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Abstract

Off-policy policy evaluation methods for se-
quential decision making can be used to help
identify if a proposed decision policy is bet-
ter than a current baseline policy. However, a
new decision policy may be better than a base-
line policy for some individuals but not others.
This has motivated a push towards personaliza-
tion and accurate per-state estimates of hetero-
geneous treatment effects (HTEs). Given the
limited data present in many important appli-
cations such as health care, individual predic-
tions can come at a cost to accuracy and confi-
dence in such predictions. We develop a method
to balance the need for personalization with
confident predictions by identifying subgroups
where it is possible to confidently estimate the
expected difference in a new decision policy rel-
ative to a baseline. We propose a novel loss
function that accounts for the uncertainty dur-
ing the subgroup partitioning phase. In experi-
ments, we show that our method can be used to
form accurate predictions of HTEs where other
methods struggle.

Data and Code Availability This research paper
uses the MIMIC-III dataset (Johnson et al., 2016).
This dataset is available on the PhysioNet repository
(Goldberger et al., 2000). Code to generate results in
section 6 (experiments) are available in the supple-
mentary materials.

1. Introduction

Recent advances in technology and regulations
around them have enabled the collection of an un-
precedented amount of data of past decisions and
outcomes in different domains such as health care,
recommendation systems, and education. This of-
fers a unique opportunity to learn better decision-
making policies using observational data. Off-policy
policy evaluation (OPE) is concerned with estimat-
ing the value of a proposed policy (evaluation pol-
icy) using the data collected under a different policy
(behaviour policy).Estimating the value of an evalua-
tion policy before deployment is essential, especially
when interacting with the environment is expensive,
risky, or unethical, such as in health care (Gottesman
et al., 2019). Fortunately, the reinforcement learn-
ing (RL) community has developed different meth-
ods and theories focused on OPE, e.g. Jiang and Li
(2016); Thomas and Brunskill (2016); Kallus and Ue-
hara (2020).

OPE has been used extensively in the literature
to demonstrate the superiority of a proposed evalua-
tion policy relative to the baseline (behaviour) policy
e.g. Komorowski et al. (2018); however, the evalua-
tion policy may be better than the behaviour pol-
icy for some individuals but not others. Hence, only
looking at the estimated value of the evaluation pol-
icy before deployment, may be misleading. In the
non-sequential setting, a growing literature has fo-
cused on personalization and estimation of hetero-
geneous treatment effect (HTE), the individual-level
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differences in potential outcomes under the proposed
evaluation policy versus the behaviour policy (Athey
et al., 2019; Nie and Wager, 2017).

In this paper, we aim to provide actionable infor-
mation to domain experts. Specifically, we ask "What
subgroups of individuals can we confidently predict
that will be significantly benefited or harmed by adopt-
ing the evaluation policy?". Asking this question in-
stead of "What is the treatment effect for each in-
dividual?" allows us to group individuals that have
similar treatment effects together. When data is lim-
ited and the horizon of decision-making is long, esti-
mates of individual treatment effects can have high
variance resulting in high uncertainty. This means
that it can be hard to assess whether a new policy
will be more effective for a particular individual, ren-
dering the goal of providing effective personalization
for individuals unrealistic. Instead, here we provide
an adaptive method to pool the data, to provide pre-
dictions that are both more accurate and confident,
and can be used by a domain expert (human-in-the-
loop) to make informed decisions before deploying the
RL system or be used for the interpretability of the
OPE. For example, a clinician can take a look at the
groups and decide if the predicted benefit or harm is
in accordance with their clinical intuition.

Prior work (Athey and Imbens, 2016) previously
proposed a loss function that could be used to re-
cursively partition the covariate space into groups in
a way to balance variance and personalization for a
single decision (non-sequential settings). We propose
a similar approach for the sequential setting, we find
that this prior loss function can be too noisy and
often results in over-splitting, yielding too many sub-
groups and inaccurate or uncertain predictions. We
mitigate the issue of noisy estimation by proposing
a novel upper bound to the loss function that is sta-
ble and can be efficiently calculated. Our approach is
relevant to conditions including intensive care treat-
ment, cancer treatment, IVF, and physical therapy,
which involve several stages and are often recorded in
electronic medical records.

Additionally, by taking into account what clini-
cians believe is relevant for decision making, we in-
corporate a regularization term that prioritizes par-
titioning the space of individuals to create subgroups
with treatment effects that exceed a specific (posi-
tive or negative) sufficient threshold. This threshold
can be specified by a clinician and allows for better
incorporation of medical experts into the evaluation
process. For example, a clinician may consider an

increase of 10% in survival rate relevant, so only sub-
groups with a confident prediction of 10% decrease
or increases in survival rate will provide actionable
information. Combining these two additions, we pro-
pose a new loss function.

On a simulated example of sepsis management
(Oberst and Sontag, 2019), we show how our pro-
posed method can be used to find subgroups with
significant treatment effects, providing more accu-
rate and confident predictions than related work that
was developed for single-decision settings Athey and
Imbens (2016). Additionally, we apply our method
to the sepsis cohort of the MIMIC III ICU dataset
(Johnson et al., 2016), and illustrate how it can be
used to identify subgroups in which a new decision
policy may be beneficial or harmful relative to the
standard approach. We also investigate the inter-
pretability of our findings through a discussion with
an ICU intensivist.

2. Related Work

The need to estimate the value of a new decision
policy is present in many different applications, such
as personalized medicine (Obermeyer and Emanuel,
2016), bandits (Dudík et al., 2011) and sequen-
tial decision makings (Thomas and Brunskill, 2016).
The RL community has developed different methods
and theories for off-policy policy evaluation (OPE)
in sequential settings. These methods mostly fall
into different categories: importance sampling (Pre-
cup, 2000), model-based and doubly robust meth-
ods (Dudík et al., 2011; Thomas and Brunskill, 2016;
Jiang and Li, 2016). All these methods can be used
along with our algorithm to estimate group treatment
effect for a particular group; however, these methods
do not readily provide a way to perform partitioning
into groups with distinct effects.

In non-sequential settings, a growing body of litera-
ture seeks to estimate heterogeneous treatment effect
(HTE) using different approaches. For example, Imai
and Ratkovic (2014) uses the LASSO to estimates the
effect of treatments, Shalit et al. (2017) uses neural
networks and offers a generalization bound for the
individual treatment effect (ITE). Lee et al. (2020)
relies partly on good confidence intervals to propose
a robust partitioning method for non-sequential set-
tings; whereas we perform upper bound variance esti-
mation to avoid issues with very small effective sam-
ple sizes and noisy confidence intervals which plague
sequential settings.
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Our work draws a close parallel to methods using
recursive partitioning to estimate HTEs (Athey and
Imbens, 2016; Athey et al., 2019), but those works
suffer from over-splitting the feature space in sequen-
tial settings due to noisy estimation of the loss func-
tion. We propose a different loss function that can
be better estimated when data is limited, and that
also incorporates domain expert knowledge regard-
ing treatment effects that are of sufficient magnitude
to be of interest.

3. Setting and Background

We consider an episodic stochastic decision processes
with a finite action space A, continuous state space
X ∈ RM , reward function R : X × A → [0, Rmax]
and the discount factor γ ∈ [0, 1]. A policy π maps
the state space to a probability distribution over the
action space, and we assume each episode lasts at
most H steps. A set of trajectories T = {τ1, . . . , τN}
is provided. Each trajectory τi consists of a state
xt, action at and the observed reward rt at step t,
τi = {xi

0, a
i
0, r

i
0, . . . , x

i
H}. Actions are generated by

following a known behaviour policy πb. We denote
the evaluation policy by πe.

4. Framework for Subgroup
Identification

Our main goal is to robustly quantify the expected
benefit or cost of switching from a behavior policy to
a proposed evaluation policy for subsets of the pop-
ulation. To do so it is helpful to extend the standard
notion of the treatment effect to the (sequential deci-
sion) policy treatment effect. We define the individ-
ual treatment effect t(x;πe, πb) for a possible initial
state x as

t(x;πe, πb)=Eπe

[
H∑
t=0

γtrt|x0=x

]
−Eπb

[
H∑
t=0

γtrt|x0=x

]
.

(1)

Before we introduce our definition of group treatment
effects, we first define a partitioning over the state

space by L = {l1, . . . , lM} ∈ Π, such that
M⋃
i=1

li = X

and ∀i, j : li
⋂
lj = ∅. Define the partition function

l(x;L) = li such that x ∈ li. Given a partitioning L,
partition-value function for a policy π can be defined

as:

v(x;L, π) = E
x′∼X

a∼π(.|x′)

[
H∑
t=0

γtrt|x0 = x′, x′ ∈ l(x;L)

]
.

Using this function, we can define the group treat-
ment effect, similar to the individual treatment effect
as,

T (x;L, πb, πe) = v(x;L, πe)− v(x;L, πb). (2)

Note that the group treatment effect is constant
within every li, and we refer to each partition li as
a group. With little abuse of notation we denote the
individual treatment effect by t(x) and group treat-
ment effect by T (x;L) and may interchangeably use
group and subgroup.

4.1. Group treatment effect estimator

Given a partition L, a set of trajectories T , the be-
haviour policy πb and an evaluation policy πe the
following estimator defines the group treatment ef-
fect estimator for an initial state x over a dataset
D = {(x0, ρ0, g0), . . . , (xN , ρN , gN )},

T̂ (x;L) =
1

|{xi|xi ∈ l(x;L)}|
∑

i|xi∈l(x;L)

(ρigi − gi)

(3)

Where, xi = xi
0 is the initial state of a trajectory τi,

gi is the discounted return gi =
∑H

t=0 γ
trit and ρi is

the importance sampling ratio ρi =
∏H

t=0
πe(a

i
t|x

i
t)

πb(ai
t|xi

t)
. It

is straightforward to show that T̂ (x;L) is an unbiased
estimator of T (x;L) in every group.

Following much of the literature (Athey and Im-
bens, 2016; Thomas and Brunskill, 2016) we focus on
the MSE criteria to rank different estimators; how-
ever, as explained later, we modify this loss in multi-
ple ways.

MSE(T̂ ;L) = E
x∼X

[(
t(x)− T̂ (x;L)

)2
]

(4)

Note that MSE loss is infeasible to compute, as
we do not observe treatment effect t(x). However,
we show that it is equivalent to an expectation over
quantities that can be estimated from data.

Theorem 1 For a given partition L ∈ Π, let T (x;L)
be the group treatment effect defined in equation 2,
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t(x) be the individual treatment effect as defined in
equation 1 and T̂ (x;L) an unbiased estimator of
T (x;L). The following equation imposes the same
ranking over the partitions as the MSE loss in equa-
tion 4:

−Ex∼X

[
T̂ 2(x;L)

]
+ 2 Ex∼X

[
V
[
T̂ (x;L)

]]
(5)

Where V[T̂ (x;L)] is the variance of the estimator
T̂ (x;L).

The proof is provided in the supplementary materials.
The result of theorem 1 suggests an estimable

quantity that can be used to select between different
potential partitions. More precisely, given a dataset
D, the empirical version of the adjusted MSE in
Equation 5 can be written as

EMSE(T̂ ;L)=− 1

N

N∑
i=1

T̂ 2(xi;L) +
2

N

N∑
i=1

V
[
T̂ (xi;L)

]
,

(6)

where V[T̂ (xi;L)] is the variance of the estimator
T̂ (xi;L) in the subgroup li s.t. li = l(xi;L).

5. A Practical and Effective Algorithm
for Subgroup Identification

In this section, we first assume access to a loss func-
tion L(L) and describe the recursive partitioning al-
gorithm to minimize it. We then discuss the modi-
fications we apply to the empirical adjusted MSE in
section 5.2 to obtain the loss function L(L).

5.1. Algorithm

In order to partition the feature space to different
subgroups we minimize a loss function L(L) with re-
cursive partitioning, minL∈Π L(L). First, in the par-
titioning phase, similar to classification and regres-
sion tree (CART) (Breiman et al., 1984), we build a
tree by greedily splitting the feature space to mini-
mize the loss function. We stop splitting further when
there is no such split that results in a reduction of
the loss function (partitioning phase), we call this a
treatment effect tree.

After building the treatment effect tree, each leaf li
is a group and we can form an estimate of the group
treatment effect using the importance-sampling like
estimator specified in Equation 3 (estimation phase).

In this work, we use the same estimator in the par-
titioning and estimation phase and mainly focus on
developing a loss function to be used in the partition-
ing phase. Additionally, we compute confidence inter-
vals around our estimation by bootstrapping. Note
that in the estimation phase, instead of the impor-
tance sampling approach we use here, it would also
be possible to substitute different off-policy evalua-
tion methods, such as model-based and doubly ro-
bust (Thomas and Brunskill, 2016; Liu et al., 2018)
to estimate the treatment effects.

5.2. Loss Function

One way to estimate the empirical adjusted MSE in
equation 6 is by substituting the variance term with
the sample variance of the estimator. This is simi-
lar to the loss proposed by Athey and Imbens (2016)
in the non-sequential setting. However, estimation of
the sample variance may be very noisy due to lim-
ited data, particularly in our sequential setting. Mis-
estimation of the variance may result in an avoidable
undesirable split in the partitioning phase that would
have not happened given a better estimate of the vari-
ance. Indeed, over-splitting is a common failure mode
of using this loss function as we demonstrate in our
experiments.

Variance Estimation. To mitigate the issue of
over-splitting, we modify the loss function by a proxy
of the variance term that can be used in limited data
settings and can be efficiently computed.

First, we show that the variance of the treatment
effect estimator can be upper bounded by quantities
that one can compute from data.

Theorem 2 Given a dataset D =
{(x0, ρ0, g0), . . . , (xN , ρN , gN )} and the treatment
effect estimator defined by T̂ = 1

N

∑
i(ρi − 1)gi. The

variance of T̂ satisfies the following inequality,

V[T̂ ] ≤ ∥g∥2∞

(
1

ESS
− 1

N

)
(7)

where, ESS is the effective sample size.

Note that in the special case of behaviour policy
being the same as the evaluation policy, this bound
evaluates to zero. We denote the RHS of equation 7
by Vu[.]. In our work, we use Vu[.] in each leaf as a
proxy of variance of the estimator in the leaf. That
is,

Vu[T̂ (xi;L)] = ||g(x)||2∞
(

1

ESS(li)
− 1

|li|

)
, (8)
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where we use the common ESS estimate ESS(li) by

ÊSS(li) =
(
∑

j ρj)
2∑

j ρ2
j

where the sum is over samples
inside the group i, {j|xj ∈ li} (Owen, 2013). Vu[.] can
be computed efficiently and the conservative variance
estimation using Vu[.] avoids the problem of variance
underestimation.

Regularization In many applications, actionable
information needs to satisfy certain conditions. For
example, a clinician may consider the knowledge of
group treatment effect useful, if we can guarantee
with high probability that the treatment effect is α
bounded away from zero. The loss function which is
focused on minimizing the mean squared error would
not necessarily identify these practically relevant sub-
groups.

Therefore we now introduce a regularization term
into our loss function to encourage finding such par-
titions where some subgroups have treatment effects
that are bounded away from zero. To do so we
use Cantelli’s inequality to derive a lower bound on
the estimator defined in equation 3. While this is a
weaker bound than Bernstein, this allows us to avoid
assuming we have access to an upper bound on the
importance weights.

We assume that the function T̂ [x;L] : X → R, is
a bounded function (||T̂ (x;L)||∞ < ∞). We start by
writing Cantelli’s inequality applied to the random
variable T̂ (x;L),P

(
T̂ (x;L)− E[T̂ (x;L)] ≥ λ

)
≤

1

1+ λ2

V[T̂ (x;L)]

. Assigning δ to the right hand side and

considering the complementary event, we have with
probability 1− δ,

E[T̂ (x;L)] ≥ T̂ (x;L)−
√

1− δ

δ
V[T̂ (x;L)] (9)

With Equation 9 we define the (margin α) regular-
ization term

R(xi;L,α) = (10)

max

{
0, α−

(
|T̂ (xi;L)| − c

√
Vu[T̂ (xi;L)]

)}
,

Where c adjusts the penalty for having more lim-
ited data and provides a more robust lower bound on
the estimated treatment effect, and α allows medical
professionals to specify a minimum threshold on a
meaningful treatment effect. Note that we used Vu[.]
instead of V[.] in equation 10 to avoid issues arising
from under estimation of the variance. Although we
can obtain c by setting a specific value of δ, we view
this as a tuning parameter for regularization.

Loss Function By combining the regularization
term and using the proxy variance, we obtain our
final loss function.

L(L) = − 1

N

N∑
i=1

T̂ 2(xi;L) +
2

N

N∑
i=1

Vu

[
T̂ (xi;L)

]
+

C

N

N∑
i=1

R(xi;L,α), (11)

where C is the regularization constant. This loss is
minimized using recursive partitioning. We call our
algorithm GIOPE, group identification in off-policy
policy evaluation. Note in Theorem 1 we relied on
T̂ (x;L) be an unbiased estimate of T (x;L). To ac-
complish this with our chosen estimator for T (x; l) we
use an independent set of samples for the partitioning
phase and the estimation phase. The importance of
sample splitting to avoid overfitting during off-policy
estimation is well studied (e.g. (Craig et al., 2020;
Athey and Imbens, 2016)).

6. Experiments

We illustrate how our approach allows us to partition
the feature space into subgroups such that we can
make confident and accurate predictions of the group
treatment effect. We empirically evaluate our method
in sequential decision-making settings, compare it to
the baseline and perform ablation analysis to show
the benefit of each modification we have proposed.

We evaluate our method on a sepsis management
simulation (Oberst and Sontag, 2019). Additionally,
we use the publically available MIMIC III dataset
of ICU patients (Johnson et al., 2016) and focus on
the sepsis cohort (Komorowski et al., 2018) to show
how our method can be applied to real-world data.
We provide the code for all experiments in the sup-
plementary materials. We compare to causal forests
(CF) (Athey et al., 2019) that were developed for
non-sequential settings. To the best of our knowl-
edge, CF is one of the best performing algorithms
in non-sequential settings that yields a good perfor-
mance across different domains.

6.1. Sepsis Simulation

A growing number of works seek to learn an auto-
mated policy to manage septic patients in the ICU.
The reader may find a short review in Gottesman
et al. (2019). However, newly suggested decision poli-
cies may be beneficial for some subgroups of patients
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while harmful to others. We use the sepsis simulator
developed in Oberst and Sontag (2019) to demon-
strate this scenario and evaluate our models in de-
tecting such subgroups.

Simulator In this simulator, each patient is de-
scribed by four vital signs {heart rate, blood pressure,
oxygen concentration, glucose level} that take values
in a subset of {very high, high, normal, low, very
low}. There is also a binary indicator of diabetes.
that results in a state space of size |S| = 1440. In
each step, the agent can take an action to put the pa-
tient on or off of treatment options, {antibiotics, vaso-
pressors, and mechanical ventilation}. Each episode
terminates upon death with reward -1, or discharge
with reward +1 or runs H steps with reward 0. We
use a discount factor of γ = 0.99 and average over 15
different runs.

Data Generation We design the behavior and the
evaluation policy to be similar and nearly optimal.
More precisely, define πst as the (deterministic) op-
timal policy for this environment, softened by sub-
tracting 0.1 probability from the optimal action and
equally distributing it among other actions.

The behavior policy πb is similar to πst except it
has 15% less chance of using the mechanical ventila-
tor. The evaluation policy πe is similar to πst but has
20% less chance of using the vasopressor: therefore it
uses the mechanical ventilator more and vasopressor
less than the behaviour policy. Regardless of the hori-
zon, the evaluation policy achieves a better expected
discounted return than the behaviour policy. How-
ever, there are subgroups of individuals, for example,
diabetics, that will be worse off by using the evalu-
ation policy. We generate 50, 000 trajectories using
the behavior policy.

Comparison We compute the mean squared error
for individual treatment effects. To do so, for each
individual in the test set that consists of n = 20, 000
samples from the same distribution as the training
set, we sample 30 different trajectories using the eval-
uation policy and the behaviour policy to compute
the true treatment effect for each individual.

Figure 1 shows the mean squared error of predic-
tion made by our method versus the causal forest
(CF) method. As shown in Figure 1 (a), our method
outperforms the baseline but as the horizon increases,
both models struggle to generate valid results.

Panel (b) of Figure 1 shows the average size of
the 95% confidence intervals, which are substantially
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Figure 1: Sepsis simulator: comparison with
causal forest (CF). (a) Mean squared er-
ror of prediction. (b) The average size of
the 95% confidence intervals (CI).

tighter than the baseline causal forest method. This
highlights one of the main benefits of our method: it
yields more accurate predictions along with tighter
confidence intervals.

Identified Subgroups As hoped, our method can
reliably identify subgroups with some significant
treatment effects. For example, as stated above,
diabetics have a negative treatment effect and our
method uncovers this subgroup. The ability of our
method to lend itself to such qualitative analysis is
a big advantage over other algorithms such as causal
forests, as they are not designed to yield distinctive
subgroups.

Ablation Study To showcase the benefit of each
modification that we proposed, we perform ablation
study on the sepsis simulator. We compare three dif-
ferent methods with 15 different runs.

1. GIOPE : Using the loss function presented in
equation 11. In all experiments, the value of
regularization is set to C = 5.0 and the margin
α = 0.05. We found that changing this regular-
ization value has little effect on the results.

2. GIOPE - Regularization (GIOPE-R): Using the
loss function in equation 6 with the suggested
proxy variance in equation 8.

3. GIOPE - Regularization and Proxy Variance
(GIOPE-RP): This method uses the loss func-
tion presented in equation 6 with the sample
variance estimate. Note that this basic version
is similar to the loss function proposed in Athey
and Imbens (2016).

First, we look at the mean squared error com-
puted on the individual level. As shown in Figure 2
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Figure 2: Ablation study. (a) Mean squared error computed on the individual level. (b) Group mean squared
error. Coverage: (c) Percentage of groups that the true group treatment effect is covered by the
95% confidence interval. (d) The average size of confidence intervals

(a) our method shows significant benefits compared
to GIOPE-R and GIOPE-RP. This comes with an
important observation that our method also shows
more stability as the performance does not fluctu-
ate as much across different horizons as well as hav-
ing smaller standard errors. Note that, our method
does not optimize for this objective and the individ-
ual mean squared error is best minimized with the
sample variance in the limit of infinite data, the ben-
efit comes as with avoiding predicting each individual
separately.

Next, we look at the mean squared error in the
group treatment effect (Figure 2 (b)). That is,
for a groups i, denote the prediction of the group
treatment effect by ĝi and the true group treat-
ment effect by gi, then the group MSE is defined as
1
G

∑G
i=1(gi − ĝi)

2, where G is the total number of
groups. Figure 2 (b) shows the MSE in group treat-
ment effect as we increase the horizon. Similar to
individual MSE, our method obtains lower MSE and
displays more stability across different horizons. This
stability is mainly due to avoiding oversplit. For ex-
ample, the average number of discovered groups in
the GIOPE-RP method for horizon 13 is 26 whereas
for other GIOPE-R is 5 and GIOPE is 4.

Finally, we look at coverage. Figure 2, panel (c)
shows the coverage of 95% confidence intervals of the
true group treatment effect for different methods and
horizons. Methods that use variance proxy instead
of sample variance consistently show more coverage.
Figure 2 panel (d) shows the average size of the con-
fidence interval for each group treatment effect pre-
diction. This indicates that using the upper bound
along with regularization (GIOPE) yields more cov-
erage while offering tighter confidence intervals. This
observation highlights the main benefit of using regu-

larization along with proxy variance that allows us to
discover groups that we can more accurately and con-
fidently predict their treatment effect. Tighter stan-
dard error of confidence intervals size highlights the
stability of GIOPE across different runs.

Additionally, Figure 3 shows the partitions found in
horizon {5, 9, 11, 13}. Our method can recover groups
with significant negative treatment effect in different
horizons.

Effect of hyper-parameters We used the follow-
ing set of hyper-parameters for the experiments pre-
sented earlier. Regularization constant C = 5.0,
regularization margin α = 0.05, regularization con-
fidence value δ = 0.4, maximum depth of the tree
d = ∞ and minimum number of samples in each leaf
50.

In order to evaluate the effect of hyper-parameters,
we perform the ablation study for two different val-
ues of regularization confidence interval δ = 0.1 and
δ = 0.5 and two different values of regularization con-
stant C = 5.0 and C = 1.0. Figure 4 (a) shows the
result for mean squared error and (b) for group mean
squared error. As shown, the effect of regularization
is small, and the same results can be obtained with
a different range of hyper-parameters. Similarly, fig-
ure 4 (c) shows the coverage of the 95% confidence
interval and (d) is the average size of CI. The re-
sults obtained previously hold with different hyper-
parameters.

6.2. ICU data - MIMIC III

To show how our method can be used on a real data
set, we use a cohort of septic patients in the freely
accessible MIMIC III dataset (Johnson et al., 2016).
Prior work Komorowski et al. (2018) used off-policy
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Figure 3: Sepsis simulation. Group treatment effect for a sample run with horizon (a) 5, (b) 7, (c) 9 (d) 13
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Figure 4: Effect of hyper-parameters: Ablation study, results of GIOPE for four different values of parame-
ters. (a) Mean squared error (b) group mean squared error, (c) 95% confidence interval coverage
and (d) average size of confidence intervals

learning and proposed a new decision policy that
might provide improved patient outcomes on average.
We followed Komorowski et al. (2018) to extract the
sepsis cohort. Our training set consists of 14971 in-
dividuals, with 8442 males and 6529 females. The
mortality rate in our cohort is 18.4%. The feature
space is of size 44 and consists of the following val-
ues:

{gender, re_admission, mechvent, age,
Weight_kg, GCS, HR, SysBP, MeanBP, DiaBP, RR,
Temp_C, FiO2_1, Potassium, Sodium, Chloride,
Glucose, Magnesium, Calcium, Hb, WBC_count,
Platelets_count, PTT, PT, Arterial_pH,
paO2, paCO2, Arterial_BE, Arterial_lactate,
HCO3, Shock_Index, Shock_Index, PaO2_FiO2,
cumulated_balance, SOFA, SIRS, SpO2, BUN,
Creatinine, SGOT, SGPT, Total_bili, INR,
output_total, output_4hourly}

We provide the index of the patients in the dataset
to facilitate the reproducibility of our results.

To estimate the behavior policy, we use KNN with
k = 100 on the test set, we use l2 distance with uni-
form weights across different features to measure the
distance. If an action was not taken among all 100
nearest neighbors, we assign the probability 0.01 to
the action. We used IV fluid and mechanical ventila-

tion for actions and used 20% quantile to discretize
the action space into 25 actions.

For the evaluation policy, we used a similar method
as the behavior policy on a random subset of the
training set (20% of the training data). We only used
the following features to estimate the distance for the
evaluation policy,

{HR, SysBP, Temp_C, Sodium, Chloride,
Glucose, Calcium, paO2, Arterial_BE, SOFA,
SIRS, Creatinine}

Similarly, if an action was not taken among all 100
nearest neighbors, we assign the probability 0.01 to
the action. In our experiments we used the following
set of hyper-parameters: regularization constant C =
100.0, regularization margin α = 0.0, regularization
confidence value c = 2.0, maximum depth of the tree
d = ∞ and minimum number of samples in each leaf
1000.

Using weighted importance sampling the estimated
value of the decision policy is 65.33 with the effective
sample size of 146.8 which suggests an increase of
2.43 on the survival chance compared to the behavior
policy. Here we take this decision policy and estimate
its impact on different potential subgroups.

In Figure 5 (a) we present the five groups pro-
duced by our algorithm along with their estimated
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Figure 5: MIMIC III dataset. AI Clinician: Although positive treatment effect is predicted by weighted
importance sampling on the full cohort, groups 1 and 2 will likely be harmed by the evaluation
policy. (top) : The estimated treatment effect for each subgroup, (bottom): the estimated effec-
tive sample size (bottom). (a): Evaluation policy, (b): Evaluation policy with more aggressive
vasopressor use.

group treatment effect (which is the difference be-
tween the baseline clinician policy and the decision
policy). While some of the patients fall into sub-
groups 3, 4, and 5, some patients may experience
no benefit or even a potential negative treatment ef-
fect from the proposed new treatment policy (groups
1 and 2). This highlights how our method may be
useful in identifying subgroups in which a new deci-
sion policy may be beneficial or harmful relative to
the standard approach. Please refer to the supple-
mentary materials for information about the effective
sample size (ESS) of each group.

We caveat the results in this section by noting that
using IS based methods on real-world datasets, and
the MIMIC III dataset, in particular, is very suscep-
tible to noise-induced by the small effective sample
size of the cohort (Gottesman et al., 2018). Further-
more, our method is susceptible to this source of noise
twice, as IS based estimators are used both in the par-
titioning phase and the estimation phase. However,
despite their high susceptibility to noise, IS methods

are often applied to the MIMIC III dataset for their
theoretical properties, but their results for real data
should be interpreted with caution. In our experi-
ment, we intentionally designed the decision policy
close to the behavior policy to avoid issues arising
from a small effective sample size.

More Aggressive Use of Vasopressor Addition-
ally, we evaluated our method on a policy that utilizes
vasopressor more often than the estimated behavior
policy. We estimate the behaviour policy using KNN,
and evaluate a policy that has 10% more probability
mass on using vasopressor than the behaviour policy.
Figure 5 (b) shows the subgroups found using our
method.

Group 1, 2, and 3 all show a negative treatment ef-
fect. Interestingly, these three groups have SOFA > 1
which indicates these patients are at high risk. Given
the discussions we had with an intensivist, this is in
agreement with their expectation that healthier pa-
tients are less likely to be harmed by more aggressive
use of vasopressor, and sicker patients may be more
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at risk. This also highlights one of the main bene-
fits of our method: it can be used to provide inter-
pretable subgroups with different potential treatment
effects that may be used to support communication
with clinicians around potentially beneficial alternate
treatments, and who they might benefit from.

7. Conclusion

In this paper, we proposed a novel method to par-
tition the feature space, enabling us to find sub-
groups that we can accurately and confidently predict
the group treatment effect for them. Our approach
is in contrast with previous methods that estimate
individual-level treatment effects, yielding uncertain
and less accurate predictions. We do so, by propos-
ing a novel loss function that utilizes; 1. A proxy on
the variance estimator that is easy to compute and
stable; 2. A regularization term that incentivizes the
discovery of groups with treatment effect sizes that
are considered to be significant, which may be spec-
ified by a domain expert. We further evaluate our
method on both simulated domains and real-world
data.

Our method can leverage the existing data to raise
caution when necessary about a possible negative ef-
fect of the newly suggested decision policy on some
subgroups. While it may suggest also the potential
positive effect of certain policies on certain subgroups,
such findings should be validated via a randomized
clinical trial or form just one part of the array of
information used by a medical team to inform treat-
ment.

A particularly promising potential benefit of our
approach is that results from our method, when ap-
plied to observational data, can help to design multi-
stage randomized trials that are powered toward de-
tecting harm or benefit of the evaluation policy com-
pared to the baseline policy for specific subgroups.
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Appendix A. Proofs

Here we present the proof of the theorem 1. We re-
state the theorem first.

Theorem [1] For a given partition L ∈ Π, let
T (x;L) be the group treatment effect defined in equa-
tion 2, t(x) be the individual treatment effect as de-
fined in equation 1 and T̂ (x;L) an unbiased estimator
of T (x;L). The following equation imposes the same
ranking over the partitions as the MSE loss in equa-
tion 4:

−Ex∼X

[
T̂ 2(x;L)

]
+ 2 Ex∼X

[
V
[
T̂ (x;L)

]]
(12)

Where V[T̂ (x;L)] is the variance of the estimator
T̂ (x;L).

Proof First, We form the adjusted MSE (AMSE) as

AMSE(T̂ ;L) = E
x∼X

[(
t(x)− T̂ (x;L)

)2

− t(x)2
]

Adjusted MSE and MSE impose the same ranking
among different partitioning as E

x∼X
[t(x)2] is indepen-

dent from the partitioning. Note that adjusted MSE,
similar to MSE cannot be computed.
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We continue by decomposing the adjusted MSE by
adding and subtracting T (x;L),

AMSE(T̂ ;L) = −Ex∼X

[(
t(x)− T̂ (x;L)

)2

− t(x)2
]

= Ex∼X [(t(x)− T (x;L))2 − t(x)2︸ ︷︷ ︸
(i)

+ (T (x;L)− T̂ (x;L))2︸ ︷︷ ︸
ii

+ 2(t(x)− T (x;L))(T (x;L)− T̂ (x;L))︸ ︷︷ ︸
(iii)

]

Now we look at each part separately, for part (i),

Ex∼X
[
(t(x)− T (x;L))2 − t(x)2

]
=

Ex∼X
[
T (x;L)2 − 2t(x)T (x;L)

]
Now we expand the expectation over each group of
thr partition L = {l1, . . . , lM},∑

li∈L

P (li)T (x; li)
2 − 2

∑
li∈L

P (li)T (x; li)

Where T (x; li) = T (x;L) such that x ∈ li, note that
by definition, T (x; li) is constant for all x ∈ li. Next,
note that Ex∈li [t(x)] = T (x; li).∑

li∈L

P (l)T (x; li)
2 − 2

∑
li∈L

P (li)T (x; li)
2 =

−
∑
li∈L

P (li)T (x; li)
2 = −Ex∼X[T (x;L)

2] (13)

Now, consider the variance of T̂ (x; li) for group li ∈
L,

V
[
T̂ (x; l)

]
= E

x∈li
[T̂ 2(x; li)]−

[
E

x∈li
T̂ (x; li)

]2
= E

x∈li
[T̂ 2(x; li)]− T (x; li)

2 (14)

Which follows by T̂ (x; li) being an unbiased estimator
of T (x; li). Taking the expectation over the feature
space and substituting equation 14 into 13,

(i) = −
∑
li∈L

P (li)T (x; li)
2

=
∑
li∈L

P (li)
[
V
[
T̂ (x; li)

]
− Ex∼li

[
T̂ 2(x; li)

]]
= Ex∼X

[
V
[
T̂ (x; l)

]]
− Ex∼X

[
T̂ 2(x; l)

]

Now we consider part (ii),

Ex∼X

[(
T (x;L)− T̂ (x;L)

)2
]

=
∑
li

P (li)Ex∈li

[(
T (x; li)− T̂ (x; li)

)2
]

=
∑
li

P (li)Ex∈li

[(
Ex∈li [T̂ (x; li)]− T̂ (x; li)

)2
]

=
∑
li

P (li)V
[
T̂ (x; li)

]
= Ex∼X

[
V
[
T̂ (x;L)

]]
Where the third line follows by T̂ (x; li) being an un-
biased estimator of T (x; li).

Looking at the last term (iii),

Ex∼X

[(
t(x)T̂ (x;L)

)]
=

∑
li∈L

P (li)Ex∈li

[
t(x)T̂ (x; li)

]
=

∑
li∈L

P (li)T̂ (x; li)Ex∈li [t(x)]

=
∑
li∈L

P (li)T̂ (x; li)T (x; li)

= Ex∈X

[
T̂ (x; li)T (x; li)

]
Which implies Ex∼X

[
(t(x)− T (x;L))T̂ (x;L)

]
= 0.

As a result,

(iii) = 2Ex∈X

[
(t(x)− T (x;L))

(
T (x;L)− T̂ (x;L)

)]
= 2Ex∈X [(t(x)− T (x;L)) (T (x;L))]

− 2Ex∈X

[
(t(x)− T (x;L))

(
T̂ (x;L)

)]
= 0

Putting the results together, results in equation 11.

Next, we continue with the proof of Theorem 2.
First, we present a reminder on Rényi divergence.

Rényi Divergence For α ≥ 0 the Rényi diver-
gence for two distribution P and Q as defined by
(Cortes et al., 2010) is

Dα(P ||Q) =
1

α− 1
log2

∑
x

Q(x)

(
P (x)

Q(x)

)α−1

.

Denote the exponential in base 2 by dα(Pe||Pb) =
2Dα(Pe||Pb).
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The effective sample size (ESS) (Kong, 1992) is of-
ten used for diagnosis of IS estimators, and is defined
as

ESS(P ||Q) =
N

1 + Vx∼Q[w(x)]
=

N

d2(P ||Q)

where N is the number of samples drawn to esti-
mate the importance weights. A common estimator
of the ESS (Owen, 2013) is

ÊSS(P ||Q) =

(∑N
i=1 wi

)2

∑N
i=1 w

2
i

Theorem [2] Given a dataset D =
{(x0, ρ0, g0), . . . , (xN , ρN , gN )} and the treatment
effect estimator defined by T̂ = 1

N

∑
i(ρi − 1)gi. The

variance of T̂ satisfies the following inequality,

V[T̂ ] ≤ ∥g∥2∞

(
1

ESS
− 1

N

)
(15)

where, ESS is the effective sample size.

Proof First note that the variance of the treatment
effect estimator T̂ = 1

N

∑
i(ρi − 1)gi can be upper

bounded by the variance of the importance sampling
weights. Since V[T̂ ] ≤ E[T̂ 2]

V[T̂ ] ≤ ||g||2∞
N2

E

[∑
i

(ρi − 1)2

]
=

1

N
||g||2∞V[ρ],

where the last equality follows by observing that
E[ρ] = 1. As noted by Metelli et al. (2018), The vari-
ance of the treatment effect estimator can be written
as

V[T̂ ] ≤ ∥|g||2∞(
d2(Pe||Pb)

N
− 1

N
)

This expression can be related to the effective sample
size of the original dataset given the evaluation policy,
resulting in equation 15

V[T̂ ] ≤ ||g||2∞
(

1

ESS
− 1

N

)
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Figure 6: Toy MDP. (a) regularization margin α =
0.05, (b) regularization margin α = 0.1
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Figure 7: Toy MDP: (a) Mean squared error of
treatment effect prediction for our method
and causal forest(CF). (b) True and pre-
dicted treatment effect for different values
of x for our method and causal forest.

Appendix B. Toy Example

In this section we present experimental results on a
simple MDP.

We consider a 1 dimensional toy MDP to illus-
trate the difference between our method and meth-
ods developed for non-sequential setting. The toy
MDP has the transition dynamics xt+1 = clip(xt +
κ× at + ϵ, 0, 1), where the function clip(x, a, b), clips
the value of x between a and b and reward function
r(x) = 1− |x− 0.5|.

We consider a simple Markov decision process
(MDP) with the state space x ∈ [0, 1], discrete ac-
tion space a ∈ {−1, 0, 1} and the reward function is
defined as r(x) = 1 − |x − 0.5|. The transition dy-
namic is specified by, xt+1 = clip(xt+κ×at+ϵ, 0, 1),
where the function clip(x, a, b), clips the value of x
between a and b, κ = 0.2 and ϵ ∼ N (0, 0.05). Each
episode lasts H steps. Intuitively, action 1 takes the
agent to the right, −1 to the left and 0 same loca-
tion with some gaussian noise. If the agent hits the
boundary, the action has no effect on the position.
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The behaviour policy, takes action with the follow-
ing probabilities{
x < 0.2 : πb(−1) = 0.25, πb(0) = 0.25, πb(1) = 0.5

x ≥ 0.2 : πb(−1) = 0.5, πb(0) = 0.25, πb(1) = 0.25

And the evaluation policy,{
x > 0.8 : πe(−1) = 0.5, πe(0) = 0.25, πe(1) = 0.25

x ≤ 0.8 : πe(−1) = 0.25, πe(0) = 0.25, πe(1) = 0.5

We generated 50000 trajectories with the be-
haviour policy for horizons {1, 2, 3, 4, 5} and averaged
all results over 10 runs.

We look at the mean squared error of the treatment
effect prediction on 25 equally spaced points in [0, 1].
Figure 7 (a) compares the MSE between our method
with causal forest (CF). GIOPE shows smaller MSE
and as the horizon increases the benefit is more ap-
parent. Figure 7 (b) shows the predicted value of
the treatment effect for our method and causal for-
est for horizon H = 4 along with the true treatment
effect for different values of x. This illustrates the
reason of performance gap. Our method partitions
the state space and makes the same prediction for
each subgroup that results in more accurate predic-
tions, whereas causal forests over-splits and compute
different values of the treatment effect for every value
of x which are often inaccurate.

Figure 6 compares the mean squared error of our
method versus the causal forests for different range
of hyper-parameters. Panel (a) shows the results for
margin α = 0.05 and values of regularization con-
stant C = {1, 3, 5, 10} and panel (b) shows the re-
sults for margin α = 0.1. As shown, regularization
has small effects on the results and the results re-
ported in the main text holds for a large range of
hyper-parameters.
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