent Aleven, and Emma Brunskill. 2016.

Sequence Matters, but How Exactly? AMethod for Evaluating Activity Sequences

from Data. International Educational Data Mining Society (2016).

[7] Damien Ernst, Pierre Geurts, and Louis Wehenkel. 2005. Tree-based batch mode

reinforcement learning. Journal of Machine Learning Research 6, Apr (2005),

503–556.

[8] Damien Ernst, Guy-Bart Stan, Jorge Goncalves, and Louis Wehenkel. 2006. Clini-

cal data based optimal STI strategies for HIV: a reinforcement learning approach.

In Proceedings of the 45th IEEE Conference on Decision and Control. IEEE, 667–672.

[9] Mohammad Ghavamzadeh, Marek Petrik, and Yinlam Chow. 2016. Safe pol-

icy improvement by minimizing robust baseline regret. In Advances in Neural

Information Processing Systems. 2298–2306.

[10] Dylan Hadfield-Menell, Smitha Milli, Pieter Abbeel, Stuart J Russell, and Anca

Dragan. 2017. Inverse reward design. InAdvances in Neural Information Processing

Systems. 6765–6774.

[11] Jessie Huang, Fa Wu, Doina Precup, and Yang Cai. 2018. Learning safe policies

with expert guidance. In Advances in Neural Information Processing Systems.

9105–9114.

[12] Alistair EW Johnson, Tom J Pollard, Lu Shen, H Lehman Li-wei, Mengling Feng,

Mohammad Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and

Roger GMark. 2016. MIMIC-III, a freely accessible critical care database. Scientific

data 3 (2016), 160035.

[13] Adam Kalai and Santosh Vempala. 2016. Efficient algorithms for on-line opti-

mization. J. Comput. System Sci. 71 (2016).

[14] L Kish. 1968. Survey Sampling. John Wiley & Sons, Inc., New York, London 1965,

IX+ 643 S., 31 Abb., 56 Tab., Preis 83 s. Biometrische Zeitschrift 10, 1 (1968), 88–89.

[15] Matthieu Komorowski, Leo A Celi, Omar Badawi, Anthony C Gordon, and A Aldo

Faisal. 2018. The Artificial Intelligence Clinician learns optimal treatment strate-

gies for sepsis in intensive care. Nature Medicine 24, 11 (2018), 1716.

[16] Romain Laroche, Paul Trichelair, and Layla El Asri. 2017. Safe Policy Improvement

with Baseline Bootstrapping. arXiv preprint arXiv:1712.06924 (2017).

[17] Jan Leike, MiljanMartic, Victoria Krakovna, Pedro AOrtega, Tom Everitt, Andrew

Lefrancq, Laurent Orseau, and Shane Legg. 2017. Ai safety gridworlds. arXiv

preprint arXiv:1711.09883 (2017).

[18] Robert Tyler Loftin, James MacGlashan, Bei Peng, Matthew E Taylor, Michael L

Littman, Jeff Huang, and David L Roberts. 2014. A strategy-aware technique

for learning behaviors from discrete human feedback. In Twenty-Eighth AAAI

Conference on Artificial Intelligence.

[19] Andreas Maurer and Massimiliano Pontil. 2009. Empirical Bernstein bounds and

sample variance penalization. arXiv preprint arXiv:0907.3740 (2009).

[20] Shamim Nemati, Mohammad M Ghassemi, and Gari D Clifford. 2016. Optimal

medication dosing from suboptimal clinical examples: A deep reinforcement

learning approach. In 2016 38th Annual International Conference of the IEEE

Engineering in Medicine and Biology Society (EMBC). IEEE, 2978–2981.

[21] Niranjani Prasad, Li-Fang Cheng, Corey Chivers, Michael Draugelis, and Bar-

bara E Engelhardt. 2017. A reinforcement learning approach to weaning of

mechanical ventilation in intensive care units, In Proceedings of the Conference

on Uncertainty in Artificial Intelligence. arXiv preprint arXiv:1704.06300.

[22] Doina Precup, Richard S Sutton, and Satinder Singh. 2000. Eligibility Traces for

Off-Policy Policy Evaluation. In ICML’00 Proceedings of the Seventeenth Interna-

tional Conference on Machine Learning.

[23] Elad Sarafian, Aviv Tamar, and Sarit Kraus. 2018. Safe Policy Learning from

Observations. arXiv preprint arXiv:1805.07805 (2018).

[24] Rhodri Saunders and Dimitris Geogopoulos. 2018. Evaluating the Cost-

Effectiveness of Proportional-Assist Ventilation Plus vs. Pressure Support Venti-

lation in the Intensive Care Unit in Two Countries. Frontiers in public health 6

(2018).

[25] Susan M Shortreed, Eric Laber, Daniel J Lizotte, T Scott Stroup, Joelle Pineau, and

Susan A Murphy. 2011. Informing sequential clinical decision-making through

reinforcement learning: an empirical study. Machine learning 84, 1-2 (2011),

109–136.

[26] Jonathan Sorg, Satinder P Singh, and Richard L Lewis. 2010. Internal rewards

mitigate agent boundedness. In Proceedings of the 27th international conference

on machine learning (ICML-10). 1007–1014.

[27] Jonathan Daniel Sorg. 2011. The optimal reward problem: Designing effective

reward for bounded agents. University of Michigan (2011).

[28] Philip Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. 2015.

High confidence policy improvement. In International Conference on Machine

Learning. 2380–2388.

[29] Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. 2015.

High-confidence off-policy evaluation. In Twenty-Ninth AAAI Conference on

Artificial Intelligence.

[30] Chao Yu, Jiming Liu, and Shamim Nemati. 2019. Reinforcement learning in

healthcare: a survey. arXiv preprint arXiv:1908.08796 (2019).

9

	Abstract
	1 Introduction
	2 Preliminaries and Notation
	3 Admissible Reward Sets
	3.1 Consistent Reward Polytope
	3.2 Evaluable Reward Polytope
	3.3 Querying Admissible Reward Polytope
	3.4 Finding the Nearest Admissible Reward

	4 Experiment Design
	4.1 Benchmark Tasks
	4.2 Mechanical Ventilation in ICU

	5 Results and Discussion
	5.1 Benchmark Control Tasks
	5.2 Mechanical Ventilation in ICU

	6 Conclusion
	References

