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Abstract
Bayesian non-parametric latent feature models based on the Indian buffet process
(IBP) provide interpretable representations of the data via binary-weighted matrix
factorization. The IBP gives rise to a potentially infinite number of latent features,
but has the disadvantage of assuming a priori independence between those features.
In contrast, feature allocation models based on the paintbox representation allow
for arbitrary complex correlations among the features. So far, there is no explicit
generative construction nor effective inference algorithms for such representations.
This paper presents the hierarchical stick-breaking paintbox process, a flexible
tree-based prior that generalizes the IBP to capture correlation among the latent
features. Theoretical proofs for asymptotic behavior of feature activation and
exchangeability are given, as well as an efficient collapsed Gibbs sampler.

1 Introduction
Latent feature models have proved useful for revealing structures underlying complex data by
decomposing observed attributes of the data into combinations of simple factors or features. However,
since these features are generally unobserved and a priori unknown, assigning the appropriate number
and combination of latent features to explain each observation is particularly challenging. In such
scenarios, Bayesian non-parametrics provide a framework for building flexible latent feature models
that adapt their capacity to explain available data [Gershman and Blei, 2012]. This flexibility is
achieved by placing a distribution over an infinitely dimensional space of feature assignments, thus
allowing the model to use as many latent features as would be needed to fit observations.

In particular, the Indian Buffet Process (IBP) is a feature-assignment prior that defines a probability
distribution over classes of binary matrices with a potentially infinite number of columns Griffiths
and Ghahramani [2011]. IBP priors have been used extensively across different fields for data
exploration [Knowles and Ghahramani, 2011, Ruiz et al., 2014, Pradier et al., 2018]. However, the
IBP prior assumes independence among the latent features, which might not be appropriate for many
applications. In biology for instance, one expects many genetic traits to co-occur or to have complex
inter-dependencies. In fact, there is a body of work attempting to extend the IBP prior to explicitly
incorporate correlation into latent feature models models [Broderick et al., 2013, Doshi-Velez and
Ghahramani, 2009, Chen et al., 2013, Ranganath and Blei, 2015].

Broderick et al. [2013] introduce feature allocation (FA) models, a general family of models for
multi-label partition of data that uses latent features with potentially arbitrary correlations.1 The
authors define the feature paintbox, a graphical representation of the De Finetti mixing measure of
this family. Despite its appealing flexibility, the feature paintbox lacks practical constructions and
explicit inference algorithms in existing literature, because exchangeability—property under which
indices to label the data points are irrelevant for inference—is hard to satisfy given the desiderata of
arbitrary feature correlations.

1Using the IBP prior in latent feature models leads to a subset of FAs called “feature frequency models”.
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This paper presents a novel flexible nonparametric prior for latent feature allocation models based on
the feature paintbox representation. We treat the paintbox as a binary tree of conditional probabilities.
Similar to the construction from Adams et al. [2010], we define a hierarchical stick-breaking process
that allocates probability mass to different paths in the tree, each path corresponding to a binary
vector of feature activation. We prove that the sequence of observations obtained from this prior is
exchangeable, generalizing the IBP by accounting for both positive and negative correlations among
features. We empirically show that, in cases where there are latent correlations among features, latent
variable models incorporating our prior results in performance gains over those using IBP priors.

2 Background
Indian buffet process. The Indian buffet process (IBP) is a non-parametric prior over binary
matrices with a finite number of rows and potentially unbounded number of columns [Griffiths
and Ghahramani, 2011]. The IBP is often used in latent feature models as a prior over the feature-
assignment matrix Z when the number of latent features K is unknown. In such models, Z ∈
{0, 1}N×K is a binary matrix whose rows encode the active latent features for each data point xn,
where n = 1, . . . , N . Sampling Z from the IBP prior is denoted Z ∼ IBP(α), where α is the mass
parameter controlling the a priori activation probability of new features.

The IBP prior on Z can be defined via a stick-breaking procedure. The idea is to start with a “stick”
of unit length, then recursively break it at a point Beta(α, 1) along its length, keeping the initial
portion of the stick and discarding the excess [Teh et al., 2007]. The length of the stick after the k-th
break represents the activation probability of the k-th latent feature. More formally, the process is
defined as follows:

vk ∼ Beta(α, 1), πk =

k∏
i=1

vi, znk ∼ Bernoulli(πk), (1)

where πk is the activation probability of feature k. We see that in this construction, latent features are
generated independently, rendering the IBP prior potentially inappropriate for data sets where latent
features have complex dependencies.

Feature allocation and feature paintbox. Feature allocation models (FAs) are multi-label par-
titions of data sets. In particular, FA models produce subgrouping of N data points, represented
as a multi-set {A1, A2, . . .} of non-empty subsets of {1, . . . , N}, wherein each data point belongs
to an arbitrary large but finite number of groups, Ak. Each group Ak represents a unique latent
feature. Thus, the multi-group membership or feature assignment, zn, encodes for the set of active
latent features present in each data point xn. Furthermore, Broderick et al. [2013] prove that a
large subclass of FAs, for which the sequence of feature assignment is exchangeable (the model is
unaffected by re-indexing the data) and regular (no data point is assigned a unique feature in an
infinite data collection), admitsa concrete construction via a feature paintbox, which represents the de
Finetti mixing measure of the sequence of feature assignments, {zn}.
The feature paintbox includes the well known IBP [Griffiths and Ghahramani, 2011] and, more
generally, feature allocations with arbitrary inter-feature correlations [Broderick et al., 2013]. Unfor-
tunately, inference algorithms for general feature paintboxes do not exist in current literature. In this
work, we develop a novel construction and efficient inference for latent feature models with FA priors.
We demonstrate empirically that models using paintbox priors consistently outperform models using
IBP priors, in applications where underlying features are highly correlated or anti-correlated.

3 Hierarchical stick-breaking paintbox process
A feature paintbox can be thought of as an infinite collection of subsets {Ck}∞k=1 of the unit interval.
Sampling from a paintbox involves choosing a value in the unit interval and determining what
subsets it intersects. We say a feature paintbox is in its canonical form if all mass probabilities are
concentrated to the left (see Figure 1).

We now describe a construction for canonical paintboxes, and hence a generative model for infinite
binary matrices, which we call hierarchical stick-breaking paintbox process. Let νε be the conditional
activation probability of feature k, given a binary string ε of the previous k−1 activations for features
1 to k − 1.Z For example, ν01 denotes the probability p (z3 = 1|z1 = 0, z2 = 1). We assume that
νε ∼ Beta

(
α
Kp , 1

)
, where α is the concentration parameter of the process, p is a model parameter
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that controls the average rate at which the activation of subsequent features decays, and K refers
to the truncation level, e.g., an upper bound for the number of latent features. Let πε = p(ε) refer
to the joint probability distribution of the latent features represented by the binary string ε. We
can recursively compute the probability of extended strings {ε1} and {ε0} as π{ε1} = πενε and
π{ε0} = πε(1 − νε). We define the hierarchical stick-breaking paintbox process (HSBP) as the
following iterative process:

• π∅ = 1, ν∅ ∼ Beta( α
Kp , 1)

• ∀ k = 1, · · · ,K, and j = 1, · · · , 2k−1, draw νεj ∼ Beta( α
Kp , 1), such that:

π1 = ν∅
π0 = (1− ν∅)
π01 = (1− ν∅)ν1
π111 = ν∅ν1ν11
π010 = (1− ν∅)ν1(1− ν01)

. . .

0 1

Figure 1: Example of canonical paintbox.

The feature paintbox induced by this iterative construction can be understood as a binary tree of condi-
tional probabilities, which we denote ν ∼ HSBP(α, p). Given such paintbox, we can obtain a binary
matrix Z ∈ {0, 1}N×K by sampling each binary vector zn of feature activations for observation n
from a categorical distribution over the leaves of the tree, i.e., zn ∼ Multinomial (1, {πε}ε∈SK ),
where SK is the set of all binary vectors of length K. This becomes intractable as K increases.
Alternatively, we can sample each row zn element-wise from each Bernoulli conditional probability
distribution by traversing the tree top down:

p(zn) =

K∏
k=1

p
(
znk|zn,1:(k−1)

)
. (2)

Note that the rows of a binary matrix Z generated from the HSBP are exchangeable by construction,
since the rows are conditionally i.i.d. given the sequence of Beta rv’s ν (see Appendix C).

Vanishing marginal feature probability as K →∞. Let πk be the probability of activation for
feature k, i.e., πk =

∑
ε∈Sk=1

πε where Sk=1 refer to the set of binary strings whose k-th component
is equal to one. The proposed iterative process gives rise to valid feature allocations if πK vanishes
as K →∞. This guarantees that there is no observation with an infinite number of latent features.
The marginal probability of the last feature K can be written as

πK =
∑

ε∈SK−1

πε1 =
∑

ε∈SK−1

∏
ε′<ε

νε′ (3)

where SK−1 is the set of binary strings of length (K − 1), the notation ε′ < ε refers to the ancestors2

of the binary string ε, and νε′ refer to Beta-distributed random variables, either νε′ ∼ Beta(α/Kp, 1)
or νε′ ∼ Beta(1, α/Kp) depending on whether the last component of ε′ is one or zero. Since the
random variables νε′ are independent, the expectation of its product is the product of the expectations.
We can thus compute the expectation E [πK ] in closed-form and take the limit as K →∞ (details of
the derivation can be found in Appendix A). The final result can be written as:

lim
K→∞

E [πK ] = lim
K→∞

α

α+Kp
= 0 ∀p > 0. (4)

Derivation of the predictive distribution. Let Z−(nk) refer to matrix Z except the element
znk, and Z−n to all elements from Z except row zn. We compute the conditional probability
p
(
znk|Z−(nk)

)
as follows:

p
(
znk|Z−(nk)

)
∝

∫
ν

p (zn|ν) p (ν|Z−n) dν (5)

∝
∏
ε∈Sn

(
α
Kp + φ−nε1

)znk
(
1 + φ−nε0

)(1−znk)(
α
Kp + 1 + φ−nε

) , (6)

2We follow the same notation as in [Adams et al., 2010].
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where φ−nε′ is a sufficient statistic accounting for the number of times that the binary vector ε′
appears in Z−n, and Sn is the set of subsequent partial binary vectors for observation n, i.e.,
Sn = {zn1, zn,(1:2), . . . , zn,(1:K)}. Eq. (5) can be integrated out analytically due to the conjugacy
property between Bernoulli and Beta distributions (see complete derivation in Appendix B). Eq. (6)
shows that the probability of each binary vector zn only depends on the previous number of counts
across the tree, i.e., this probability is independent of the sampling order of previous binary vectors,
proving the exchangeability condition when ν is integrated out. A collapsed Gibbs sampler can be
derived straightforwardly by sampling from Eq. (6), see Appendix D for details.

4 Results
In this section, we compare an infinite latent feature model with Gaussian likelihood using either an
IBP or HSBP prior. Inference is performed using a collapsed Gibbs sampler with Metropolis-Hasting
proposals, as detailed in Appendix C. We consider two datasets: a synthetic one of correlated toy
images (N = 300, D = 36), and the breast cancer dataset (N = 500, D = 30).3 In the toy image
dataset, the latent features correspond to four motifs in each of the four quadrants (“stair”, “T”,
“square”, and “cross”), exactly like Fig. 8 in [Griffiths and Ghahramani, 2011]. Yet, we construct the
true matrix Z such that each latent feature has the same activation probability (∀k, πk = 0.4), but
exhibit positive and negative correlations, i.e., 40% of the data exhibit one of the four latent features
active alone (randomly), 30% of the data have (“T”,“square”), and the remaining 30% have (“stairs”,
‘cross”).

In all experiments, we run 10 different splits, 100 iterations of the Gibbs sampler, and initialize using
non-negative matrix factorization [Lee and Seung, 2001]; 20% of the data is held-out for evaluation.
Such test data is partially observed (only some dimensions are missing), the objective is to learn the
latent features and reconstruct the missing observations. We fix σx = 0.25, α = 1, and the truncation
level K = 6.

Figure 1 shows the held-out log likelihood using an IBP or HSBP prior for the two datasets. The
HSBP prior allows capturing implicit correlations among the latent features, resulting in better
reconstructions of the missing observations. On top of better accuracy, the HSBP prior allows
learning more interpretable dictionaries. Figure 2 compares the inferred dictionaries for the IBP and
HSBP priors for the toy dataset. The IBP learns entangled representations corresponding to frequent
co-occurrences of the features, and is not able to recover all the individual features due to the small
dimensionality of the dataset. In contrast, the HSBP is able to recover the true four components.
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(b) breast cancer

Figure 1: Test log likelihood for a latent feature model with Gaussian likelihood and IBP or HSBP
prior (each line corresponds to a different split of the data). a) correlated toy images, b) breast cancer
dataset. The HSBP prior improves performance significantly in the held-out data.
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Figure 2: Dictionary learned for a latent feature model with Gaussian likelihood and IBP or HSBP
prior over the latent feature activation matrix for the correlated toy images. Using the HSBP prior,
we are able to recover the true components.

3https://archive.ics.uci.edu/ml/datasets.html
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Appendix A: Derivation to prove vanishing marginal feature probability

As described in the main text, the marginal probability of feature K can be written as the sum of
terms, where each term corresponds to the product of Beta-distributed random variables:

πK =
∑

ε∈SK−1

πε1 =
∑

ε∈SK−1

∏
ε′<ε

νε′ (7)

where SK−1 is the set of binary strings of length (K − 1), the notation ε′ < ε refers to the ancestors4

of the binary string ε, and νε′ refer to Beta-distributed random variables, either νε′ ∼ Beta(α/Kp, 1)
or νε′ ∼ Beta(1, α/Kp) depending on whether the last component of ε′ is one or zero. Since the
random variables νε′ are independent, the expectation of its product is the product of the individual
expectations. We can thus compute its expectation in close-form and take the limit as K →∞. In
particular:

E [πK ] =
∑

ε∈SK−1

E [πε1] (8)

=

K∑
r=1

(
K − 1
r − 1

)(
α/KP

α/KP + 1

)r (
1

α/KP + 1

)K−r
, (9)

where r is the number of ones (active features) in the binary string {ε1}. Equation (9) arises from
partitioning the random variables νε′ in two sets: those distributed according to Beta(α/Kp, 1) and
Beta(α/Kp, 1).

lim
K→∞

E [πK ] = lim
K→∞

K∑
r=1

(
K − 1
r − 1

) (
α/KP

)r
(α/KP + 1)

K
(10)

= lim
K→∞

α

α+Kp
= 0 ∀p > 0 (11)

We have demonstrated that lim
K→∞

E [πK ]→ 0, making it a valid Bayesian non-parametric prior.

Appendix B: Derivation of the predictive distribution

Let Z−(nk) refer to matrix Z except the element znk, and Z−n to all elements from Z except row zn.
We compute the conditional probability p

(
znk|Z−(nk)

)
as follows:

p
(
znk|Z−(nk)

)
∝ p (znk,Z¬n, zn,¬k) (12)

=

∫
νε

∫
ν¬ε

p (znk,Z¬n, zn,¬k, νε,ν¬ε) dν¬εdνε (13)

∝
∫
ν

p (znk, zn,−k|ν) p (Z−n|ν) p (ν) dν (14)

∝
∫
ν

p (zn|ν) p (ν|Z−n) dν (15)

This expression can be integrated out analytically due to the conjugacy property between Bernoulli
and Beta distributions, such that:

p
(
znk|Z−(nk)

)
∝

∏
ε∈Sn

Γ
(
α
Kp + φ−nε1 + znk

)
Γ
(
1 + φ−nε0 + (1− znk)

)
Γ
(
α
Kp + 1 + φ−nε + 1

) Γ
(
α
Kp + 1 + φ−nε

)
Γ
(
α
Kp + φ−nε1

)
Γ
(
1 + φ−nε0

)
∝

∏
ε∈Sn

(
α
Kp + φ−nε1

)znk
(
1 + φ−nε0

)(1−znk)(
α
Kp + 1 + φ−nε

) (16)

where φ−nε′ is a sufficient statistic accounting for the number of times the binary vector ε′ ap-
pears in Z−n, and Sn is the set of subsequent partial binary vectors for observation n, i.e.,

4We follow the same notation as in [Adams et al., 2010].
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Sn = {zn1, zn,(1:2), . . . , zn,(1:K)}. We denote Φ−n = {φε′}ε′∈S as the tree of sufficient statis-
tics given Z−n, i.e., the number of counts for each binary string ε′ of length k = 1, . . .K given Z−n.
Equation (16) shows that the probability of each binary vector zn only depends on the number of
counts across the tree, i.e., this probability is independent of the sampling order of previous binary
vectors.

Appendix C: Exchangeability

Algorithms for posterior inference are often greatly simplified by the assumption of exchangeability.
A natural question to ask is whether the sequence of observations generated by the HSBP prior is
exchangeable. According to Theorem 10 in [Broderick et al., 2013], any regular5 exchangeable
feature allocation (FA) admits a feature paintbox representation. Given any feature paintbox, we
can build a random feature allocation for each observation independently, e.g., by sampling from
the appropriate subset of conditional probability distributions as we go down the tree. Thus, the
distribution p(z|ν) is exchangeable, i.e., any permutation ρ(·) of the observation indices do not
change the probability:

p (z1, z2, z3, . . . |ν) = p
(
zρ(1), zρ(2), zρ(3) . . . |ν

)
. (17)

The exchangeability condition when ν is integrated out also holds. Indeed, Eq. (6) shows that the
probability of each binary vector zn given all other rows Z−n only depends on the previous number
of counts across the tree, i.e., this probability is independent of the sampling order of previous binary
vectors, proving exchangeability.

Appendix D: Linear feature paintbox model

Using the HSBP as a prior, we can build an infinite latent feature model with a priori arbitrary
correlations between the latent features. Let X ∈ RN×D denote the observation matrix. The
complete generative process can be written as:

ν ∼ HSBP(α, p)

A ∼ N (0, σ2
0I)

zn ∼ Multinomial (1, {πε}ε∈SK )

X|Z,A ∼ N (ZA, σ2
xI), (18)

where A ∈ RK×D is the dictionary matrix, Z ∈ {0, 1}N×K is the feature allocation matrix,
zn ∈ {0, 1}1×K is the feature allocation vector for observation n, πε refer to the joint probability
distribution of the latent features represented by the binary string ε, and SK is the set of all binary
vectors of length K.

Inference. We perform inference using a collapsed Gibbs sampler with row-wise Metropolis-
Hasting (MH) proposals p(zn|Z−n) stated in Equation 6. In particular, we compute:

p(zn|X,Z−n) ∝ p(X|zn)p(zn|Z−n). (19)

For the row-wise sampler, we propose an entire row z∗n for each observation n iteratively, and accept
with probability:

a = min

(
1,
p(X|Z∗)p(Z∗)
p(X|Z)p(Z)

g(Z|Z∗)
g(Z∗|Z)

)
, (20)

where g is the proposal distribution. Let us propose a new vector z∗n ∼ p(z|Z−n) according to
Eq. (16). In that case, Eq. (20) simplifies to a ratio of likelihoods:

a = min

(
1,
p(X|Z∗)
p(X|Z)

p(z∗n|Z−n)p(Z−n)

p(zn|Z−n)p(Z−n)

p(zn|Z−n)

p(z∗n|Z−n)

)
= min

(
1,
p(X|Z∗)
p(X|Z)

)
(21)

5Regular means that with probability one, there is no index (row) with unique feature collection.
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