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Abstract

Recent years have seen a boom in interest in interpretable
machine learning systems built on models that can be under-
stood, at least to some degree, by domain experts. However,
exactly what kinds of models are truly human-interpretable
remains poorly understood. This work advances our un-
derstanding of precisely which factors make models inter-
pretable in the context of decision sets, a specific class of
logic-based model. We conduct carefully controlled human-
subject experiments in two domains across three tasks based
on human-simulatability through which we identify specific
types of complexity that affect performance more heavily
than others–trends that are consistent across tasks and do-
mains. These results can inform the choice of regularizers
during optimization to learn more interpretable models, and
their consistency suggests that there may exist common de-
sign principles for interpretable machine learning systems.

Introduction

The relatively recent widespread adoption of machine learn-
ing systems in real, complex environments has lead to in-
creased attention to anticipating system behavior during de-
ployment. An oft-cited example of unanticipated behavior is
described in Caruana et al. (2015), where a classifier trained
to predict pneumonia-related complications learned a neg-
ative association between asthma and mortality. By careful
inspection of the model, the authors determined this serious
error occurred because asthmatic patients with pneumonia
were treated more aggressively, reducing their mortality rate
in both the training and test sets.

Examples such as these have led to a call for the devel-
opment of models that are not only accurate but also in-
terpretable. In particular, human-simulatable models (Lip-
ton 2016) are meant to be simple enough for a consumer
of the model to step through the calculations in a reasonable
amount of time. A particularly appealing property of human-
simulatable models is that they enable an expert to combine
their human computation and reasoning with the model’s
logic; for example, they can catch and adjust for situations in
which the model’s decision process relies on irrelevant fea-
tures or discriminates against protected groups. Examples of
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human-simulatable models include human-simulatable re-
gression functions (e.g. Caruana et al., 2015; Ustun and
Rudin, 2016), and various logic-based methods (e.g. Wang
and Rudin, 2015; Lakkaraju, Bach, and Leskovec, 2016;
Singh, Ribeiro, and Guestrin, 2016).

But even types of models designed to be human-
simulatable may cease to be so when they are too complex.
For example, a decision set—a model mapping inputs to out-
puts through a set of independent, logical rules—with 5,000
rules will be much harder for a human to simulate than a de-
cision set with 5 rules. Such simplicity can be achieved by
adding a term to the objective function designed to limit the
model’s complexity—we call these regularizers.

The challenge is determining which types of complex-
ity affect human-simulatability and by how much, since
this will guide the choice of regularizers for interpretability.
For example, decision sets—the model we focus on in this
work—can be regularized in many ways, including limiting
the number of rules, limiting the number of terms in a rule,
and limiting the overlap between different rules (Lakkaraju,
Bach, and Leskovec 2016). While each of these likely in-
creases the human-simulatability of the model to some de-
gree, over-regularization potentially comes at the cost of pre-
dictive performance: a very simple model may not be able to
model the data accurately. Because of this, we want to em-
ploy only enough regularization during optimization to help
us reach our goal. The first question we address in this work
is therefore understanding which types of complexity have
the greatest effect on human-simulatability.

A natural follow-on question is whether the types of com-
plexity that matter depend on the context, or whether there
exist general design principles for human-simulatability. In
the broader field of interpretable machine learning, studies to
date have shown conflicting results. For example, Poursabzi-
Sangdeh et al. (2017) find that longer models are more diffi-
cult to simulate, while Allahyari and Lavesson (2011); Elo-
maa (2017); Kulesza et al. (2013) find that larger models can
be more interpretable. It is unclear whether these differences
in conclusions are due to different notions of interpretabil-
ity, different choices of models, differences in tasks, or dif-
ferences in domains. The second question we address in this
work is whether there are consistent underlying principles
that can be used to develop interpretable models.

Since the question of how different types of complexity
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affect human-simulatability ultimately depends on people’s
ability to replicate the model’s computations, we address it
through a series of careful human-subjects experiments on
Amazon Mechanical Turk. We test the effects of three differ-
ent types of decision-set-complexity across two domains and
three tasks. Our results show a clear and consistent ranking
of the types of complexity across contexts. Introducing inter-
mediate concepts, or cognitive chunks, has a larger impact
on human-simulatability than increasing model size, which
in turn has a larger impact than repeating terms. This gives
us insight into how to employ regularizers when learning
decision sets to achieve human-simulatability, and suggests
that there may exist common design principles for how to
create human-simulatable machine learning systems.

Related Work
Interpretable Machine Learning. Interpretable machine
learning methods aim to optimize models to be predic-
tive and understandable to humans. Lipton (2016) classifies
properties of interpretable models into those measuring the
transparency of a model, and those corresponding to how
well a black-box model can be interpreted after learning
(post-hoc). He then argues that the strictest notion of trans-
parency is simulatability, which corresponds to whether a
human can walk through the model’s computations to ar-
rive at the output from the input in a reasonable amount
of time. This goal of human-simulatability can be achieved
through choosing an interpretable model class (e.g. Caruana
et al., 2015; Ustun and Rudin, 2016; Wang and Rudin, 2015;
Lakkaraju, Bach, and Leskovec, 2016), or by adding regular-
izers to the optimization objective designed to facilitate in-
terpretability (e.g. Wu et al., 2018; Plumb et al., 2019; Ross
and Doshi-Velez, 2018; Lakkaraju, Bach, and Leskovec,
2016). Many solutions draw from both approaches since
Lipton (2016) argues that even inherently interpretable mod-
els can be difficult to simulate without some regulariza-
tion. In this work, we focus on characterizing the effect of
different types of complexity on human-simulatability for
an interpretable class of logic-based models: decision sets
(Lakkaraju, Bach, and Leskovec 2016). This is in contrast
to many of the works above that either do not empirically
justify the interpretability of their approach through human-
evaluation (e.g. Ustun and Rudin, 2016; Plumb et al., 2019)
or that run user studies comparing their approach to base-
lines, but do not attempt to yield generalizable insights (e.g.
Lakkaraju, Bach, and Leskovec, 2016).

Domain Specific Human Factors for Interpretable
ML. Specific application areas have also evaluated the de-
sired properties of interpretable machine learning systems
within the context of the application. For example, Tintarev
and Masthoff (2015) provide a survey in the context of rec-
ommendation systems, noting differences between the kind
of system explanations that manipulate trust and the kind
that increase the odds of a good decision. These studies often
examine whether the system explanation(s) have an effect on
performance on a downstream task. Horsky et al. (2012) de-
scribe how presenting the right clinical data alongside a de-
cision support recommendation can help with adoption and
trust. Bussone, Stumpf, and O’Sullivan (2015) found that

overly detailed explanations from clinical decision support
systems enhance trust but also create over-reliance; short or
absent explanations prevent over-reliance but decrease trust.
These studies span a variety of extrinsic tasks, and given the
specificity of each explanation type, domain and task, iden-
tifying generalizable properties is challenging.

General Human Factors for Interpretable ML. Closer
to the objectives of this work, Kulesza et al. (2013) per-
formed a qualitative study in which they varied the sound-
ness and the completeness of an explanation of a recom-
mendation system. They found completeness was important
for participants to build accurate mental models of the sys-
tem. Allahyari and Lavesson (2011); Elomaa (2017) also
find that larger models can sometimes be more interpretable.
Schmid et al. (2016) find that human-recognizable interme-
diate predicates in inductive knowledge programs can some-
times improve simulation time. Poursabzi-Sangdeh et al.
(2017) manipulate the size and transparency of a model and
find that longer models and black-box models are harder to
simulate accurately on a real-world application predicting
housing prices. Our work fits into this category of empir-
ical study of interpretable model evaluation and extends it
in two key ways. We consider logic-based models—a major
category of interpretable models where this question has not
been well explored, and we consider several different tasks
and domains, allowing us to demonstrate that our results are
generalizable to new machine learning problems.

Research Questions

Our central research question is to empirically deter-
mine which types of complexity most affect human-
simulatability, and whether this depends on context, to in-
form the choice of regularizers for learning interpretable
models. In this section, we first describe the class of models
and the specific types of complexity we study, then the set
of tasks we ask participants to complete, and the domains in
which we run our experiments. See Table 1 for an overview.

Types of Complexity Tasks Domains

V1: Model Size Verification Recipe
V2: Cognitive Chunks Simulation Clinical
V3: Repeated Terms Counterfactual

Table 1: We conduct 3 experiments testing different types
of complexity in 2 parallel domains. We ask participants to
complete 3 different tasks based on human-simulatability.

Model

In this work, we study decision sets (also known as rule
sets). These are logic-based models–a frequently studied
category in the interpretability literature (e.g. Subramanian
et al., 1992; Huysmans et al., 2011), that have been demon-
strated to be more interpretable than other forms of logic-
based models. Specifically, Lakkaraju, Bach, and Leskovec
(2016) found that subjects are faster and more accurate at de-
scribing local decision boundaries of decision sets than rule
lists. There exist a variety of techniques for learning decision
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sets from data (e.g. Frank and Witten, 1998; Cohen, 1995;
Clark and Boswell, 1991; Lakkaraju, Bach, and Leskovec,
2016). Additionally, they can be used as post-hoc expla-
nations of black-box models like neural-networks (Ribeiro,
Singh, and Guestrin, 2016; Lakkaraju et al., 2017).

Formally, decision sets consist of a collection of logical
rules, each mapping some function of the inputs to a col-
lection of outputs. For example, the box titled: “The Alien’s
Preferences” in Figure 1 shows a decision set where each
line contains a clause in disjunctive normal form (an or-of-
ands) of the inputs (blue words), which, if true, maps to the
output (orange words–also in disjunctive normal form).

Figure 1: Screenshot of our interface for the simulation task
in the V3–Variable Repetition experiment in the Clinical do-
main. The middle left box shows the observations we give
participants about the alien–i.e. the features of the input ex-
ample. Participants must give a valid recommendation that
will satisfy the alien given the observations and preferences.
The “Disease medications” box defines the necessary con-
cepts for the experiment. Each task is coded in a different
color (here, blue) to visually distinguish them.

Types of Complexity

In order to learn interpretable decision sets, Lakkaraju,
Bach, and Leskovec (2016) added several regularization
terms to explicitly encourage interpretability. The exis-
tence of multiple types of complexity that can be used as
interpretability-regularizers for this model class motivates
the work we do to determine which ones most affect human-
simulatability. In our experiments, we considered three types

of complexity—model size, the introduction of new cogni-
tive chunks, and variable repetitions. These are supported by
insights from the psychology and interpretability literature
(Freitas, 2014; Feldman, 2000; Gottwald and Garner, 1972;
Miller, 1956; Treisman and Gelade, 1980), and were found
in pilot studies to have larger effects than reasonable alter-
natives. See our tech report for details (Lage et al. 2019).

V1: Model Size. Model size, measured in a variety of
ways, is often considered as a factor that affects inter-
pretability. Freitas (2014) reviews the large amount of work
that has defined interpretability as a function of model size
and argues that other interpretability metrics should be con-
sidered, but this one is clearly important. Results from psy-
chology support this idea. Feldman (2000) found that human
concept learning correlates with the boolean complexity of
the concept, suggesting that it will take people longer to pro-
cess decision sets with more complex logical structures.

To capture the notion of model size, we varied the size of
the model across two dimensions: the total number of lines
in the decision set, and the number of terms within the output
clause. The first corresponds to increasing the vertical size
of the model—the number of rules—while the second cor-
responds to increasing the horizontal size of the model—the
number of terms in each rule. We focused on output clauses
because they were harder to parse: input clauses could be
quickly scanned for relevant terms, but output clauses had to
be processed completely to determine the correct answer.

V2: Cognitive Chunks. Adding intermediate terms to
the model may facilitate the task by allowing people to re-
member 1 concept instead of a conjunction or disjunction
of concepts. Gottwald and Garner (1972) found that people
classify objects that require processing 2 dimensions more
slowly than those that require processing a single dimen-
sion. Miller (1956) argued that humans can hold about seven
items simultaneously in working memory, suggesting that
human-interpretable explanations should obey some kind of
capacity limit, but that these items can correspond to com-
plex cognitive chunks—for example, ‘CIAFBINSA’ is easier
to remember when it is recoded as the more meaningful units
‘CIA’, ‘FBI’, ‘NSA.’ On the machine learning side, a large
amount of work has been done on representation learning
under the assumption that learning intermediate representa-
tions can simplify prediction tasks e.g. Chen et al. (2016).

To explore this type of complexity, we varied the num-
ber of cognitive chunks, and whether they were implicitly or
explicitly defined. We define a cognitive chunk as a clause
in disjunctive normal form of the inputs that may recur
throughout the decision set. Explicit cognitive chunks are
mapped to a name that is then used to reference the chunk
throughout the decision set, while implicit cognitive chunks
recur throughout the decision set without ever being explic-
itly named. See Figure 2 for an example.

Figure 2: An explicit (top) and an implicit (bottom) cognitive
chunk used inside a decision rule.
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V3: Repeated Terms. Increasing the number of times
that relevant features (i.e. those appearing in the input ex-
ample) appear in the model may increase the difficulty of
the tasks since people will likely need to scan through each
of the lines where a relevant feature appears to answer the
question. Treisman and Gelade (1980) discusses the feature-
integration theory of attention in psychology that says that
people can find items that are different in exactly 1 dimen-
sions in parallel time, but that they must linearly scan all
relevant items when the one in question is different only in a
conjunction of features. Repeated terms was also measured
indirectly by Lakkaraju, Bach, and Leskovec (2016) through
the amount of overlap between different decision rules.

To capture this notion, we varied the number of variable
repetitions —the number of times that features in the input
example were repeated in the decision set.

Tasks

An interpretable model can facilitate many downstream
tasks including improving safety and increasing trust. We
address our second research question: whether there are con-
sistent underlying principles that can be used to develop
interpretable models, by considering 3 distinct tasks in or-
der to investigate whether our results are consistent across
them. All 3 tasks are simulation-based, and are designed to
test how well humans can use models to accomplish goals
suggested by the interpretability literature. Since they mea-
sure how well people can answer questions by simulating
the model’s predictions, they do not require people to bring
in outside knowledge, allowing us to rigorously control for
participants’ preexisting knowledge and assumptions.

Simulation. In this task, we asked people to predict the
system’s recommendation given a model and an input ex-
ample. The task requires participants to step through the
model’s computations with the example in order to produce
the same prediction as the model. This task directly mea-
sures the notion of human-simulatability described by Lip-
ton (2016). Additionally, this was used as a measure of inter-
pretability in Poursabzi-Sangdeh et al. (2017). See Figure 1
for a screenshot of the simulation task.

Verification. In this task, we asked participants to ver-
ify whether the system’s prediction is consistent with a rec-
ommended prediction, given a model and an input example.
This task measures how well people can verify whether the
prediction of a machine learning system corresponds to a
suggested prediction. This corresponds to a scenario where
the user may want to verify that the prediction given by
the machine learning system matches their expectation, and
when it does not, to understand why. See Lage et al. (2019)
for a screenshot of the verification task.

Counterfactual. In this task, we asked participants to de-
termine whether the correctness of a recommended predic-
tion would change if one of the features in the input example
were replaced with a different feature. This task measures
how well people can detect a change in the prediction based
on a small change in one of the features of the input exam-
ple. This task addresses the question of using explanations
of machine learning systems to understand why an outcome
happened for a specific example in question and not other

examples. Miller (2019) argues, based on insights from the
social sciences, that effective explanations involve this kind
of contrastive reasoning. More concretely, this task corre-
sponds to a setting where a user wants to verify whether a
model is making predictions fairly by checking whether the
same prediction would have been made for a person of a dif-
ferent race or gender. See Lage et al. (2019) for a screenshot
of the counterfactual task.

Domains

A second source of context that may influence what makes
a model interpretable is the domain. We further investigate
our second research question of whether there are consis-
tent underlying principles that can be used to develop in-
terpretable models by running the same experiments in two
different domains: a low-risk recipe domain, and a high-risk
clinical domain. These two different settings were designed
to elicit very different impressions of the stakes of the ma-
chine learning model’s prediction; a mistake in the recipe
domain is only unpleasant, while a mistake in the clinical
domain could be fatal. We used aliens as the object of study
in both domains, which allowed us to control for peoples’
priors about what makes a good recipe or prescription.

Recipe. Study participants were told that the machine
learning system had studied a group of aliens and deter-
mined each of their individual food preferences in various
settings (e.g., weekend or laughing). This resembles a prod-
uct recommendation setting where the participants are cus-
tomers wishing to inspect a recommendation given by the
system. Here, the inputs are settings, the outputs are groups
of food, and the recommendations are specific foods.

Clinical. Study participants were told that the machine
learning system had studied a group of aliens and deter-
mined personalized treatment strategies for various symp-
toms (e.g., sore throat). This resembles a clinical decision
support setting where the participants are doctors inspect-
ing the treatment suggested by the system. Here, the inputs
are symptoms, the outputs are classes of drugs, and the rec-
ommendations are specific drugs. We chose drug names that
start with the first letter of the drug class (e.g., antibiotics
were Aerove, Adenon and Athoxin) to replicate the level of
ease and familiarity of food names.

Methods

Conditions

For each type of complexity, we created a set of conditions
based on the experimental levels defined as follows:

V1: Model Size. We manipulated the length of the deci-
sion set (varying between 2, 5, and 10 lines) and the length
of the output clause (varying between 2 and 5 terms).

V2: Cognitive Chunks. We manipulated the number of
cognitive chunks introduced (varying between 1, 3 and 5),
and whether they were embedded into the decision set (im-
plicit) or abstracted out into new cognitive chunks and later
referenced by name (explicit).

V3: Repeated Terms. We manipulated the number of
times the input conditions appeared in the decision set (vary-
ing between 2, 3, 4 and 5).
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For each type of complexity, we hand-generated one de-
cision set for each combination of the levels. For example,
we created a decision set with 5 lines and 2 output terms
for V1, and a decision set with 3 implicit cognitive chunks
for V2. We used each decision set 3 times—once with each
task—with the terms randomly permuted to prevent mem-
orization. The logical structure of all the conditions were
identical across the 2 domains. See Lage et al. (2019) for
additional details about the conditions.

Metrics

We considered 3 metrics. Response time was measured as
the number of seconds from when the task was displayed
until the subject hit the submit button on the interface. Ac-
curacy was measured as whether the subject correctly iden-
tified output consistency for verification questions, the pres-
ence or absence of a change in recommendation correctness
under the perturbation for counterfactual questions, and any
combination of correct categories for simulation questions.
Subjective Difficulty of Use was measured on a 5-point Lik-
ert scale. After submitting their answer for each question,
but before being told if their answer was correct, the partic-
ipant was asked to subjectively rate how difficult it was to
use the model to answer the question on a scale from 1 to 5
where 1 was very easy to use, 3 was neutral and 5 was very
hard to use.

Procedure

We ran an experiment for each of the 3 types of complexity
in each of the 2 domains for a total of 6 experiments. Each
experiment consisted of the conditions defined in the Condi-
tions subsection tested once each for 18 trials in V1 and V2
and 15 trials in V3 (the different types of complexity have
different numbers of levels associated with them).

Each participant took exactly one experiment. Thus, the
tasks and levels of the type of complexity were within-
subjects variables. Keeping the latter within-subjects helped
us reduce variance due to the abilities of each subject for
the key comparisons in our results. The domain and type of
complexity were kept as between-subjects variables because
their inclusion in a single experiment would have resulted in
a prohibitively long study for Amazon Mechanical Turk.

The question order was block-randomized for every par-
ticipant: participants were always shown a verification, then
a simulation, then a counterfactual question, but which lev-
els they came from was randomly determined. This allowed
us to reduce variance due to learning effects, had our analy-
sis been dominated by subjects who randomly ended up with
all of the simulation questions at the beginning, for example.

Participants

We recruited 150 subjects for each of our 6 experiments
through Amazon Mechanical Turk (900 subjects all to-
gether) with each experiment posted successively between
July and December 2018.1 Participants were paid $3 for

1We argue that recruiting subjects in this manner is valid since
we do not make direct comparisons between experiments.

completing the study and experiments took 19.42 minutes on
average. This study was approved by our institution’s IRB.

Participants were told that their primary goal was accu-
racy, and their secondary goal was speed. This emulates a
scenario where the user must make correct decisions about
whether to trust the system and speed is only secondarily im-
portant to increase efficiency. Additionally, our pilot studies
(see Lage et al. (2019)) found that when participants were
instructed to answer quickly or under time pressure, they
preferred to guess rather than risk not answering. They were
instructed that each question involved a different alien to dis-
courage them from generalizing between questions.

A major challenge with recruiting participants from Ama-
zon Mechanical Turk is that it is typically assumed that a
user would first have a reasonable amount of training to use
the system (see e.g. Lakkaraju, Bach, and Leskovec, 2016;
Wu et al., 2018 who assume the users of interpretable sys-
tems are domain experts). Doing such an extensive training
was not realistic in this setting, so we used the following
strategy: First, participants were given a tutorial on each
task and the interface. Next, participants were given a set
of three practice questions, one drawn from each task. If
they answered these correctly, they could move directly to
the experiment, and otherwise they were given an additional
set of three practice questions. We then excluded partici-
pants from the analysis who did not get all of one of the
two sets of practice questions correct. This is similar to Hut-
ton, Liu, and Martin (2012), who filtered participants in a
crowd-sourced evaluation of classifier interpretability who
got many questions wrong. While it is possible that those we
excluded could have learned the task with more training, we
used this process to filter for participants who already had
a basic competency in manipulating logic structures. (Not
doing such an exclusion would have added noise from par-
ticipants for whom decision sets were already extremely for-
eign.)

Finally, we excluded an additional 6 participants who took
more than 5 minutes to answer a single question under the
assumption that they got distracted during the experiment.
Table 2 describes the total number of participants that re-
mained in each experiment out of the original 150 partici-
pants. A statistical analysis determined that the populations
of participants included in the final results were not signifi-
cantly different between the domains. See Lage et al. (2019).

Experiment Clinical Recipe
Model Size (V1) 69 59
Cognitive Chunks (V2) 55 62
Repeated Terms (V3) 52 70

Table 2: Number of participants who met our inclusion cri-
teria for each experiment.

Most participants were from the US or Canada, were less
than 50 years old and held a Bachelor’s degree. This may
bias our results to people of this specific background. See
Lage et al. (2019) for a more detailed breakdown.
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Response Time Accuracy Subjective Difficulty
Clinical Recipe Clinical Recipe Clinical Recipe

Weight P-Value Weight P-Value Weight P-Value Weight P-Value Weight P-Value Weight P-Value
# Lines (V1) 01.17 <.0001 01.01 .0032 0.03 .2360 0.006 .8420 0.05 <.0001 0.05 <.0001
# Terms (V1) 02.35 <.0001 01.57 .0378 -0.14 .0110 -0.12 .0771 0.12 <.0001 0.12 <.0001
Ver. (V1) 10.50 <.0001 04.11 .1210 0.93 0.0007 0.48 .1740 0.13 .0187 0.17 .0048
Counter. (V1) 21.00 <.0001 13.70 <.0001 -1.41 <.0001 -1.70 <.0001 1.01 <.0001 1.04 <.0001

# Chunks (V2) 06.04 <.0001 05.88 <.0001 -0.04 .4200 -0.04 .4160 0.18 <.0001 0.25 <.0001
Implicit (V2) -13.00 <.0001 -07.93 0.0005 -0.25 .0930 -0.18 .2220 -0.23 <.0001 -0.12 .0171
Ver. (V2) 16.30 <.0001 15.40 <.0001 0.65 .0008 0.53 .0090 0.07 .3050 0.09 .1400
Counter. (V2) 08.56 .0265 19.90 <.0001 -0.37 .0294 -0.77 <.0001 0.29 <.0001 0.52 <.0001

# Rep. (V3) 01.90 .2470 00.88 .4630 0.02 .8040 -0.05 .5240 0.06 .0373 0.07 .0041
Ver. (V3) 13.00 .0035 13.70 <.0001 0.15 .5960 0.20 .3710 0.03 .6640 0.17 .0090
Counter. (V3) 20.30 <.0001 16.60 <.0001 -1.07 <.0001 -0.67 0.0007 0.89 <.0001 0.77 <.0001

Table 3: Significance tests for each factor for normalized response time, accuracy and normalized subjective difficulty of use. A
single linear regression was computed for each independent variable for each of V1, V2, and V3 in each domain. Coefficients
for verification and counterfactual tasks should be interpreted with respect to the simulation task. Highlighted p-values are
significant at α = 0.05 with a Bonferroni multiple comparisons correction across all tests of all experiments.

Experimental Interface

Figure 1 shows our interface for the simulation task in V3
in the clinical domain. The observations section refers to
the input example. The preferences section contains a de-
scription of the model’s internal prediction logic. Finally,
the disease medications section contains a dictionary defin-
ing concepts relevant to the experiment (for example, which
medications are antibiotics). The interface is identical in the
recipe domain with the medications replaced with food and
the medical observations replaced with non-medical settings
(e.g. weekend, laughing). The verification and counterfac-
tual questions contain an additional recommendation sec-
tion below the observations section that contains a suggested
prediction. The verification question asks the user whether
the suggested prescription treats the alien symptoms in the
medical domain, or whether the alien is satisfied with the
suggested meal in the recipe domain. The counterfactual
question additionally includes a replacement for one of the
features in the observations section (for example, what if
‘hoarse’ were replaced with ‘anxious’), and asks whether
the effectiveness of the treatment or the alien’s satisfaction
with its meal would change. The choice of location for all
elements was chosen based on pilot studies. See Lage et al.
(2019) for a description of these and additional details about
the interfaces for the verification and counterfactual tasks.

Analysis

We computed linear regressions for the continuous outputs
(response time, subjective difficulty of use) and logistic re-
gressions for binary output (accuracy) to estimate the effect
of each type of complexity and task on the outcome variable.
We report p-values as significant that are less than α = 0.05
after a Bonferroni multiple comparisons correction across
all tests of all experiments. Response time for each con-
dition was computed only for subjects who correctly an-
swered the question. Response time and subjective difficulty
of use were normalized across participants by subtracting
the participant-specific mean. If an experiment had more
than one independent variable—e.g., number of lines and

terms in output—we performed one regression with both
variables. We included whether the task was a verification
or a counterfactual question as binary variables that should
be interpreted with respect to the simulation task. Regres-
sions were performed with the statsmodels library (Seabold
and Perktold 2010) and included an intercept term.

Results

We report the results of the statistical analysis in Table 3 with
significant p-values highlighted in bold, and we visualize the
results from the recipe domain in Figure 3. See Lage et al.
(2019) for a visualization of the results from the clinical do-
main. Our main findings are: greater complexity generally
results in longer response times; adding cognitive chunks
had the clearest impact, while the effect of model size was
less clear, and repeated terms had no obvious effect; the re-
sults are consistent across domains and tasks.

Greater complexity results in longer response times,
with the most marked effects for cognitive chunks, fol-
lowed by model size, then number of variable repetitions.
Unsurprisingly, adding complexity generally increases re-
sponse times, suggesting that regularizing these types of
complexity can be effective for increasing interpretability.
In Figure 3, we see that increasing the number of lines, the
number of terms within a line, adding new cognitive chunks,
and repeating variables all show trends towards increasing
response time. Table 3 reports which of these trends are sta-
tistically significant: the number of cognitive chunks and
whether these are implicitly embedded in the decision set
or explicitly defined had a statistically significant effect on
response time in both domains, the number of lines and the
number of output terms had a statistically significant effect
on response time only in the recipe domain, and the number
of repeated variables did not have a statistically significant
effect in either domain.

The magnitude of the increase in response time also varies
across these factors. (Note that the y-axes in Figure 3 all
have the same scale for easy comparison.) Introducing new
cognitive chunks can result in overall increases in response
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V1 - Model Size V2 - Cognitive Chunks V3 - Repeated Terms

Figure 3: Accuracy, response time and subjective evaluation for all experiments in the recipe domain. Vertical lines signify
standard errors. See Lage et al. (2019) for the corresponding set of figures in the clinical domain.

time on the order of 20 seconds, whereas increases in length
have effects on the order of 10 seconds. Increases in variable
repetition has an effect of at most a few second.

Finally, we found that participants had significantly
longer response times when new cognitive chunks were
made explicit rather than implicitly embedded in a line. This
ran counter to our expectations since users had to process
fewer but longer lines with implicit cognitive chunks com-
pared to the same chunks defined explicitly.

Consistency across domains: Magnitudes of effects
change, but trends stay the same. In all experiments, the
general trends are consistent across both the recipe and clin-
ical domains. Sometimes an effect is weaker or unclear, but
never is an effect clearly reversed. There were 21 cases of
factors that had a statistically significant effect on a depen-
dent variable in at least 1 of the 2 domains. For 19 of those,
the 95% confidence interval of both domains had the same
sign (i.e., the entire 95% confidence interval was positive for

both domains or negative for both domains). For the other
2 (the effect of verification questions on accuracy and re-
sponse time for experiment V1), one of the domains (clini-
cal) was inconclusive (interval overlaps zero).

Consistency across tasks: Relative trends stay the
same, different absolute values. The effects of different
types of complexity on response time were also consistent
across tasks. That said, actual response times varied signif-
icantly between tasks. In Figure 3, we see that the response
times for simulation questions are consistently low, and the
response times for counterfactual questions are consistently
high (statistically significant across all experiments except
V2 in the Recipe domain). Response times for verification
questions are generally in between, and often statistically
significantly higher than the easiest setting of simulation.

Consistency across metrics: subjective difficulty of use
follows response time, less clear trends in accuracy. So
far, we have focused our discussion on response time. In Ta-
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ble 3, we see that subjective difficulty of use largely repli-
cates the findings of response time. We see that simulation
questions are significantly easier for participants to answer
than counterfactuals. We also see a statistically significant
effect of the number of cognitive chunks, model length, and
number of output terms. The finding that implicit cognitive
chunks are less difficult to use than explicit cognitive chunks
appeared only in the recipe domain.

Unlike response time and subjective difficulty of use,
where the trends were significant and consistent, the effect
of different types of complexity on accuracy was less clear.
None of the effects were statistically significant, and there
are no clear trends. We believe that this was because we
asked participants to be accurate primarily and fast secon-
darily, effectively pushing any effects into response time.
But even when participants were coached to be accurate,
some tasks proved harder than others: counterfactual tasks
had significantly lower accuracies than simulation tasks.

Discussion
Observation: Consistent patterns provide guidance for
the design of interpretable machine learning systems. In
this work, we found consistent patterns across tasks, and
domains for the effect of different types of decision set
complexity on human-simulatability. These patterns suggest
that, for decision sets, the introduction of new cognitive
chunks or abstractions had the greatest effect on response
time, then model size (overall length or length of line), and
finally there was relatively little effect due to variable repe-
tition. These patterns are interesting because machine learn-
ing researchers have focused on making decision set lines or-
thogonal (e.g. Lakkaraju, Bach, and Leskovec, 2016), which
is equivalent to regularizing the number of variable repeti-
tions, but perhaps, based on these results, efforts should be
more focused on length and if and how new concepts are
introduced. This knowledge can help us expand the faith-
fulness of the model to what it is describing with minimal
sacrifices in human ability to process it.

Observation: Consistency of the results across tasks
and metrics suggests studies of interpretability can be
conducted with simplified tasks at a lower cost. While the
relative ordering of the types of complexity was the same for
both the simulation and counterfactual tasks, the counterfac-
tual tasks were more difficult for people to answer correctly.
This suggests that we may be able to simplify human-subject
studies by using simpler tasks that capture the relevant no-
tions of interpretability. To measure human-simulatability,
for example, it seems that the simulation task can be used
in future experiments to obtain the same results at a lower
cost. A second possibility for simplifying tasks is to rely
on people’s subjective evaluations of interpretability. In our
results, the correlation between peoples’ subjective evalua-
tion of difficulty and the more objective measure of response
time suggests that this can be done. However this should be
followed up since it may be an artifact of running this study
on Amazon Mechanical Turk where faster response times
correspond to higher pay rates.

Future Work: Using Amazon Mechanical Turk to
evaluate interpretability requires additional study. While

simplifying tasks is one possible way to make interpretabil-
ity studies on Amazon Mechanical Turk more effective, find-
ing other ways to do so remains an open question. In our ex-
periments, the criteria we used to exclude participants who
were not able to complete the tasks effectively at the begin-
ning of the experiment excluded over half of the participants.
This is likely because the models and tasks were challenging
for laypeople since they were designed with expert users in
mind. Whether and how Amazon Mechanical Turk studies
should be used to evaluate notions of interpretability associ-
ated with domain experts warrants future study.

Future Work: The unexpected preference for implicit
cognitive chunks should be unpacked in future experi-
ments. An unexpected finding of our study that warrants
further investigation is that implicit cognitive chunks were
easier for people to process than explicit ones. This could
be because explicitly instantiating new concepts made the
decision set harder to scan, or because people prefer to re-
solve the answer in one long line, rather than two short ones.
Follow-up studies should investigate whether this finding
persists when the familiarity of the concept or the number
of times it is used within the decision set increases. These
insights could guide representation learning efforts.

Limitations. There are several areas of our experiment
design that future studies could explore further. Whether in-
terfaces for interpretable machine learning models can be
optimized to present the same information more effectively
is an open question. In this project, we fixed ours to some-
thing reasonable based on pilot studies, but this warrants fur-
ther study. Future studies measuring interpretability with hu-
mans should also explore whether the results of this study
generalize to other classes of models–logic-based or oth-
erwise, as well as whether certain model classes are inher-
ently more interpretable or are preferred in certain cases. Fi-
nally, while this work relied on a set of synthetic tasks build-
ing on the notion of human-simulatability, future work will
need to connect performance on these basic tasks to real-
world tasks, like finding errors or deciding whether to trust
a model, that are more difficult to run in controlled settings.

Conclusion

In this work, we investigated the effect of different types
of complexity for decisions sets on the interpretability of
the models, measured through three different tasks based on
human-simulatability. Our results suggest that the number
of cognitive chunks, then the model size are the most impor-
tant types of complexity to regularize in order to learn in-
terpretable models, while the number of variable repetitions
has relatively little effect. These results are consistent across
tasks and domains, which suggests that there are general de-
sign principles that can be used to guide the development of
interpretable machine learning systems.
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