Human-in-the-Loop Learning of Interpretable and Intuitive Representations

Abstract

Transparent machine learning models may be eas-
ier to validate and improve than black box mod-
els, however these approaches are limited to low-
dimensional domains with human-interpretable
features. Representation learning can scale these
approaches to high-dimensional domains with un-
intuitive features, but only if the representations
are transparent and intuitive. We propose an ap-
proach for interactively learning representations
with these properties that are simultaneously pre-
dictive in downstream classification tasks. We
validate our approach through simulation studies
and a qualitative interview with a domain expert.

1. Introduction

Transparency is a form of interpretability that can be valu-
able for human validation of models (Rudin (2019), Kulesza
et al. (2015)). Recent work has considered transparency
in the context of human simulability, that is, as measured
by the ability of a human to step through each stage of a
computation (Lipton, 2016). However, when the inputs are
high-dimensional, providing a description of the algorithm
with respect to raw dimensions may not be meaningful to
the user; the user likely has some internal representation of
the data that they are using to structure and understand it.

For example, clinicians naturally think in terms of patient
conditions, however the clinical data for machine learning
are usually high-dimensional—diagnostic codes, for exam-
ple, come from a vocabulary of over 10,000. Learning
models that can be interpreted in terms of these conditions
should facilitate the process of validating and improving
these models. Existing interpretability methods are not de-
signed to align with clinicians’ internal representation of
the problem, and clinicians often define these conditions
manually in a painstaking, iterative process (e.g. Castro
et al. (2015), Townsend et al. (2012), Ritchie et al. (2010)).
We present a human-in-the-loop approach for efficiently
learning representations that align with users’ internal rep-
resentations, and are both interpretable and predictive and
validate it through simulation studies and an interview with
a clinical domain expert. See Figure 1 for an example of a
model learned by our approach.

2. Related Work

Transparent Machine Learning. Transparency has been
proposed as one instantiation of interpretability correspond-
ing to whether a user can step through a model’s computa-
tion in a reasonable amount of time (Lipton, 2016). Many
machine learning models have been proposed to satisfy this
criteria (e.g. Tibshirani (1996), Lakkaraju et al. (2016), Us-
tun & Rudin (2016)). However these approaches work on
raw input features, assuming they are meaningful, while our
approach learns interpretable representations of the input
features on top of which these methods can be used.

Semi-supervised Latent Spaces. Approaches have been
proposed to give intuitive meaning to latent spaces of com-
plex models through semi-supervised training with some
user labels for the latent space ((Narayanaswamy et al.,
2017), Hristov et al. (2018)), and to interpret the latent
space in terms of intuitive concepts post-hoc by allowing
users to specify concepts in terms of examples that train
a classifier on a neural network’s latent space (Kim et al.,
2017). In contrast, our approach learns a representation that
is both intuitive and transparent.

Interactive Concept Learning. Approaches to interac-
tively learn concept-based representations that can be con-
sidered interpretable include Amershi et al. (2009), where
generate labels for concepts and train concept classifiers,
and interactive topic models that learn linear, positive rep-
resentations that can be interpreted in terms of their k top
words and guided through “anchor words" that characterize
a desired topic Lund et al. (2018). These methods allow
users to align the latent space to match their intuitive rep-
resentation, but these can be challenging to steer than our
approach.

Interactive Feature Engineering. Methods for interac-
tively engineering complex features have been proposed
including Cheng & Bernstein (2015) and Takahama et al.
(2018), and Parikh & Grauman (2011), however these meth-
ods aim to increase predictive performance of the down-
stream model with user feedback, rather than to tune the
model to be intuitive to the user.

3. Interactive Representation Learning

Our model will consist of two stages: the first stage, denoted
as £2c, maps the original D-dimensional vector of raw
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c2y: y =(0.704 x Insomnia ) + ( 0.589 x Anxiety ) + ( -0.231 x Overweight ) + bias

If sum(Features) >1 = Insomnia
Features:

Other insomnia - 78052
Trazodone - rxnorm:10737

f2c:

Features:

If sum(Features) > 1 2 Anxiety

Generalized anxiety - 30002
Anxiety, unspecified - 30000
Lorazepam - rxnorm:6470
Clonazepam - rxnorm:2598
Alprazolam - rxnorm:596

If sum(Features) > 1 2 Overweight
Features:

Obesity, unspecified - 27800

Other hyperlipidemia - 2724
Glucose - 82962

Type |l diabetes - 25002

Type Il diabetes - 25000

Glyburide - 4815

Figure 1: An example of our model learned in interview with clinical domain expert discussed in Section 6. The £2¢
component is a transparent representation layer that generates intuitive concepts, and the c2y component is a transparent

model learned on top of the representation.

input features x to a representation layer ¢ consisting of
C human-interpretable and intuitive concepts. The second
stage, denoted as c2y, maps the concepts to predicted labels,
9. The prediction can then be written as

§ = coy(fac(a; A, 720 WO, 652) (1)

Our goal is to learn the parameters AT2¢ and t2¢ such that
the representation concepts ¢ are human-intuitive and 7 is
predictive (that is, matches the true y):

argmax CE(y,c2y(f2c(w; A™C 52°), WY pe2Y))
Af2c7tf2c

subjectto ¢ € intuitive—concepts
2)

where predictive performance is the cross-entropy loss:
CE = —(y(log(yk)) + (1 — y)(log(1 — gix)))-

Feature to Concept Map £2c  While there are many op-
tions for mappings between input features and the concepts,
one common form—especially in clinical applications—is
defining a concept based on a threshold on a sum of counts.
For example, Ritchie et al. (2010) defines a rule for identi-
fying type 2 diabetes cases as “#type 2 diabetes ICD9 code
> 1 AND #non-insulin hypoglycemic prescriptions > 1.”
We define a similar form for our c2y layer , for example,
“if the sum of counts of ‘other insomnia’ and ‘trazodone’ for
a patient are > 1, label as having insomnia” was identified
by a domain expert using our method (see Figure 1). This
form of concept definition is known to be interpretable to
humans as the de-facto clinical approach to phenotype def-
initions (e.g. Castro et al. (2015), Townsend et al. (2012),
Ritchie et al. (2010)). However, in these works, concepts
are manually defined.

To instead learn the concept mapping, we use the form but
learn the thresholds and features for each concept. This
formulation results in 2 sets of parameters associated with
f£2c a C-dimensional vector of concept thresholds that we
denote t£2¢, and a set of C' D-dimensional binary vectors,
denoted A%, representing associations between features
and concepts.

Concept to Prediction Map c2y For the entire model to
be transparent, the concept to prediction map c2y should
also be human-interpretable. In this work, we shall use
logistic regression, but in general, any differentiable and
interpretable model could be used. Let W©2Y be the C by 1
vector of weights and b°2Y the scalar bias.

4. Inference

Our goal is to now solve the optimization in Equation 2 with
our specific instantiation of Equation 1:

¢ =1((A7%x) > t7°); g =W"c+b? (3)

This optimization has two challenges. The lesser is that we
require A2¢ to be binary and ¢2¢ to be a positive integer;
thus, we cannot simply differentiate with respect to some
prediction loss to optimize the predictions 3 in Equation 3.
The larger challenge is that the concepts ¢ (defined via
{A%2¢ ¢f2¢1) must belong to intuitive-concepts,
a property that can only be assessed by human users.

These challenges motivate a human-in-the loop training pro-
cess to solve this constrained optimization problem. We
shall start by having the human user seed each concept with
one or more features, generating A$2S. (e.g. an anxiety con-
cept with ‘generalized anxiety’)—this is relatively simple;
the challenge for manual design is usually creating an ex-
haustive list. Next, our goal will be propose changes to this
initial solution that (a) improve prediction quality and (b)
are likely to correspond to human-intuitive concepts. Fur-
thermore, the user must be able to easily evaluate whether
the intuitiveness constraint still holds after these changes.
These proposals will be presented to the user, and their
feedback will be used to refine future proposals.

4.1. Proposing Predictive, Likely-Intuitive Changes

Our goal at each step of the process is to identify a feature
that, when associated with concept ¢, will both improve
prediction, and is likely to be human-intuitive, meaning that
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the change will be accepted by the user. Our approach uses
two scores, scorePr™? and scoreimtUit that rank the fea-
tures by each of the desired properties; we combine these to
propose a single feature likely to satisfy both requirements.
To compute scoreP**?, we use gradient-based learning on
a continuous approximation of Equation 3, and to compute
scorelfttit we learn a model of what feature-concept
pairs the user will accept based on their past feedback to the
algorithm.

Computing scoreP*?® To find features that will most
improve predictive performance, we consider all possible
additions of a feature m to a concept i. All the parameters
for concepts i’ # ¢ are kept fixed during this step.

To compute the scorePr® efficiently, we create a relaxed
version of the objective in Equation 2 with the indicator
function replaced with a sigmoid, that we optimize using
gradients. The architecture (see Figure 2) first creates a
cgandidate Jayer, which corresponds to a version of con-
cept ¢ for all candidate feature associations for the concept:
i.e. the previously untried features for concept ¢ denoted
untried;. We then add a downstream node ¢; that selects
one of those replicas to pass onto the prediction layer c2y
by learning weights, scoreP ¢, that correspond to how
much each potential feature association for the concept im-
proves predictive performance. We create a positive score
by passing the weights through a softmax before combining
taking the dot product with c¢g2"4*9at< This approach can
identify highly predictive feature additions in few gradient
updates which is crucial for using this approach in real-time
with users.

There are additional details about how we learn the thresh-
olds, and some fine-tuning steps we take to improve the
quality of our solutions. See Supplement Section A.1 for a
description of these.
Computing scorei™tvit The features that are most pre-
dictive above may not result in the concept being human-
intuitive meaning that the user will not accept to use them
in the model. For example, adding a term like ‘major de-
pression’ to a concept with terms ‘generalized anxiety’ and
‘anxiety disorder unspecified’ may help predict psychiatric
prescriptions, but the concept would no longer correspond
to the human-intuitive notion of anxiety. To minimize the
number of irrelevant proposals we make to the user, we build
a model of what the user finds intuitive that can be updated
in real-time as they accept and reject proposed associations
between features and concepts. We derive score »tuit
from this model.

We model the user’s likelihood of accepting a proposal us-
ing a Gaussian random field (GRF) (Zhu et al., 2003). This
model assumes that the user is likely to accept associating
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Figure 2: Model architecture for identifying predictive fea-
ture additions. Blue weights, scoreP*®¢, are learned to
rank predictive feature additions from untried features for
the concept, u;. Biases are not pictured, but are described
in the text.

a feature m with a concept 1 if the user has previously ac-
cepted associating similar features m’ with concept 4. This
requires defining a notion of similarity between features: we
use Jaccard similarity (denoted J) computed over the num-
ber of times each features is recorded for each instance (i.e.
f = 2T). Synonymous terms are likely to be used some-
what interchangeably throughout a patient’s medical history,
for example, making this notion of similarity reasonable.
See Supplement Section A.2 for additional details.

Making Predictive and Likely Intuitive Proposals Our
proposal at each step consists of a concept index ¢, and a
feature index m: {4, m}, that the user must either accept as
intuitive or reject. We compute the index of the feature in the
proposal by first finding the top k£ most predictive features in
untried; as computed by score? . Then we choose
the most intuitive feature amongst these as computed by
score;™** as our proposed feature index m. The concept
index ¢ is fixed; we switch between concepts only after a
fixed number of user interactions to minimize the user’s
mental load from switching between concepts.

4.2. User Feedback

The final part of the inference loop is to actually show
each proposed feature addition to the user. If the user ac-
cepts the proposal, we add that feature-concept associa-
tion to A™*°: Af?° = 1. We then fine-tune the thresh-
old, ¢f2¢, and retrain the c2y map. Either way, we add
the accept/reject label for feature m into the GRF for
concept i: user-labels;,, = is—accepted(i,m)
where is—accepted(i,m) is 1 if the user accepts the
proposal, and 0 otherwise.
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5. Quantitative Results

To allow for quantitative analysis and comparison to mul-
tiple baselines and variants of our approach, we first ran
experiments with known (hand-crafted) concepts to be dis-
covered from real data: each experiment could then be
seeded with terms from the known concept, and we could
assume that the simulated user would accept any term that
belonged to the true concept. (In Section 6, we will describe
a live, real-time application with a domain expert and un-
known concepts to characterize the user experience of our
approach.)

Datasets and Concept Definitions We use two domains:
one publicly available dataset of Yelp restaurant reviews',
and one real, clinical dataset of patients diagnosed with de-
pression from a Boston area hospital. In the Yelp data, we
predict whether the average rating for a restaurant is good
(> 4 stars), or bad (< 2 stars) based on counts of words in
the aggregated reviews. In the Psych dataset, we predict
whether a patient will be prescribed an atypical antipsy-
chotic within 1 year of their first antidepressant prescription
based on counts of the patient’s past diagnoses, prescriptions
and procedures. After preprocessing, the Yelp dataset has
dimension 7,496x1, 228, and the Psych dataset has dimen-
sions 9, 802x989; both are split 60/20/20 train/valid/test,
and labels are class balanced by subsampling. Neither of
these real datasets come with concept definitions, so we
crafted these via interactions with people familiar the pre-
diction tasks (in the case of the Psych dataset, a practicing
psychiatrist). See Supplement Section B for dataset and
concept definition details.

Baselines We compare to interactive, concept-based base-
lines as well as more basic predictors. Our interactive-
concept baselines are: variants of the active-learning ap-
proach in Amershi et al. (2009) using a transparent, 11-
penalized logistic regression classifier—denoted ‘A.L. > 0’,
and ‘A.L. < 10’, and variants of the anchor-topic-modeling
approach in Lund et al. (2018)—denoted “T.M. Rel.’, and
‘T.M. Rand.”. We define an interaction for both approaches:
for the first, it is labeling an example, and for the second
it is accepting or rejecting an anchor word for a topic. We
additionally add a set of irrelevant topics not used in predic-
tion to the topic modeling approach to allow it to model all
of the data (a requirement not shared by our approach). See
Supplement Section C for details.

For non-interactive baselines, we compare to a random for-
est classifier, a neural network with a single hidden layer
the same size as our f2c layer, and two variants of 11-
regularized logistic regression with comparable number of
coefficients to our f2c¢ layer (‘Log Reg Concepts’), and

"https://www.yelp.com/dataset/

to our number of interactions (equivalent to the maximum
number of inputs) (‘Log Reg Inputs’), respectively. See
Supplement Section C for hyperparameters.

The downstream accuracies and the concept accuracies, as
well as the number of input terms in the model are reported
in Table 1 for 25 random restarts with 10 proposals per
concept.

Our approach substantially outperforms all methods
on concept accuracy. In Yelp, our final concept accu-
racy 0.806 £ 0.022 (second best is active learning < 10;
0.739=£0.0026), and in Psych, we achieve concept accuracy
of is 0.811 4 0.030 (second best is topic model seeded with
random topics; 0.714 4 0.007). These substantial differ-
ences suggest that our approach aligns much better with the
user’s intuitive representation than baselines with the same
number of interactions.

Our approach is competitive with concept-based ap-
proaches on downstream prediction accuracy Our ap-
proach is outperformed by the active learning > 10 ap-
proach and the topic model seeded with random topics,
although the latter only substantially outperforms us for
Yelp. Further inspection finds that active learning > 10
uses substantially more coefficients in c2y. The fact that
the topic models do so well for Yelp (but not Psych) may
simply be a property of the Yelp data; we are robust across
both—including the real clinical domain. Thus, our ap-
proach not only has the more intuitive concepts (above) but
potentially more interpretable predictor by having fewer
associated terms with each concept while having similar
prediction accuracy.

We now turn to the standard predictors. Our approach per-
forms similarly to logistic regression with the same number
of features as the c2y model for Yelp and better for Psych
, while providing more interpretable inputs than sparse lo-
gistic regression: weights on codes can be confused due,
for example, to colinearity (Dormann et al., 2013), while
predictions based on concepts are less likely to be misinter-
preted. Finally, all the interactive methods (including ours)
have worse downstream accuracy than the non-interpretable
methods; however, we emphasize that (a) none of these base-
lines are interpretable and (b) there may be several ways to
narrow that gap—the most substantial of which is moving
beyond the particular concepts used.

We additionally found that our approach outperformed man-
ual selection of codes, and improved coverage of the con-
cepts which may have implications for fairness. We also
performed an ablation study to better understand the differ-
ent components of our approach. See Supplement Section D
for additional details.
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Yelp Psych
Variant Downstream Concept # Terms | Downstream Concept # Terms
Ours 756011 .806+.022 8.08+1.09 .604+.010 .811£.030 27.00+2.81
AL.<10 .7644.029  .7394.026 2.8448.07 .620+.014 .548+.068 95.36+6.45
AL.>0 .7294.034  .7294.028 9.92+5.56 5754013 .6344+.094 22.80+4.92
T.M. Rel. 722+.071  .582+.029 - .604+.015 .698+.003 -
T.M. Rand .819+£.045 .659+.022 - .607£.012  .7144.007 -
Log Reg Concepts .696+.000 - 3.0040.00 .6214.000 - 9.004+0.00
Log Reg Inputs .764+.001 - 27.004+0.00 .641+.000 - 61.004+0.00
Neural Net .911+.009 - - .633+.008 - -
Random Forest .935+.002 - - .670£.005 - -

Table 1: Downstream accuracy, concept accuracy and number of input terms (where applicable) &+ standard deviations for
our method and baselines in both domains on heldout test set. Our method performs substantially better on concept accuracy
than concept learning baselines, while staying competitive on accuracy. All interpretable baselines have worse prediction

than blackbox regressors.

6. Clinical Domain: A Qualitative Study in a
Real, Live Setting

Accuracy by Num. Proposals

0.59/
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Figure 3: Training accuracy by num. proposals in qualitative
study with a domain expert.

In an interview with a clinical domain expert, we explored
the qualitative aspects of interacting with this system. We in-
terviewed a practicing psychiatrist using the anti-psychotic
prediction task described above and 3 concepts agreed upon
beforehand: insomnia, overweight and anxiety. The system
was presented as a command line tool that allowed the user
to accept/reject proposals, or to associate proposed features
with another existing concept. See Supplement Section E
for additional details.

The feedback is easy to provide with some notable ex-
ceptions. The interview subject said that most of ac-
cept/reject decisions were “almost instantaneous because it
fits a mental model," but noted that there were important
exceptions for features that were clearly correlated with
the concept but that may not be “close enough." Examples
include ‘group psychotherapy’ for anxiety, and ‘type II dia-

betes’ for overweight.

Our approach is perceived as making relevant sugges-
tions after exploration where a tolerable number of ir-
relevant suggestions are made. The interview subject
found that in the insomnia concept, many irrelevant sugges-
tions were made including ‘other dyschromia’, but found
these acceptable since they expected the system to explore.
In the anxiety and overweight concepts, the system made
suggestions that are clinically sensible based on previously
accepted features, for example suggesting ‘lorazepam’ after
‘clonazepam’ was accepted (since both are benzodiazepines),
and suggesting ‘pravastatin,” a cholesterol lowering medica-
tion, after ‘hyperlipedemia’ was accepted.

7. Conclusion

We propose an approach for learning interpretable concept-
based latent representations to extend interpretable machine
learning methods to domains with uninterpretable features.
We use human-in-the-loop training to learn transparent rep-
resentations that align with users’ intuitive representation of
a prediction problem. We show in simulation experiments
that our approach learns representations that align substan-
tially better with user-inuitive concepts, and in an interview
with a clinical domain expert, we find that most propos-
als are quite easy to accept or reject, and our approach is
perceived as offering relevant suggestions.

Our results suggest areas for future research to improve
human-machine collaboration in learning interpretable, in-
tuitive and predictive representations. All concept-based
approaches came at a cost to downstream accuracy; future
work can explore methods to seed our approach with in-
tuitive concepts that are also highly predictive to mitigate
some of this cost. In the qualitative study, there were a
number of edge cases where the proposal was correlated
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with a concept, but did not obviously belong to it that raised
questions about how to assist users in navigating the sensi-
tivity/specificity tradeoff for when to form feature-concept
associations. Future work can explore this question though
a combination of user coaching, and guidance provided by
the machine learning system.

Transparent machine learning methods allow users to in-
spect system logic, potentially catching mistakes and im-
proving models. Our approach scales these benefits to high-
dimensional domains with unintuitive features without sac-
rificing transparency at the representation level.
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A. Method

A.1. Computing scoref=ed

Architecture In the relaxed version of our model used
to generate scorePr®?, the concepts except concept i are
fixed when a proposal is being made for concept :. We
denote all of the fixed concepts i~. The concept layer for
the fixed concepts is generated as follows:

ci- = oq10,- 5} (A2 — (127 — 1)) @)

where we define o(,, ,} as the sigmoid function with a scal-
ing parameter « and an offset parameter v, i.e.

Tlaqyy (D) =c(ax(l+7)) (5)

For the learned concept, ¢, the architecture for the concepts
is slightly different to facilitate learning a positive score,
scorePred over the different possible features that can be
added to c;. We first define a set of fixed weights, flifzc,
the first layer for concept ¢ in Figure 2. These weights are
constructed by making a copy of the existing AF© for every
untried feature for concept ¢, unt ried;, and for each copy,
setting the corresponding feature in untried; to 1. This
corresponds to creating a version of AF?° for every possible
feature that can be added to concept 7. The first layer for
concept ¢ is then defined as:

candidate

c = o105y (AF2°0 — (£7° — 1)) (6)

From this vector of candidate concepts, c{2"92t¢ we need

to produce one single concept, ¢; that gets used in the down-
stream prediction. We do this by weighting cgandidate py
scorePred,

= candidate

G = ¢ . scorePred 7

We produce the positive score scoreP*®¢ by taking the
softmax over a set of real-valued weights.

The final prediction of the model is then made as follows:
§ = W2YE 4 b ®)

where ¢ consists of the concatenation of ¢;— and ¢;.
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We simultaneously learn an approximation to the thresholds,
denoted £°°, to identify features that are only predictive
when ¢£2¢ is first changed. However final threshold as-
signments are most effective when fine-tuned after gradient
based learning.

Fine-Tuning We additionally employ 2 fine-tuning strate-
gies to improve the quality of the learned solutions. The
first fine-tuning procedure fine-tunes the count thresholds
for each concept after a new feature has been added. The
second attempts to ensure that no features that hurt predic-
tive performance will be added to the concept.

The count threshold fine-tuning works by trying a range
of positive, integer values for the threshold, and choosing
the one with the highest downstream accuracy. In our ex-
periments, we try thresholds between 1 and 20 inclusive,
which is computationally fast since it requires only 20 eval-
uations. We find that this results in slightly better settings
for the count thresholds, and sidesteps the possibility that
the gradient based approximation to ¢ could learn negative
and non-integer values.

The fine-tuning to ensure that we do not add features that
hurt predictive performance works by adding an additional
copy of Af?¢ to the first set of weights for concept 7. Then
only the features with scoreP*®? higher than the weight
learned for this no—change feature are considered as valid
proposals. If there are no valid proposals, we do not offer
any more proposals for that concept. In the results, we
consider any unmade proposals for our method as rejected
proposals for the sake of a fair comparison between interac-
tive concept-learning methods. However finding better ways
to decide when to switch between concepts could be inter-
esting future work. Note that this may not always guarantee
that our proposals increase accuracy since scorePr®d ig
only an approximation of how much each feature will im-
prove downstream predictive performance.

A.2. Computing score®"tit

In the GRF we use to model what the user finds intuitive,
the probability that the user will accept associating feature
m with concept 7 can then be efficiently computed via label
propagation on the graph, where user-1labels; p, cor-
respond to whether the user accepted associations between
concept 7 and previously tried features (tried;):

1

1
= 75 eXP(_ﬂ(§

intuit
score,,

> T f)

m’/Etried;

(user-labels;, — userflabelsi,m/)z)) 9)

where J Jaccard similarity metric, (3 is a tunable inverse tem-
perature parameter (we set 5 = 1) and Z3 is a normalizing
constant.

Algorithm 1 Our algorithm. We denote finding
the top k most predictive features in untried;
as computed by scoreP™® as: top-pred <+

i
top(scoref ™ untried;, k).

Input: x,y, Af25., k
Initialize:

train c2y; init tried, untried,
user—labels
for i in 1:num-concepts do
for j in 1:num-proposals do
Compute scorel™®%;
untried;
top-pred ¢ top(scoref™® untried;, k)
m + top(score;™"* top-pred,1)
if is—accepted({i,m}) then
Affﬁb =1 fine-tune ¢°; Retrain c2y
end if
user—labels;,, = is—accepted({i,m})
untried; ¢ untried; \ m; tried; <«
tried; N{m}
end for
end for

score; M over

B. Dataset

We used the Yelp dataset® from the Yelp dataset challenge.
To process the data, we kept restaurants with at least 5
reviews, and used a bag of words feature representation,
counting the number of times each word appears in all asso-
ciated reviews for a restaurant. We then labeled as positive
examples restaurants with star ratings > 4, and as negative
examples restaurants with star ratings < 2, and subsampled
the positive class to generate a class-balanced dataset. The
words that we kept in the feature vectors occurred in reviews
for between 10% and 25% of restaurants, allowing us to find
terms that were common enough to be useful predictors, but
not so common that they were used for most restaurants.

The concepts we define in the Yelp dataset are: ‘positive
ambiance’, ‘positive food texture’, and ‘mention of service’.
The associated words for each concept are listed below,
with potential seed terms in bold (concepts are seeded with
a randomly chosen one of these):

‘positive ambiance’: cozy, ambience, ambiance, wel-
coming, casual, friendly, music, modern, neighborhood,
atmosphere, comfortable, quaint, vibe, comfort, comfort-
able, mood, welcome

‘positive food texture’: tender, crispy, crisp, juicy, creamy,
moist, crunchy, fluffy, crunch

‘mention of service’: management, manager, server, waiter,
waitress, employee, hostess, cashier, bartender, orders,
ordering, servers, register, refill, serves, serve, waitresses,
refills, refill, managers, reservation, reservations, services,

“https://www.yelp.com/dataset
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waiters

We used a dataset of patients from 2 New England hospitals
with at least 1 MDD diagnosis (ICD9 codes 296.2x, 296.3x)
or depressive disorder not otherwise specified (311), and
without codes for schizophrenia, bipolar, and typical antipsy-
chotics. Our prediction task was to determine whether the
patient will be prescribed an atypical antipsychotic (Olan-
zapine, Quetiapine, Risperidone, Lurasidone, Aripiprazole,
Brexpiprazole, Ziprasidone) within the year after their index
antidepressant prescription. We subsampled negative exam-
ples to class balance the dataset. Feature vectors consist of
counts of how often each ICD9, procedure and medication
code are recorded for the patient in the 2 years preceding
the index antidepressant prescription. We exclude codes
that occur for less than 1% of patients since there is a long
tail of these codes that will not be highly predictive since
they are recorded for few patients. We additionally remove
numerical features from the dataset (patient age and date),
and gender markers. We do this so we can use age and
gender as concepts in our simulation studies that must be
defined through proxies rather than through the recorded
marker. In a real, clinical application, these features would
be included in the dataset.

The concepts we define for the Psych dataset are: ‘insomnia’
, ‘anxiety’ , ‘gender-female’ , ‘older-age’ , ‘hospital-ed’ ,
‘addiction’ , ‘overweight’. The associated words for each
concept are listed below, with potential seed terms in bold
(concepts are seeded with a randomly chosen one of these):
‘insomnia’: 78052, 78050, rxnorm:10737, rxnorm:39993
‘anxiety’: 30002, 30000, 30001, 7992, 3003, rxnorm:2598,
rxnorm:596, rxnorm:6470, rxnorm:2353, rxnorm:3322,
rxnorm:7781

‘gender-female’: v242, ¢76801, c59051, c58100, c76830,
c76815, ¢76816, 6260, rxnorm:214559, v7610, 7210,
650, ¢76819, rxnorm:6691, c88142, c88141, v221,
c59409, 6271, p7569, 6262, 64893, 6264, v103, 2189,
p7534, c76805, v222, v7611, 6160, c59400, 81025,
c82105, c76645, rxnorm:4100, 61610, v7231, v270,
c76811, v163, rxnorm:214558, c88174, drg:373, 6202,
rxnorm:384410, rxnorm:6373, 59025, 6253, c88175, 1749,
6221, 6259, 6268, 6272, 6289, 79380, 7950, 79500, c76090,
¢76091, ¢76092, c77057, v7612, v762, c82670, 65963,
rxnorm:324044, c84146, v220, rxnorm:4083, c76817
‘older-age’: 71516, 71595, 71590, 71596, 71591, 78841,
78830, 73300, 60000, c45378, 6271, c45385, c45380,
v7651

‘hospital-ed’: ¢99232, 99231, ¢99222, c99233, ¢99238,
€99223, 99282, ¢99285, ¢99284, c99283, c99281, ¢99239,
99253, 99219, ¢99218, ¢99221, zZINPATIENT, c99254,
c99252

‘addiction’: 30400, ¢80100, 3051, 30500, 29181, 30390,
30590, ¢82055, 30490, rxnorm:6813, rxnorm:7407,

¢80101, v1582

‘overweight’: 27800, 27801, ¢97802, 7831, c97803

Codes starting with ‘c’ are CPT codes, codes starting with
‘rxnorm’ are medication codes, and the rest are ICD9 codes.

C. Hyperparameters
C.1. Our Approach

Our approach requires defining hyperparameters for the
gradient-based approach described in Section 4.1. We use
the ADAM optimizer, a step size of 0.1, a batch size of 32,
and 200 iterations for each run of the gradient-based step
in both domains. While we did not perform an extensive
sensitivity analysis of these parameters, we note that they
do allow the “Add All” strategy to perform quite while, sug-
gesting that we are learning an effective scorePre? (see
Table 2). We further note that the since these hyperparame-
ters work well in both domains, the approach is likely not
highly sensitive to them. In future iterations it would be
possible to fine-tune the hyperparameters using the perfor-
mance of the “Add All” strategy to evaluate scoreP™®d
before running the interactive version of our approach.

C.2. Interactive Concept-Learning Baselines

For both interactive concept-learning baselines, we use the
concept probabilities directly in the downstream classifica-
tion. This gives these approaches an advantage over our
model and makes them slightly less interpretable, since our
concepts are always constrained to be in {0, 1}.

Concept Classifiers Based on Amershi et al. (2009), we
tune a set of concept-classifiers using concept labels, where
the classifiers are 11-penalized logistic regressions so as
to be simulatable. We request labels for the example that
most improves the downstream accuracy of the model after
retraining from a random subset of examples (while we use
ground-truth concept labels in our simulation experiments,
these would need to be estimated in practice). We search
over a random subset of 100 examples to consider labeling.
While searching over more examples will likely improve
performance of the approach, it also increases the running
time, which can seriously impact user experience in an
interactive system. We generate the initial set of labels for
each concept by labeling as positive examples of the concept
all examples that have the seed term for the concept and
randomly choosing 1 negative example of the concept to
label. This gives the approach a roughly equivalent starting
amount of information to our approach which requires a
seed term.

We run 2 variations of the active-learning-based approach
in our experiments: the first uses the first value of the 11
penalty where all concept models have at least 1 non-zero
coefficient at the start of training—denoted ‘A.L. > 0’. The
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second uses the last value of the 11 penalty where all of
the starting concept models have no more than 10 non-
zero coefficients—denoted ‘A.L. < 10°. We search over
values in the range 0.0001 to 1., taking steps of size 0.0001
between 0.0001 and 0.001, of size 0.001 between 0.001 and
0.01, etc. to find these values. We use these 2 different
variants since it is challenging to know a priori how many
coefficients the trained models will have after the user has
labeled additional examples. We z-score the features before
using this approach.

Topic Model We also compare to the method in Lund et al.
(2018) that tunes supervised topics through a set of curated
anchor words to use in downstream prediction tasks. To
make the interactions comparable to our approach, we pro-
pose a new anchor word as the highest probability word for
the topic that is not already an anchor word in another topic,
or a downstream label. We add rejected proposals to a set
of “irrelevant concepts” not used in prediction since topic
models must model all of the data—a feature not shared by
our approach.

We run two variants of the topic-model approach in our
experiments that create the “irrelevant topics” in two ways:
in the first variant, we seed the model with 5 times as many
non-concept-related topics as concept-related topics. We
generate anchor words for these by, for each new topic, tak-
ing the word that is the furthest from the existing anchor
words using the Jaccard distance metric. We then assign
words to these topics by taking the topic with the closest
anchor word to the current word based on Jaccard distance.
In the 2nd variant, we start with 1 topic for each concept,
and each time we reject a term, we create a new topic with
that word as the anchor word. Before adding rejected terms
to a new concept, we verify that they do not belong to the
lists of related terms for any other concepts. If they do, we
ignore them since we do not want to prevent them from be-
ing suggested for the correct topic (although this would not
be doable in practice). These two variations allow us to ex-
plore whether pre-seeding the model with these “irrelevant
topics” and allowing it to learn topics that more accurately
correspond to our desired concepts from the beginning, or
if creating “irrelevant topics” to specifically capture things
that may be confused with our desired concepts is more
effective.

We infer the topics by drawing a small number samples
(specifically 10) of the topic vectors as suggested in Lund
et al. (2017) and computing probabilities by normalizing.
We then binarize these to compute concept accuracy by
taking all topics where the probability is greater than 0.1
for the document as 1 and the other topics as 0. While
inferring the topics is slow, and would not be feasible to do
interactively at each step, it allows for a direct comparison of
our method during training. Note that we train the logistic

regression model for downstream prediction only on the
topics that correspond to our desired concepts.

C.3. Non-Interactive Baselines

The random forest model has 200 estimators, and we
tune the maximum depth of the trees over the range
[5,10,25,50, 100, None] using 5-fold cross validation.
The neural network has 1-hidden layer with the same num-
ber of hidden nodes as our approach has concepts—this is
the comparable architecture to our approach. We use a
sigmoid activation function and ADAM as an optimizer,
and search over step sizes from [0.001,0.01,0.1, 1.] using
5-fold cross-validation. We use batch size 32 and run it for
1000 iterations. For our 2 11-regularized logistic regression
versions: the first with approximately the same number of
features as our approach has concepts, and the second with
approximately the same number of inputs as our approach
has interactions, we choose the 11-penalty that produces
the closest number of non-zero coefficients to the desired
number of coefficients. We search over values in the range
0.0001 to 1., taking steps of size 0.0001 between 0.0001
and 0.001, of size 0.001 between 0.001 and 0.01, etc. We z-
score the features before using these approaches. We trained
the random forest model, and the logistic regression mod-
els using the scikit-learn implementations (Pedregosa et al.,
2011).

D. Quantitative Results
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Figure 4: Heldout downstream accuracy by number of sam-
pled relevant features. Yelp domain on left, psych on right.
Concepts must be seeded with 4-5 random feature to ap-
proach the performance of our method.

Comparisons against fully manual: Our approach out-
performs the user selecting a small random set of rele-
vant features. We compare the downstream accuracy of
our approach against randomly sampling n codes from the
concept definitions to simulate a user generating £2c man-
ually. Figure 4 shows this for 25 random restarts. In Yelp,
comparable downstream accuracy is reached with 5 relevant
codes sampled, and for Psych with 4 codes. This suggests
manually curating a predictive £2c will require more effort
than seeding our approach with 1 relevant term.

Inclusion and Coverage: Our approach increases pos-
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Yelp Psych
Variant Downstream Concept # Terms | Downstream Concept # Terms
Pred Only 750+.012  .7754.019 4.88+0.91 .606+.010 .8074.021 13.92+1.29
Intuit Only 747+.015 .8134.030 9.72+1.99 .601+.010 .8124.025 36.84+3.28
Top-Pred 756+.011  .806+.022 8.08+1.09 .604+.010 .811+.030 27.00+2.81
Top-Intuit 759+.012  .8014.027 7.56+£1.60 .604+.011 .8174.035 22.36+3.42
Oracle 751£.016  .8084+.024 9.12+2.12 .616+.006 .8504+.019 36.80+2.97
Add All .854+.015 .759+.021 33.40+0.57 .648+.008 .6344+.032 77.00+0.00

Table 2: Downstream accuracy, concept accuracy and number of input terms for variants of our method = standard deviation
in both domains on heldout test set. Our variant (‘Top-Pred’) performs well on both accuracy measures and makes more

accepted proposals than the ‘Pred-Only’ variant.
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Figure 5: Number of positive concept labels in test set by
number of proposals for our method. Yelp on left, psych
on right. Positive concept labels substantially increases
suggesting our method expands coverage.

itive concept labels substantially, implying improved
coverage. Figure 5 shows the number of positive concept
labels by number of user interactions from the experiment
above. In both domains, the number of positive concept
labels grows substantially, almost doubling from £2c;pi¢
in the Psych domain. This has implications for fairness and
robustness by allowing for multiple synonymous ways of
coding for different concepts that capture different instances
to be recognized instead of relying on a single common cod-
ing as would likely be the case in a model without concepts
constrained only to be sparse.

Ablations and Variants: Our proposed method achieves
slightly better downstream accuracy than focusing on
intuitive features only, while making more accepted
proposals than focusing on predictions only. We
consider variants of our approach (‘Top-Pred’) includ-
ing one that uses only scoreP*®? (‘Pred-Only’), one
that uses only score®t¥i* (‘Inuit-Only’), and one that
find top-intuit < top(score!"t¥it y; k), then
chooses the most predictive amongst them (“Top Intuit’).
We additionally compare to an oracle approach that makes
the ‘Pred-Only’ proposal when it will be accepted, and
otherwise makes the ‘Intuit-only’ proposal (‘Oracle’), and
one that accepts all proposals (‘Add All’). See Supplement
Section C for hyperparameter details. The downstream ac-
curacies and the concept accuracies, as well as the number

of input terms in the model are reported in Table 2 for 25
random restarts with 10 proposals per concept.

The ‘Intuit-Only’ variant adds substantially more terms than
any of the others, suggesting this is the most effective way to
make proposals the user will accept, however the other vari-
ants perform slightly better in downstream accuracy. Our
variant (“Top-Pred’) proposes more relevant terms than the
“Top-Intuit’ variant. The oracle outperforms these variants,
suggesting room for improvement, but not by a substantial
amount. The ‘Add-All’ variant performs significantly worse
on concept accuracy, suggesting that user feedback is crucial
for aligning the latent representation with user intuition.

E. Qualitative Study

The interview subject is a practicing psychiatrist with expe-
rience evaluating machine learning models. The first author
started the study by explaining the goals of the system and
how concepts are defined, then presented the interview sub-
ject with a shortened version of the main task to get familiar
with the interface before diving into the main task. After
the main task, the interviewer asked 3 follow up questions
about the difficulty of giving the requested feedback, the
perceived relevance of the suggestions, and whether they
produced any new and interesting insights. As in the simu-
lation study, 10 proposals were made by the system for each
concept. The concepts were seeded with: insomnia: ‘Other
insomnia - 78052’; anxiety: ‘Generalized anxiety - 30002’;
overweight: ‘Obesity, unspecified - 27800°. The study was
approved by our institution’s IRB. The study was conducted
over Zoom (due to the COVID-19 pandemic).



