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The potential impact of machine learning (ML) in health care 
warrants genuine enthusiasm, but its limited adoption in 
clinical care to date indicates that many of the current strate-

gies are far from optimal. Although successful translation requires 
bringing together expertise and stakeholders from many disciplines, 
the development of ML solutions is currently occurring in silos. 
Past work has tackled particular aspects of data-analysis challenges: 
separating causation from correlation1, identifying lurking biases in 
data2 and regulating predictive analytics3. Here, we take a step back, 
providing a comprehensive overview of the barriers to deployment 
and translational impact. With a view toward accelerating safe, ethi-
cally responsible and meaningful progress in ML for health care, we 
lay out critical steps to consider when designing, testing and deploy-
ing new solutions. ML deployment in any field should be carried out 
by interdisciplinary teams including knowledge experts, decision-
makers and users (Table 1). Accordingly, this roadmap is intended 
for a broad audience, while making specific recommendations for 
critical contributors to such initiatives.

Choosing the right problems
Progress in ML for health care to date has been limited by the lack 
of well-defined questions and a dearth of annotated datasets. Many 
ML researchers remain focused on questions for which annotations 
are readily available, without necessarily questioning the clinical 
relevance of the problems and their solutions. For example, a popu-
lar benchmark challenge in the community focuses on predicting 
in-hospital mortality on the basis of data collected during the first 
48 hours after admission to the intensive care unit4. Clearly anno-
tated data are publicly available, and in recent years, performance 
on this task has approached an area under the curve (Box 1) of 0.9 
(ref. 5). However, assessing clinical utility requires careful evaluation 

against the scenario in which the model will be used. For example, a 
model may learn to associate patterns of end-of-life care with a high 
risk of mortality; as a result, despite the high area under the curve, 
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Interest in machine-learning applications within medicine has been growing, but few studies have progressed to deployment in 
patient care. We present a framework, context and ultimately guidelines for accelerating the translation of machine-learning-
based interventions in health care. To be successful, translation will require a team of engaged stakeholders and a systematic 
process from beginning (problem formulation) to end (widespread deployment).

Box 1 | Glossary of ML terms

Area under the curve: short for ‘area under the receiver oper-
ating characteristics curve’, a measure of discriminative perfor-
mance that summarizes the trade-off between sensitivity and 
specificity
Generalize: the ability to generate useful estimates in new 
never-before-seen examples (for example, patients from another 
hospital)
Ground truth: information provided by direct observation, 
often used to refer to the training labels in the context of ML
Label leakage: when the labels (that is, outcomes) of interest are 
erroneously (perhaps implicitly) included in the input
Model: a learned mapping from some input (for example, 
covariates representing a patient) to some output (for example, 
risk of mortality)
Operating regime: most models output continuous estimates 
that can then be thresholded; the choice of threshold corresponds 
to a specific sensitivity, specificity, positive predictive value and 
so forth, and reflects the operating regime
Stepped-wedge trial: participants receive treatments in ‘waves’ 
rather than complete randomization (for example, intervention 
is applied gradually one unit a time)
Training: the process of learning the mapping that constitutes 
the model
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such an alert would not be clinically useful because the model is 
not conveying anything that the care team does not already know. 
If data on whether a patient has been clinically determined to be 
near end of life were explicitly charted, then such information could 
explicitly be taken into account to improve the clinical utility of 
the derived model. However, a lack of intimate knowledge of the 
data often leads to misguided problem formulations and solutions. 
When starting new projects, such issues can be avoided by engaging 
relevant stakeholders before developing solutions. For ML research-
ers, engaging stakeholders early in any project can help identify the 
right problem to focus on. Beyond clinicians, key stakeholders may 
include financial and operational administrative leaders, patients, 
friends and family (‘framily’), and insurers, when relevant. It is 
important to remember that the most impactful problems are those 
that have not only clinical relevance but also champions throughout 
the various stages of the development and deployment framework.

Developing a useful solution
After the problem is formulated, and permissions regarding data 
use and access are in place, one may be eager to start developing a 
solution. But before a model is trained, the data must be thoroughly 
scrutinized to ensure that they are appropriate for the problem in 
question. First, when predicting a specific outcome, one must ask 
the questions of how and when the data were collected and what 
purpose the data serve. These questions apply to both the out-
come (that is, model output) and predictors (that is, model input). 
For example, international classification of diseases (ICD) codes, 
entered into the electronic health record after a patient’s visit, are 
primarily used for billing purposes. They may poorly correspond 
to the actual diagnoses6 and should not be relied on as ground 
truth. However, they could be used as input to the model if they 
are available at prediction time. Second, one must understand and 
account for differences in the ways in which data are collected. For 
a model to operate across different departments or health systems, 
the underlying data elements should be harmonized. Here, cus-
tom piecemeal solutions developed by individual researchers could 
benefit from top-down policies that facilitate harmonization across 
systems. Harmonization can ensure that data-collection formats or 
frequency do not vary in unanticipated ways. Third, the training 
data must critically be representative of the environment where the 
model will be used. Data for certain populations may be underrep-
resented. ML researchers must ensure that adequate data are pres-
ent if the model is intended for use in these populations. Finally, 
there are many ways in which subtle biases in electronic health data 
can decrease model reliability, especially if these biases are not cor-
rected for during model development7,8. For example, models may 

identify department- or provider-specific patterns as predictors. 
These predictors will not generalize as practice patterns change 
or as the model is applied across care environments9. Measuring 
and accounting for these biases requires deeper understanding of 
changes in the data that pose a threat to model correctness; such 
issues should be identified up front and ideally corrected during 
model development7.

Considering ethical implications
Numerous researchers have identified ways in which non-health-
related ML can exacerbate existing social inequalities by reflect-
ing and amplifying existing race, sex and other biases10. Health 
care is not immune to pernicious bias11. The health data on which 
algorithms are trained are likely to be influenced by many facets 
of social inequality, including bias toward those who contribute 
the most data. For example, algorithms for predicting whether an 
individual should receive a surgery may be biased toward those 
who are able to access and afford the procedure. Some of this bias 
can be corrected for during model training7, but, in general, aware-
ness is necessary to investigate when potential biases are lurking 
in the data and what can be done to mitigate their effect. Beyond 
model performance, there may be ethical questions raised by the 
problem statement itself. For example, smoking status is a useful 
predictor for many outcomes (for example, lung cancer). Using 
data-mining techniques, researchers could often infer or impute 
smoking status if missing, but is it ethical to do so for subjects who 
declined to provide this information? What about imputing HIV 
status? Ethicists, social scientists and regulatory scholars working 
with ML experts and other relevant stakeholders can help a project 
team think about bias and how to counter it well before it is incor-
porated into the model. Here, the benefits go both ways: ethicists 
can also benefit from engaging with ML experts to fully grasp how 
ML techniques can either amplify or combat biases. Such partner-
ships can ensure that the project respects participants’ rights and 
interests. If the ultimate goal is to deploy an ML tool in clinical 
practice, researchers must consider ethical implications up front 
to promote the privacy, safety and fair treatment of patients and all 
parties affected by the tool.

Rigorously evaluating the model
Beyond ethical, legal and moral challenges, there are technical issues 
to consider when evaluating a model’s readiness for use. When a 
model is tuned to a given environment, validation within that envi-
ronment requires careful thought to ensure that no unintended label 
leakage has occurred between the datasets used for model tuning 
and independent testing. Consider, for instance, the ‘radiologist-
level’ performance recently achieved across several tasks using chest 
X-rays12. The data used in the analysis consisted of multiple fron-
tal-view X-ray images per patient. It was important to split data at 
the patient level, as opposed to random splitting, so that no images 
from the same patient appeared in both the training and testing sets. 
Label leakage may arise in even more subtle or unexpected ways. 
For example, in a diagnostic task using speech, if significant class 
imbalance exists across sites, then a model may learn to classify 
data-collection sites (for example, on the basis of background noise) 
rather than to diagnose. Second, evaluating and reporting the scope 
in which the model is likely to succeed and fail is important; for 
example, sepsis-prediction models developed on adults are likely 
not to be applicable to a pediatric population, owing to differences in 
pediatric sepsis presentation. Third, statistical analysis should con-
sider clinically relevant evaluation metrics, as recently described3. 
The commonly used area under the curve integrates over all error 
regimes and consequently may be irrelevant for much of clini-
cal practice. For example, in predicting a relatively rare outcome 
(such as a healthcare-associated infection with Clostridium diffi-
cile), operating in a regime that corresponds to a high false-positive  

Table 1 | Interdisciplinary teams may consist of stakeholders 
from different categories

Stakeholder categories Examples

Knowledge experts • Clinical experts
• ML researchers
• Health information and technology experts
• Implementation experts

Decision-makers • Hospital administrators
• Institutional leadership
• Regulatory agencies
• State and federal government

Users • Nurses
• Physicians
• Laboratory technicians
• Patients
• Friends and family (framily)

Nature Medicine | VOL 25 | SEPTEMBER 2019 | 1337–1340 | www.nature.com/naturemedicine1338

http://www.nature.com/naturemedicine


PerspectiveNaTure MedIcIne

rate may be impractical, because costly interventions might be 
applied in  situations in which patients are unlikely to benefit. 
Measures such as positive predictive value and sensitivity at reason-
able operating points are often more informative. In many cases, 
measures of cost of deployment or impact (for example, on clinical 
and financial outcomes) might also be considered. If the effective-
ness and cost of the intervention are known, the ‘number needed 
to benefit’ can also be calculated as the number of patients that the 
model must flag to identify one true-positive patient, multiplied by 
the number of true-positive patients who must be treated for one 
patient to benefit13.

Beyond quantitative measures of performance, qualitative 
approaches can expose concerns associated with bias and confound-
ing that the quantitative measures might have missed. For example, 
clinical experts can investigate explanations provided at individual 
test points to determine whether the model is plausible and relevant. 
In one study, through reviewing a list of medications associated with 
a high risk of developing C. difficile infections, clinicians identi-
fied oral vancomycin. Oral vancomycin is a treatment for infection, 
thus suggesting that the model had learned an association between 
empiric treatment and outcome. After this issue was identified, it 
was easily addressed by including only data up to 2 days before a 
diagnosis during model training14. A lack of explainability does not 
mean that a model is useless. However, a clearly flawed explanation 
(such as empiric treatment, as in the example above) may mean that 
the model in its present form is not adequate for the task for which 
it was intended and should be retrained to avoid the identified issue 
before use. Further, methods for obtaining measures for how reliable 
a model’s predictions are at a given test point can be used to guide 
qualitative evaluation in regions of greater uncertainty15.

Thoughtfully reporting results
ML researchers must be mindful when interpreting and reporting 
their results. Proposed reporting guidelines developed by the com-
munity provide a good starting point for the information to include 
in a manuscript11. Such guidelines outline the importance of clear 
descriptions of the source of the data, participants, outcomes and 
predictors, and in some cases require the model itself (that is, all 
regression coefficients) to be presented. This last requirement cre-
ates a potential for unintended consequences and even harm, if the 
model is then applied inappropriately. For example, a recent study 
in building models to predict healthcare-associated infections found 
that variables associated with risk at one hospital were protective in 
another14. Thus, it is imperative that authors report the context(s) 
in which the model applies and was validated, including a discus-
sion of indications and contraindications for deployment, and what 
assumptions or conditions should be satisfied. Second, it is good 
practice to share code, packages and inputs used to generate the 
reported results, as well as supporting documentation. Recent work 
has demonstrated that deep neural networks (and other high-capac-
ity models) can generate vastly different results solely on the basis 
of the random seed used to initialize the optimization procedure16. 
Sharing code can help the community better understand and build 
on past work. Finally, when comparing multiple models, researchers 
must go beyond predictive performance. For example, it would be 
informative to include an analysis of the trade-offs between simpler, 
faster and more explainable models versus complex, slower but more 
accurate models. Following these and existing reporting guidelines 
would help facilitate reproducibility, accelerate science and limit the 
possibility of misinterpreted conclusions and misapplied tools.

Deploying responsibly
Effectively applying a predictive model in an ethical, legal and mor-
ally responsible manner within a real-world healthcare setting can 
be substantially more difficult than developing a model in a curated 
experimental environment. Before integrating in patient care, it 

is critical to test the system in ‘silent’ mode, in which predictions 
are made in real time and exposed to a group of clinical experts 
but not acted upon. This prospective validation allows clinicians to 
identify and review errors in real time17. After prospective valida-
tion, the efficacy of the model in clinical studies can be evaluated. 
Randomized controlled trials are often the cleanest way of evaluat-
ing efficacy. However, patient-level or physician-level randomiza-
tion can be challenging in many settings. For example, in deploying 
an early-warning system for sepsis, an ML-based system requires a 
novel workflow, such as presenting a display that indicates why the 
model generated an alert, to facilitate evaluation18. Randomization 
across patients would require clinicians to use different workflows 
depending on whether the patient is assigned to the control or the 
treatment arm. This process can confuse providers and might be per-
ceived by hospital administrators as a source of risk to patient safety. 
As a result, randomization across patients for ML interventions 
that require changes to workflow is not feasible. Pre–post studies 
with seasonality corrections and stepped-wedge trials19 that intro-
duce changes gradually across an institution may be good potential 
alternatives. In addition to trial design, understanding how to best 
integrate the intervention with the care team’s workflow is equally 
important: how and to whom should the output of the model be 
presented? Even the best-performing models may fail to have an 
impact if these questions are not properly addressed3. By investing 
in infrastructure for prospective evaluation and implementation 
of ML models, health-system leaders can accelerate researcher-
driven solutions by facilitating effective model deployment. Finally, 
populations and clinical protocols change over time, and frequent 
monitoring to assess for pointwise reliability and errors can aid in 
discovering opportunities for improvement15. Because ML systems 
can learn from data to improve performance over time, the US 
Food and Drug Administration has recently begun investigating the 
establishment of guidelines to allow for continuous improvement 
while ensuring efficacy and safety. This is an active area of research 
and policy regulation. As systems are deployed across an institution, 
centralized resources for maintaining model safety are necessary to 
ensure the wide operational success of the project.

Making it to market
To transition to the market, ML tools must be validated with the 
government-required regulatory steps in mind, specific to the coun-
try of deployment. For example, in the United States, some types of 
medical software or clinical decision support systems (CDS) are con-
sidered and regulated as medical devices, but others are not20. Four 
criteria determine whether CDS software are regulated as medical 
devices, the two most important of which are first that the software 
cannot receive, analyze or otherwise process a medical image or sig-
nal from an in vitro diagnostic device (such as a DNA-sequencing 
machine) or from any other signal acquisition system, and second 
that a healthcare professional must be able to understand the basis 
of its recommendations. The software also cannot be intended as 
the sole source of recommendations regarding treatment, diagnosis 
or prevention of a disease21. Consequently, developers and designers 
must be very careful about what types of information they provide 
back to clinical decision-makers. Developers must also consider 
whether and how the model might be updated over time. As men-
tioned above, the US Food and Drug Administration has recently 
proposed a regulatory framework for modifications to artificial 
intelligence/ML-based software as medical devices22. Other regula-
tory aspects of the tool may relate to the ability of the user to inter-
rogate the model. Indeed, models that can explain their predictions 
may be preferred. If investors and any firms that might market an 
ML-based product for health care are not clear about the regula-
tory pathway to market, the product might not ever benefit patients. 
Thus, teams developing ML tools for health care must seek regula-
tory advice early in the process.
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Conclusions
Many complexities exist in developing and deploying effective ML 
systems across domains as diverse as health care, self-driving cars23 
and space exploration24. We propose a robust overarching frame-
work (Fig. 1), including people and processes, within which many 
issues stemming from the complexity of adopting ML in practice, 
especially in health care, can be successfully avoided. We encourage 
all researchers working on deploying ML systems to consider the 
broader context early in the process.

There are many unanswered questions remaining in the field of 
ML: how much accuracy is sufficient for deployment? What level of 
model transparency is required? Do we understand when the model 
outputs are likely to be unreliable and therefore should not be trusted? 
Although there is still a long way to go, impactful innovation with 
ML in health care is now clearly a team activity. Ultimately, mean-
ingful progress will require both system-wide changes driven by 
policy-makers and health-system leaders, and individual research-
ers working on bottom-up solutions. From understanding the data 
to deploying the model, to have the greatest impact, developers must 
work as well-informed, interdisciplinary teams including health-
system leaders, frontline providers and patients. As the field hurtles 
forward, it is worth pausing to remember the Hippocratic oath: “first, 
do no harm.” It is imperative that all stakeholders work together to 
understand and appropriately address the nuances and potential 
biases lurking in health data, before deploying solutions. Doing so 
will not only decrease the potential for unintended consequences but 
also reduce rather than amplify existing social inequalities and ulti-
mately lead to better care.
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Developing a useful solution
• data provenance?
• ground truth? 
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Considering the ethical implications
• ethicist engagement?
• bias correction?

Deploying responsibly
• prospective performance?
• clinical trial?
• safety monitoring?

Rigorous evaluation
and thoughtful
reporting
• model use?
• sensical predictions?
• shared model/code?
• failure modes?

Making it to market
• medical device?
• model updates?

Choosing the
right problems
• clinical relevance?
• appropriate data?
• collaborators?
• definition of success?

Fig. 1 | A roadmap for deploying effective ML systems in health care. 
By following these steps and engaging relevant stakeholders early in the 
process, many issues stemming from the complexity of adopting ML in 
practice can be successfully avoided.
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