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Abstract 

Many humanitarian organizations have been organizing data relating to the current Ebola epidemic in West Africa.  These efforts 

include not only collecting statistics on Ebola cases and deaths, but also consolidating information about the hardest hit 

countries—Liberia, Guinea, and Sierra Leone—at a sub-regional level.  During HackEbola with Data, participants were tasked to 

use this data to address the following question: What factors are affecting the regional and temporal evolution of the Ebola 

epidemic in West Africa?  We report on both the specific findings from HackEbola with Data and lessons learned on using such a 

format to address complex data analysis needs in future crises. 
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1. Motivation and objective 

Many humanitarian organizations have been collecting, consolidating, and making public data relevant to the 

Ebola epidemic in West Africa.  Data aggregators, such as the Humanitarian Data Exchange and the Open 

Humanitarian Data Repository, have not only made available sub-regional time-series of Ebola cases and counts 

from various organizations, but they are also a source for a variety of other sub-regional characteristics, such as 

socioeconomic indicators, food prices, and infrastructure types.  These additional sources create the opportunity to 

 

 
* Corresponding author. 

E-mail address: finale@seas.harvard.edu 

Comment [S1]: Elsevier to update with volume 

and page numbers. 



2 Author name / Procedia Engineering 00 (2015) 000–000 

go beyond standard models that consider only case and fatality rates; they allow us to explore what factors may be 

affecting the outbreak.  While understanding these factors may result in actionable insights, analyzing such complex 

data in a timely manner is a challenging task. 

 

Hackathons are a popular event format, especially in computer science and engineering fields.  A hackathon is a 

short event, usually taking place over a day or a weekend, usually centered around an open-ended goal.  These goals 

can be very broad, such as creating interesting smart-phone applications, or more focused, such as building 

classification models for biological phenotypes based on high throughput or genomics data.  While there may be 

prizes involved, participants are often drawn to hackathons as a way to do some technical work in a positive, high-

energy atmosphere.  In this paper, we describe the main findings from HackEbola (with Data!), a weekend-long 

event to assist in the Ebola data-analysis effort through the following question: 

 

What factors may be affecting the regional and temporal evolution of the Ebola epidemic in West Africa? 

 

We also discuss the use of a hackathon format to perform challenging data-analyses in a timely manner.  

HackEbola (with Data!) created an opportunity for talented data scientists to set aside a focused period of time to 

address this important data-analysis question.  It also allowed for many analysis approaches to be tested quickly.  

Harvard University and the University of Massachusetts at Amherst both hosted local events, and many others 

participated remotely.  qDatum.io provided the data management.  Over the hackathon weekend, there were 2395 

data downloads from 189 unique users.  Over 300 people registered for the event, and 16 teams submitted analyses. 

 

The objective of this paper is two-fold.  First, we describe and discuss the use of a hackathon format for 

addressing pressing data analysis needs (Section 2).  Next, we detail our technical outcomes, as well as the data 

sources, analysis approaches, and limitations (Section 3).  We conclude in Section 4. 

2. The hackathon format: Rationale and execution 

Hackathons are a popular format, and there are many guides that describe how to run one.  Here we focus on 

hackathons as a means to connect humanitarian organizations with data analysis needs to a community of highly-

qualified data experts that may not otherwise know of them. 

2.1. Background: Methods for connecting volunteer analysts to important needs 

There exist many ways to find volunteers to assist with data analyses.  Organizations such as Statistics Without 

Borders, connect specific statisticians with specific clients.  The vetting process ensures a strong connection 

between a qualified statistician and a legitimate client.  However, the client only has a few people assisting with the 

data analysis; this format may not be ideal for open-ended questions where one may wish to leverage the creativity 

of a larger group of data experts.   Other organizations such as Kaggle or DrivenData issue public challenges or 

competitions.  These allow a much broader community of people to participate.  Such challenges are designed so 

that the merit of any solution can easily be computed and compared to other solutions; participants are often 

motivated by prizes and the competitive nature of the challenge.  However, requiring that solution quality to be 

easily quantified—and ensuring that mechanisms (such as data obfuscation) are in place to prevent cheating—can 

limit the types of questions that are suitable for such a format.  Both the consulting approach (e.g., SWB) and the 

competitive approach also typically occur over a longer period of time (weeks to months).  This means that 

participants have more time to think about ideas that might be relevant to the client or challenge, and it also means 

that their energy devoted to the project is more diffuse. 

 

In contrast, a hackathon involves a group of people working in a shared space toward some technical objective in 

a short period of time (usually a day or a weekend).  Working in a shared space generates a shared energy, and 

emphasis is placed on creating a positive, high-energy working atmosphere.  By limiting the duration of the event, 

participants can usually commit to an intense period of focused work toward the technical objective.    The 
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specificity of this objective varies depending on the event: some hackathons might simply task participants to create 

an interesting smart-phone application, while others may task participants with a much more focused objective, such 

as building tools to analyze a specific set of high-throughput genomics data.  While prizes may be awarded, at its 

core a hackathon is a time for participants to get together and have fun “hacking.”  Participants often take part for 

the experience itself, rather than a prize or other reward; they are popular among computer scientists, engineers, and 

other non-domain experts who might just want to spend some time thinking and working on an interesting problem.  

Finally, hackathons differ from other short duration events, such as crowd-sourced data-labeling or processing 

efforts, in that they are typically more open-ended and expect some kind of creativity from the participants. 

2.2. Rationale for the hackathon format for HackEbola with Data 

There are many efforts to model the temporal evolution of the Ebola outbreak, and our goal was to find a way to 

contribute, rather than duplicate, the epidemiological analyses already underway.  We chose a hackathon format in 

part because it would attract a broad variety of thinkers—data experts from all fields—to think creatively about new 

analyses to try.  The hackathon format provided an excellent way for testing these varied modelling assumptions 

quickly.  For example, teams varied in how they processed and summarized the spatially-explicit time series of 

cases and deaths; one could take the results that were consistent across these assumptions for closer scrutiny. 

 

HackEbola (with Data!) was focused on producing insights; our non-competitive atmosphere encouraged 

participants to post cleaned up versions of the data and preliminary results for others to use and verify.  Working in a 

shared space meant that participants could immediately disseminate their issues and insights.  The non-competitive 

nature of the event also allowed participants to focus on more general questions like how and what rather than only 

on prediction, which are crucial in data exploration. Discussion of information and ideas between teams throughout 

the event also allowed greater efficiency by avoiding redundancy in project types and sharing solutions to common 

sub-problems (e.g., the need to mine basic demography parameter values). 

 

Finally, HackEbola (with Data!) engaged data scientists at all levels of experience and raised awareness of the 

needs and challenges of analyzing data associated with a humanitarian crises.  Several teams reported both that they 

had learned valuable lessons from HackEbola (with Data!) and that the experience had made them more likely to 

participate in similar events in the future. 

2.3. Event execution 

Prior to HackEbola (with Data!). Our co-organizers and data management partner qDatum.io created feeds of 

public data from Humanitarian Data Exchange and the Open Humanitarian Data Repository.  They also ensured that 

the sub-regional administrative codes were consistent across the various data sets and mapped any positions that 

were included as latitude-longitude values to administrative regions.  This data management and pre-processing was 

critical to the success of the event, as the data could then be directly imported into a variety of analyses tools.  The 

consistent geographic identifiers allowed participants without any geography background (the majority of the 

participants) to easily link across the different data tables.  We also provided advance background reading and video 

media on Ebola–valuable for data analysts without much epidemiology experience–as well as early access to the 

data. 

 

Hacking. HackEbola (with Data!) began with a Friday evening kick-off dinner, during which participants were 

introduced to the data sets and the hackathon objectives (detailed in Section 3).  Colby Wilkason, a crisis 

management expert from the Red Cross, gave a presentation on their needs.  Participants formed teams through 

ChallengePost and began work.  Saturday was also devoted largely to work, with meals and snacks being provided 

by the event sponsors.  While there was a formal update session during lunch, a projection screen and microphone 

were available throughout the day for teams to informally announce insights and questions.  Teams also used 

Dropbox, Google documents, GitHub, and Challengepost for online collaboration and analysis.  Technical staff with 

knowledge about Ebola, disease modeling and data analysis helped guide participants with computational but not 

epidemiological knowledge toward interesting questions and around obstacles. In general, we found it useful for 
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participants and technical volunteers with relatively unique areas of specialty to introduce themselves during the 

event so that teams knew to whom to refer questions which required special training or experience – fields covered 

by our participants included most commonly statistics, data analysis and computer science; the fields covered by our 

technical team included these areas as well as well as geography, artificial intelligence, epidemiology, theoretical 

ecology, and Ebola specifically.  A logistics engineer specializing in disaster relief with Oxfam (who had assisted in 

relief efforts following the 2010 Haiti earthquake) also volunteered to provide additional context around emergency 

and crisis management processes. 

 

Concluding the event. Teams presented their findings to each other and representatives from the Haitian Health 

Ministry at lunch on Sunday.  The Haitian Health Ministry representatives reported that attending HackEbola (with 

Data!) was valuable not only because the presentations were relevant to their own emergency preparedness 

planning, but also because they saw how such an event could be used to quickly gather insights from complex data.  

The representatives also gave practical feedback to teams based on their experience in crisis response, medical 

treatment, and psychological-sociological factors.  Through these presentations, teams also gained experience in 

conveying their results to humanitarian crisis experts. 

2.4. Observations for future events 

A data-analysis hackathon such as HackEbola (with Data!) lies in an interesting niche. Unlike broader 

hackathons, where participants come together to brainstorm (any, not necessarily involving data analysis) interesting 

solutions to a problem (such as HackEbola @NYU), HackEbola (with Data!) was focused around a very specific 

data analysis objective.  For this kind of hackathon to be successful, one must understand the demographic that such 

an event tends to attract: most of the participants were data experts of some kind–computer scientists, machine 

learning experts, statisticians and biostatisticians.  They had deep expertise in computational problems, statistical 

theory, and working with complex-structured data.  However, very few had experience in geography, epidemiology, 

and crisis management.  To structure an event around the strengths of this type of participant, we emphasize the 

need for: 

 Clear, appropriately scoped, and open-ended objectives. Since participants are unlikely to know much about the 

specific domain, the challenge must guide participants toward the interesting questions. However, it should be 

sufficiently open-ended regarding the methodologies so that participants can apply their deep data expertise to 

the problem—a hackathon is not an appropriate format for a standard data analysis task with an obvious 

methodological approach.  HackEbola (with Data!) centered around a concrete prediction and association-mining 

task, without specifying how the objective should be achieved. 

 Vetted, well-formatted data. While data scientists are experts at working with complex data, they are not 

necessarily experts in other areas relevant to crisis management (e.g. geography). To leverage their strengths in 

data analysis, the data must already be easily machine-readable into tables (several teams contacted HackEbola 

(with Data!) in advance for the table schema).  These data tables must have consistent indices on which to link 

them (ensured by qDatum.io).  Finally, a one or two day event leaves little time for outside research and 

remedying data irregularities.  Teams will often be unacquainted with alternate data sources, and even when 

alternate sources are easily available, there may not be time to process them.  Thus, one must ensure that data of 

sufficient quality and quantity to address the hackathon objective is available prior to the event. 

 Technical staff. In addition to standard event logistics (i.e., providing meals, microphones, and electronic outlets 

for laptops), it was important that technical staff with Ebola, crisis, and epidemiological expertise were present. 

These staff members helped familiarize teams with data pre-processing techniques, modelling assumptions, and 

alternative data sources that were relevant to the specific domain. 

 Attendance and investment by stakeholders. For data experts unfamiliar with the specific domain, it is both 

extremely educational and motivating to have stakeholders present at the event.  Having a representative from the 

Red Cross open the event helped make the challenge real; likewise, it was valuable for teams to be able to discuss 

their approaches with the Haitian Health Ministry representatives.  Similar investment from other organizations 

would have greatly increased the impact of the event: at the end of the day, participants volunteered their time 
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because they believed that organizations would use the outputs of their analyses.  While an event summary was 

circulated after the event among Statistics without Borders, the Red Cross, and Digital Humanitarian Network, 

the investment shown by attending the event increases motivation and can assist teams in prioritizing their 

analyses toward the most pressing and promising objectives. 

3. Technical Outcomes from HackEbola with Data 

3.1. Task 

HackEbola (with Data!) focused on the following question: What factors may be affecting the regional and 

temporal evolution of the Ebola epidemic in West Africa?  Specifically, teams were tasked to: 

 Train a model or mine associations between the sets of cases and death time-series and covariates for data 

through October 1, 2014. 

 Test that model (or the strength of the discovered associations) on data from October 2, 2014 to November 20, 

2014. 

 Report (a) how well the model performed (prediction accuracy) and (b) any factors that might be valuable in 

assisting with decisions to contain the outbreak.  Teams were also asked to discuss limitations due to data quality 

and modeling assumptions. 

3.2. Data 

Most participants focused on publicly available datasets from the Humanitarian Data Exchange and the Open 

Humanitarian Data Repository.  These included sub-regional time series of Ebola cases and deaths (34 regions 

across Liberia, Sierra Leone, and Guinea) from a variety of organizations, including the WHO and the respective 

national governments.  The data also included sub-regional information such as the locations of Ebola treatment 

centers (sometimes with opening and closing dates), educational facilities, police stations, markets, and places of 

worship.  Also provided where information about movement restrictions, population and food prices, and 

socioeconomic indicators including international wealth index scores; mean years of education for males and 

females; urbanicity; proportions of the population involved in various occupations; living quality indicators such as 

house size, available water, and electricity; and age proportions.  These data were pre-processed by qDatum.io to 

have consistent administrative region identifiers across all of the tables.  These data are available at: 

 

http://www.qdatum.io/public-sources 

 

Several teams shared processed versions of these data, as referenced in the Appendix. 

3.3. Strategy 

To assess what factors may be explaining inter-regional variation, most teams took the following approach: 

 Defining Dependent Variables. Most teams processed the time-series in each region into a set of summary 

statistics, such as total cases, total fatalities, case fatality rate (CFR), transmission rate (TR), cases per capita, and 

fatalities per capita. A variety of assumptions were used to derive these summary statistics: simple counts, 

exponential and logistic models, and variations on SIR models. 

 Collecting Independent Variables. While most teams focused on a standard of regional indicators, some teams 

built additional variables such as the effect of recent civil wars.  One team incorporated a model of movement 

patterns into the standard SIR model using the number of roads between districts. The resulting model 

approximately consisted of having a set of SIR compartments for each region and having population flows 

http://www.qdatum.io/public-sources
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between (compartments of different) regions. Though the model had high prediction errors, forming the model in 

this way might assist with future efforts. 

 Analysis. Teams used a variety of methods to compare the dependent and independent variables, including 

correlation computations, generalized linear regression, and other machine learning approaches.  Teams hoped to 

discover factors that could potentially be modified by public health programs—such as movement restrictions 

and ETU locations.  While a weekend was not a long enough time for an in-depth analysis, promising models or 

factors that seemed to be highly predictive could be used to initiate follow-up analyses. 

 

More generally, some teams also investigated other factors, such as the change in food prices in the region and 

mapping accessibility to current Ebola treatment units (ETUs). 

3.4. Main Findings 

As published in many sources, all teams found that standard SIR models could fit national-level data well.  

However, data at sub-national levels contained many more irregularities.  It is important to note that many teams did 

not find anything significant in the data, and even those trends that were statistically significant must be treated with 

extreme caution due to the biases in the data (more details in Limitations and Discussion section).  Combined with 

the short nature of the event, which allowed for less time for thorough statistical analysis, in this section we only 

report the main trends and not specific correlation coefficients or p-values.  For specific details reported by various 

teams, we instead point the readers to the hackathon gallery at: 

 

http://hackebolawithdata.challengepost.com/ 

 

Individual Correlations.  Following urbanicity, the most consistently reported covariate was age and country. 

Several teams also noted that the age distribution seemed to have an impact on the growth rate: rates were higher if 

the number of adults (20-60 years) was higher and lower among populations with more children (0-9 years) or 

seniors (over 60 years).  This effect may be because the adult population is more mobile than young children or the 

elderly.  Many teams also found that the country (or almost equivalently, the latitude) was one of the most dominant 

effects when predicting the growth rate, suggesting important country-specific distinctions. 

 

When regressed individually, several teams found that urbanicity and level of education seemed to be positively 

correlated with case and fatality rates; most likely these variables may be a proxy for populations that are more 

likely to be better reported. Similarly, various teams found increased case and fatality rates for higher floor quality, 

cell phones, and flush toilets (and reduced rates for poor floors and poor toilets). While these teams also found 

increased case and fatality rates among sub-national regions with bad water and small houses, it seems that these 

correlation analyses are confounded by which areas have better reporting (i.e., those that are more urban and 

wealthy).  These indicator data were also collected over a span of a decade prior to 2014; thus they may also be 

dated. 

 

Combined Regressions.  Teams that performed combined regressions also found that the urbanicity and education 

variables had the strongest effects.  One team found that higher education had a protective effect, as did electricity.  

The Poisson regression employed by that team predicted observed cases after Oct. 1 with over 90% accuracy; they 

later presented a polished version of their results at a training session at the World Health Organization (WHO).  

However, teasing apart colinearities and confounds is challenging; for example, this team also found that having tap 

water had a negative effect. 

 

In general, the use of a combination or overlap (e.g., in Venn Diagram terminology, the intersection) or 

comparison/contrast of team results in order to predict the most robust results which should then through follow-up 

be further checked for their potential utility to decision-makers (such as public health or crisis programs and 

responders) is meant to serve as an analogy to the public health strategy of combining multiple epidemiology 

models in order to make infectious disease control decisions; for example, Keeling and Rohani in their modern text 

http://hackebolawithdata.challengepost.com/
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of Modeling Infectious Diseases In Humans and Animals, 2008, (this book generally serves as a modern sequel to 

the classic summary text Infectious Diseases of Humans by Anderson and May) describe the possible advantages of 

combining multiple models and statistical methods and its role in the control of the foot-and-mouth disease 2001 

United Kingdom outbreak. 

 

Other directions.  Some teams decided to perform other data analyses such as monitoring changes in food prices 

or mapping which areas are near ETUs.  These are referenced in the Appendix. 

3.5. Limitations and discussion 

In modeling the Ebola outbreak at a sub-national level, teams were fundamentally limited by the quality of the 

data: 

 Irregularities in Case Data. All participants reported many irregularities in the case data. Case data had many 

jumps reflecting the fact that the data indicated when cases were reported, not when cases occurred. In some 

regions, the number of deaths exceeded the number of cases—which could be explained by movement between 

regions or gaps in case reporting. Summing cases across regions did not produce numbers that matched national-

level statistics. Cases were reported by five different sources with widely varying values; participants had to 

make difficult choices about which sources to use or how to combine sources.  Different time periods had data at 

different levels of regional and temporal granularity. 

 Granularity of the Data. Because of the many irregularities in the case data, most teams focused on deriving a 

few summary statistics of the sub-national time series (in particular, it was impossible to ascertain whether a 

spike or dip in cases was due to reporting or the effect of an intervention).  Thus, the multi-month time series 

were collapsed into 34 regional data points. 

 Time of Covariate Collection, Missingness. Teams focused on food prices noted that prices were often missing 

during the outbreak, and the dates when ETUs were opened or closed were also often missing. Covariates 

(socioeconomic status, education, etc.) were all collected prior to the outbreak, some as early as 2007. 

 

Thus, the results above must be treated with extreme caution.  In a detailed analysis after the event, one team 

showed how while models could be trained to fit the national-level data well, potentially artefactual variability in the 

case count trends in the sub-regions made it challenging to draw conclusions.  In particular, small changes in 

training choices -- type of interpolation, choice of smoothing technique, and whether to train on incidence of new 

cases or cumulative counts -- resulted in large differences in the parameters.  Teams found that changing some of the 

assumptions used to compute the dependent variables resulted in spurious correlations.  One team provided several 

examples, including a positive correlation between education and case fatality rates.  These effects are in addition to 

the challenges due to confounds (more urban areas are likely to have better reporting) and colinearities (more urban 

areas also have more educated citizens). 

4. Conclusions 

HackEbola (with Data!) created a considerable interest in the data science community to help address an 

important need: understanding how various regional factors might be affecting the temporal and geographic 

evolution of the epidemic. Even when advertised as a “small” event, it resulted in over 300 registrants, of which 189 

participants downloaded data. The event demonstrated how a hackathon format could be used to test many 

approaches quickly: each team used different assumptions when pre-processing and modeling the data. However, in 

the end, teams were still limited by the quality of the data.  In the future, “deep dive” events such as these might 

benefit from additional steps to check whether the data are amenable for such fine-grained analysis. 
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7. Appendix 

7.1. Processed data sets 

Several teams created processed data sets for other teams to use. One team created a cleaned up set of data 

containing the date of the start of the epidemic in the region relative to the start of the epidemic, duration of the 

epidemic in that location, the total number of cases and the total number of deaths. They also estimated a parameter 

beta which is the log of number of cases over the duration (estimates the rate of spread): 

 

https://www.dropbox.com/sh/kniy9s8rcuvxu1b/AACpzPnkpNu7IrQMdyTBRL_Va?dl=0 

 

Others also shared data sets with gaps interpolated and files merged with indicators: 

 

https://www.dropbox.com/sh/ief4x9yshmd6619/AADJgB49a_xQcwl9aYynv2Pua?dl=0 

 

https://drive.google.com/folderview?id=0B915sMG77RJYblBTS2hhdURaMms&usp=sharing 

 

Another team estimated the number of treatment beds per region and shared the results: 

 

https://www.dropbox.com/sh/qtibq5tv2yful8l/AADP4tuhvD1HRYG3bLAorM_Ia?dl=0 

7.2. Example Plots 

We avoided reporting specific values or including specific plots from the teams in the main document, as the 

analyses were computed over a single weekend.  Here we include some example plots to show the kinds of analyses 

that were performed.  The team of G. Sabran, K. Altenburger, K. Fodouop, S. Wang, and M. Andere noted a large 

difference between fitting the SIR model to smoothed and unsmoothed case data, as seen below for the case of 

Guinea.  They also noted a wide variation in the shapes of case curves at the sub-national level. 

https://www.dropbox.com/sh/kniy9s8rcuvxu1b/AACpzPnkpNu7IrQMdyTBRL_Va?dl=0
https://www.dropbox.com/sh/ief4x9yshmd6619/AADJgB49a_xQcwl9aYynv2Pua?dl=0
https://drive.google.com/folderview?id=0B915sMG77RJYblBTS2hhdURaMms&usp=sharing
https://www.dropbox.com/sh/qtibq5tv2yful8l/AADP4tuhvD1HRYG3bLAorM_Ia?dl=0
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The team of J. Winget computed the following fit to the SIR model of fatalities in Liberia; a key question was 

which data—from a variety of government and organization sources to use. 

 

The team of Y. Gurmu, G. Harling, S. Vardhanabhuti, S. Chin, O. Patterson, L. Valeri, A. Ablorh, and J. Bobb 

created the following plot using a logistic curve to fit case time-series in Liberia.  Similar plots for Guinea and 

Sierra Leone are in their ChallengePost entry. 

 

Below is a representative Poisson regression analysis by the team of M. A. Testa, M. Su, S. Konate, J. Torres, 

and E. Savoia. 
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7.3. Additional analyses 

Food Prices. A few teams also looked at the changes in food prices during the outbreak.  Teams also found that 

food prices, where available, had stayed mostly stable through the outbreak.  Specifically, the changes in prices 

during 2014 appeared to be within the already broad price variability due to other factors in the region. 

 

Visualizations and Geography. Finally, a few teams focused on exploring the data through visualizations and 

geographic analysis.  In particular, A. Low created a map showing locations that were within an hour of an ETU: 

 

 


