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Abstract

Exposing and understanding the motivations of clinicians is an important step for building robust assistive agents as
well as improving care. In this work, we focus on understanding the motivations for clinicians managing hypotension
in the ICU. We model the ICU interventions as a batch, sequential decision making problem and develop a novel
interpretable batch variant of Adversarial Inverse Reinforcement Learning algorithm that not only learns rewards
which induce treatment policies similar to clinical treatments, but also ensure that the learned functional form of
rewards is consistent with the decision mechanisms of clinicians in the ICU. We apply our approach to understanding
vasopressor and IV fluid administration in the ICU and posit that this interpretability enables inspection and validation
of the rewards robustly.

Introduction

Decisions are generally made in pursuit of a goal: an intensivist may administer a vasopressor to increase a patient’s
blood pressure into a safer range; they may suggest a sedative to reduce a patient’s agitation. Methods to assist with
decision-making, such as reinforcement learning (RL), take these goals as input and attempt to find decisions that will
support them. Understanding what goals clinicians seek to achieve, rather than rules of how to react (e.g., if the blood
pressure is too low, administer vasopressor), can enable the design of agents that will generalize more robustly to new
situations. Exposing often implicit goals can also be of inherent interest for clinicians wishing to introspect on their
decision-making.

However, identifying these goals can be challenging. For example, in this work, we focus on hypotension manage-
ment in the ICU. It is an area where data-driven analysis could assist with decision making — while there exist several
guidelines for treatment,'~, there is no widespread consensus on how to apply these guidelines. When asked about the
goals of hypotension management, an intensivist might explain that they administer a vasopressor dosage to increase
the patient’s blood pressure. This specification misses the fact that their decision also considers keeping the dose low
to avoid the risk of vasopressor-induced shock. In general, we cannot expect people to perfectly list a complete set of
goals; we tend to make assumptions about what behaviors are reasonable or what desiderata are obvious (e.g. tempo-
rary raising the blood pressure is useless if the patient does not survive their ICU stay). In such settings, incomplete
or incorrect goal specifications can lead to RL agents learning unsafe and potentially, even adverse behaviors.*>

Inverse Reinforcement Learning® (IRL) is a field within machine learning that attempts to identify the implicit goals—
more formally in the form of rewards—given demonstrations of expert behavior (e.g. treatment histories). These
methods are distinct from imitation learners’ that simply try to mimic the expert without attempting the more strenuous
process of learning the task by understanding the why underpinning the decisions. The rewards learned by an IRL
algorithm, if formulated appropriately, can be checked by an expert to identify goals (through rewards) that they have
forgotten to specify, as well as help experts quantify the relative importance of different goals. Beyond its substantial
value as a tool toward building clinician-interpretable assistive agents, the rewards learned by IRL from demonstrations
can act as data-driven validations of the extent of concord between clinician behaviour and their intended goals.

Unfortunately, standard IRL algorithms have two major shortcomings when it comes to the purposes above. First,
the most popular IRL algorithms® % are not designed to work with observational data alone; they require the ability
to test arbitrary treatment policies. While there are off-policy (batch) IRL variants'®!?, all these methods suffer
from either high bias or high variance estimates and hence have not scaled well to real-life tasks. Thus, identifying
rewards from expert trajectories alone—with no other ability to experiment (which are commonly called batch settings),
remains a challenging research frontier. Second, our setting requires that the recovered rewards be interpretable: we
expect clinical experts to vet them so as to use these rewards in guiding assistive agents towards better treatment, and
interpretability is also essential for general introspection of behaviors learned from data. However, none of the recent
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batch methods'%!? attempt to align the recovered reward structure with how experts may be framing their goals while
administering patient treatments.

Contributions: Our work makes two core technical contributions toward addressing the challenges above.

e We develop a novel interpretable batch settings IRL algorithm based on Adversarial IRL. (1AIRL) that is more
robust than the current state-of-the-art in batch settings'? both in terms of interpretability and performance.

e We also provide a theoretically-sound way of enforcing that the learned reward structure matches how experts
frame their goals (in this case, a structure that splits continuous lab and vitals measurements into ranges, and
places a value (reward) for each combination of these feature ranges).

Together, these contributions enable us to identify a reward structure from purely observational data that can be in-
spected by a clinical expert. In our application to hypotension management, our clinical expert was able to confirm
what parts of the learned reward made sense—including exposing features that he may not have remembered to include—
and what parts were perhaps artifacts.

Background and Related Work

Reinforcement Learning and Inverse Reinforcement Learning Formally, a Markov Decision Process (MDP) consists of
a set of states .S, actions A, a transition function T'(s’|s, a) that defines how states evolve over time, a reward function
R(s,a) that defines the immediate reward for each action, and a discount factor -y that manages the trade-off between
immediate and future rewards. Solving an MDP corresponds to finding a policy 7* (s, a) that optimizes the long-term
expected reward E[Y_, v'r]. In the (model-free) reinforcement learning setting, the transition function 7 is not given,
and we must learn a policy 7 via interacting with the environment to collect trajectories. In the Inverse Reinforcement
Learning (IRL) setting, an agent is given some trajectories from a policy which we are told is (near) optimal, and in
turn, asked to determine what R(s, a) must have been. (See Appendix A3 for a more detailed RL background.)

On-Policy IRL and Adversarial IRL The process of learning rewards from demonstrations places our work in the gen-
eral category of Inverse Reinforcement Learning, which is a very broad area with typical applications in robotics and
automated driving - e.g.%%!3. Our work builds on Adversarial IRL* !4, in which a discriminator tries to differentiate
between the samples (s,a,s’) of the expert policy and the samples generated by the optimal policy induced by our
learned rewards (IRL policy). In turn, the model uses this distinction of samples to streamline the rewards towards
producing more realistic samples - an iterative process whose equilibrium state is defined by the samples of the IRL
policy and the expert policy being indistinguishable. Besides, Adversarial IRL? also applies shaping rewards to disen-
tangle environmental dynamics from the state-only goals (rewards), an assumption that characterizes clinical settings
such as the ICU. In our work, we extend this on-policy AIRL algorithm to batch settings, which mounts additional
challenges of estimating transitions off-policy, restricting policies to stay close to the data during learning to prevent
significant estimation bias, and more robust adversarial training procedures due to limited batch data coverage.

Fully-Batch IRL Compared to on-policy IRL, relatively very few works have considered situations in which the agent
cannot interact with the environment to collect more data. Some approaches'®'? cast the problem of estimating feature
expectations—a key statistic for max-margin methods—as an off-policy evaluation problem which can potentially lead
to high variance estimates. There exist other works!! that optimize reward by setting action value function as a score
metric of a multi-class classification problem, an approach that still suffers from a linear off-policy evaluation problem
and the tuning of problem-specific heuristics. Besides, all these works require the reward to be linear in the chosen
feature space, limiting the IRL model’s expressive power. In contrast, our work allows arbitrary forms for the reward,
enabling us to learn rewards that match clinician decision frameworks and avoids making off-policy feature expectation
estimation all-together.

Reinforcement Learning in Intensive Care Settings There exists a growing body of work that applies RL to optimize
treatments in ICU settings.'>~!7 All these works take the reward as input and try to find optimal treatment policies for
the ICU. Finding optimal policies from batch data could be potentially unsafe as the model could prescribe actions that
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are medically ill-advised. In contrast, our goal is to learn treatment policies that mimic the expert and in the process,
propose plausible reward structure (which could also be used for policy optimization in future) based on observing
demonstrations of clinicians treating patients in the ICU.

Methods

We first develop a batch version of Adversarial Inverse Reinforcement Learning® (AIRL, see Appendix A3 for detailed
background details on the AIRL algorithm). The original algorithm requires an ability to test arbitrary treatment
policies; our batch version only requires the original observational data as input. We choose AIRL as our base not
only due to its overall performance’ compared to other IRL methods, but also because its specific reward formulation
allows us to easily decompose the learned reward Ry 4(s,a,s’) into a state-only component gg(s) and a shaping
reward. The state-only component gy(s) can be specified as the modeler desires—including constructing specific
formulations for the interpretability of the learned rewards (specifically in our work, purely based on patient features
in the ICU). Below, we first describe how we adapted the AIRL algorithm to purely observational settings following
which we describe our interpretable reward formulation.

Batch-data Adversarial IRL

We present our algorithm for fully-batch AIRL in Algorithm 1. The AIRL algorithm outputs a reward Ry 4(s,a, s")
that can be decomposed into a state-dependent reward gq(s) and an additional shaping term.!® The key difference
between the on-policy version of Fu et al.” happens in step 2: in the on-policy case, it is possible to collect trajectories
for some policy 7 by simply performing a roll-out in the environment by following the policy. Below, we describe how
we learn a sufficiently-accurate transition model that we can use for simulating rollouts. We also apply the WGAN
loss with weight clipping in step 3, which gives us additional robustness while training discriminators and apply a
warm-start to ensure that our IRL agent starts and remains in a state-action basin close to our batch data’s support - a
major concern for fully-batch IRL.!?

Algorithm 1 Adversarial IRL with batch data

Input: D (Expert Data), Transition Model T'(s'|s, a), T ... (Max length of trajectories), 7, 7, §,N1 gy,

Parameter: 0, ¢. Initialize discriminator Dy 4

Output: Learned Rewards and IRL policy : g, g ¢, !
1: for i={l,2,....N[RL} do

Using T'(s'|s, a), collect trajectories for policy 7: 7] = {s0, ao, .....s7r _,arr } where a; ~ m(als;)

3:  Using Equation 1 for discriminator loss, train the discriminator Dyg .

4: Update shaped MDP rewards Ry 4(s, a, s") < log Dy (s, a,s’) —log(1 — Dy 4(s, a,s’))

5:  Update 7 with respect to Ry (s, a, s') using any policy optimization method (e.g. DDQN', TRPO%) : 7 «+

7 (Ro,0)
6: end for
7: return gg, Ry 4,

RL

»

Learning Transition Dynamics As mentioned earlier, most standard IRL algorithms assume access to a simulator
whereas in our case we have only samples (batch) of trajectories and must learn a dynamics model directly from data
in order to simulate any candidate policy within the IRL iterations. Unfortunately, learning an accurate dynamics
model in large state-action spaces and highly stochastic environments is challenging in general'®?! and the fact that
our observed trajectories span only a narrow part of the state-action space exacerbates our learning challenges. In this
work, we forgo learning a parametric model but rather apply a transition model T'(s’|a, s) that selects the next state
s’ from the k-nearest state neighbors s € S that were administered the action @ in our batch data. Choosing k is
domain-specific and depends mainly on the stochasticity of the expert policy within the state space. In cases where
we did not find a non-trivial number of neighbors, we resort to either increasing % or finding transitions pertaining to
the closest neighbors of a among the possible alternatives. Unlike parametric models, using a non-parametric model
keeps our transitions s’ close to the real data and prevents the model from extrapolating badly in less represented parts
of the state-action space.
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Warm-Start for Convergence Any transition model - parametric or non-parametric, cannot make accurate predictions
far from the support of the batch data. Also, note that in the IRL learning process, one starts with some policy 7 to
generate samples from (using our learned transition model) in Step 2 and then learns the rewards in Steps 3 and 4
to optimize this policy iteratively. If we start with some policy 7 that is already close to the expert policy, not only
will our approximate rollouts in Step 2 be more accurate (as there is a higher likelihood of seeing those state-action
decisions in the data), but the IRL procedure will also require fewer iterations to converge. Thus, before starting the
AIRL loop, we first learn a (near-expert) policy using supervised learning. This data-informed choice of starting point
ensures that our IRL is both feasible and accurate in complicated batch settings with limited data coverage.

Wasserstein GAN training objective for Robustness At times, when modeling complicated distributions, the traditional
GAN objective? suffers from mode collapse and unstable gradients®®. In our experiments, we found some evidence
supporting this fact and hence, we use the discriminator training objective of a Wasserstein-GAN>* using the weight
clipping procedure to enforce K-Lipschitz continuity. This brings minor changes to any general discriminator D
(parametrized by w) loss function and weight updates compared to a traditional GAN?? as seen in Equation 1 (Refer
to Arjovsky et al.”?* for more details).

M M
_ L NG _ O
VuwL(Dy) = Mvw [; D, ((s,a,s ) ’D) ;Dw ((s,a,s ) T N
W™ = w4 + RMSPROP(w, V,, £(D,,))

w = CLIP(w, —¢, c¢)

We also train the discriminator for multiple epochs and take it closer to optimality in the earlier training phases as it
helps stabilize the overall learning. Also, note that good training of Wasserstein distance based discriminators require
the usage of non-momentum based optimizers such as RMSProp. Overall with the use of a transition model, warm-
start and a Wasserstein Distance based discriminator, we are able to extend AIRL to batch settings reasonably even in
environments with complicated dynamics such as the ICU.

Interpretable Reward Networks

The AIRL framework allows us to decompose the learned reward Ry (s, a, s’) into two terms: a true reward gp(s)
and a shaping reward. Shaping rewards '® refers to the process of modifying rewards from one form to another while
keeping the optimal policy the same. Shaping was originally introduced to speed up the optimization process in
traditional RL by incorporating some domain expertise into the reward formulation. Following®, we use the idea of
reward shaping in this work to transform a non-interpretable Ry (s, a, s") into an interpretable gg(s). We do so by
forcing an interpretable form on g¢(s) and letting the shaping term account for the effects of the environment dynamics
on the rewards.

Interpretable gy(s) via Neural Networks that Mimic Tree-Like Mechanisms Interviewing intensivists, we found that
they tend to think about a patient’s sickness or wellness in discrete terms—for example, a blood pressure value may
be acceptable or concerning—and these discrete settings define their goals. However, such discrete structures are
not easy to incorporate into gradient-based learning architectures for end-to-end learning. In this work, we build on
a novel architecture, the Deep Neural Decision Tree (DNDT) introduced by Yang et al.,”> which learns a discrete
split structure on each feature and represents different possible combination of these splits in order to learn response
prediction scores (rewards in our case) jointly via a single backpropagation step. This model also allows an arbitrary
number of splits without any restriction on the structure of the tree. We briefly explain the working mechanism of
DNDT. Assuming we can bin each of our features into a pre-specified number of discrete bins, we intend to set up our
interpretable reward gy ) using a neural network architecture that learns gg(,) based on combinations of these feature
bins (e.g. high BP, low urine — low rewards). It is important to note that the binning boundaries are learned by the
model and we need to specify only the number of bins along each feature. Figure 1a demonstrates the architecture of
DNDT for our interpretable reward gg(s). The network essentially has two hidden layers - a binning layer that learns
soft one-hot encodings (via activations) for each feature’s value with respect to its corresponding binning boundaries
and a decision layer that encodes every possible binary combination of these activations i.e. each possible combination
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Figure 1: (a) DNDT architecture for state-only reward approximator gy (s) assuming two features and three bins(two
boundaries). The binning layer creates a soft one-hot encoding (colored nodes in the binning layer) of the bin. The
decision layer is a result of Kronecker product of all nodes’ activated values in the binning layer, producing one unique
activation for each possible combination of feature bins. The entire model is differentiable via backpropagation. (b)
Rewards learned by the IRL models for MountainCar-v0 across the position feature, where the goal is to reach the
goal on right. AIRL learns a non-smooth and less interpretable rewards (yellow) while iAIRL(AIRL+DNDT) learns
more interpretable rewards (black) that motivate the agent to swing towards the extremes.

of the feature bins activates exactly one node in the decision layer. The weights mapping the decision layer and the
output node learn the value (in regression settings; or classification score in classification settings) of the response
variable (in our case, gy(s)) for different possible decision boundaries.

Towards creating sparse reward descriptions for better interpretability If we define the number of input features as
Djpput and the number of binning boundaries on each feature as Ny (Ny + 1 bins), the number of nodes in the
decision layer turns out to be (Ny + 1)Pinrut and thus DNDTSs do not scale well to a large number of features®. It
is important to note that the number of non-trivial weights in the decision layer is the number of different decision
boundary combinations we need to interpret. Also, it is obvious that we can understand clinicians’ motivations more
clearly if there are fewer decision boundaries with strong signals to interpret rather than an exploding number of
decisions. Hence, imposing some kind of sparsity is essential on these weights and we tackle this problem by applying
a L-1 weight regularization for the weights of the last layer?®. If the usual loss of any network whose N weights are
w1, Ny 18 Loy = ¢(w), a L1-regularized variant of the same model has the loss function L5 = ¢(w) + A Zfil |w;l,
where ) is the hyperparameter which signifies the regularization strength. This enforced sparsity means that we need
to form meaningful interpretations only about those rewards that have significant positive or negative values across the
spectrum of decision - i.e. most valuable or extreme decisions.

Demonstration on Synthetic Examples

Before experimenting with our model on the ICU data, we tested our approach on some basic IRL benchmarks—a
gridworld and mountaincar—where we had knowledge of the ground truth reward structure (unavailable in the clinical
setting; we emphasize the ground truth was only used for validation at the end and not during training). Due to space
constraints, the details of the experiments are included in Appendix A2 (where we compare our methods with other
batch IRL baselines). However, we illustrate the value of our approach in figure 1b, where the agent’s goal is to reach
the far right by swinging higher and higher. Our method iAIRL (batch AIRL + DNDT based state-only rewards) finds a
simple, discrete reward structure (very close to the one that generated the ground-truth demonstrations) that recovers
the optimal policy, unlike standard AIRL which learns a highly non-smooth, non-interpretable reward structure.

Hypotension Management in the ICU: Cohort, Modeling, and Experimental-Setup

In this section, we provide the details of how we extracted our cohort and applied the general ideas developed in this
work to the task of understanding the clinician motivations behind standard interventions for hypotension management
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in the ICU.

Cohort, Data Collection, and Features Our cohort was drawn from the public MIMIC-III version 1.4 database,?’
which contains trajectories from patients treated at Beth Israel Deaconess Medical Center between 2001 and 2012,
and our pre-processing closely follows the work of Ghassemi et al.?® Our cohort contained adult patients over the age
of 15 and we excluded patients with less than 6 hours or more than 360 hours of data. Applying these filters gave us a
total of 16,502 patients. For each patient, we extracted four arrays of features

e Static Features (z¥ € R'!) : age, weight on admission, SOFA, OASIS and SAPS scores at ICU admission,
indicator variables for gender, ethnicity, emergency, admission urgency and hours from admit to the ICU. These
observations remain constant for a patient throughout his/her stay in the ICU.

e Clinical Observations at time-step i (Xﬁ 2..T)’ :ci€ € R'8): bicarbonate, bun, creatinine, fio2, glucose, hct,

heart rate, lactate, magnesium, meanbp, platelets, potassium, sodium, spo2, spontaneousrr, temp, urine, wbc.
The choice of these features are drawn from Ghassemi at al.2®, which used the same set of features to predict
sepsis onset in patients.

o Indicator Flags for Observations at time-stepi (0f , ;5 0} € {0,1}'®): Anindicator variable that denotes
whether the observation actually changed from bin 2 — 1 to ¢, i.e. whether a new measurement for the concerned

feature was taken in the last 30 minutes (our time step size) in the ICU.

¢ Interventions at time-step i (y%‘le]; y¥ € R?): normalized vasopressor dosages and fluid boluses. These
interventions will be referred to as vasopressors/vaso and fluids in the rest of the text. It is well-known that both
these interventions are relevant towards managing blood pressure in the ICU'.

Each of the time-series variables was aggregated into 30 minute time intervals with the mean or sum being recorded
(as appropriate) when several data points were present in one window. All the features were then standardized using
z-scores. Finally, we split the dataset into training (80%) and holdout (20%) sets by patient. Further details on the
construction of an MDP from the dataset and the specific model architecture developed for warm-start with supervised
learning are discussed in Appendix Al.

Baselines and Training Incorporating a DNDT based architecture into AIRL rewards creates a potential trade-off
between reward function expressiveness and interpretability and it is important to understand the extent of this trade-
off in the ICU data. Thus, we consider two alternatives (both developed in this paper) in our experiments (Model,
training hyperparameters are given in Appendix AS5.)

o Off-policy AIRL (AIRL): We consider our off-policy batch extension of AIRL with a feed-forward architecture
for state-only reward function approximation i.e. gg(s) = FEEDFORWARD(s;#). Remember that gy(s) =~
R*(s) (function approximator of ground-truth rewards) .

e Interpretable AIRL (iAIRL): In addition to our off-policy extension of AIRL, we use a DNDT to approx-
imate the rewards, that is, go(s) = DNDT($;6). Since the number of decision mechanisms (nodes in last
layer) grows exponentially with the number of layers, we only choose a subset of features (in consultation with
clinicians):Mean BP, Heart Rate, Urine Output, Creatinine and Lactate.

Results on Understanding Hypotension Management in the ICU

iAIRL sacrifices little in action matching performance compared to AIRL. To evaluate the performance of our
model, the first metric we consider is action matching, which indicates how closely our model’s suggested actions
match that of the expert. Remember that we have 25 action bins in total (5 for each intervention) and the overall
action matching is calculated as the fraction of the number of observations in the hold-out set in which the model’s
predicted action (an action that maximizes the learned Q-values) matches the action taken by the expert. The overall
action matching for our warm-start imitation policy is around 73.69%. Using this policy to kick start the IRL, our
batch AIRL model learns a reward function with an action matching of 71.08% while our interpretable iAIRL learns
a reward function with an overall action matching of 64.43%.
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Both models largely learn the same or similar treatments suggested by clinicians. Since the action distribution
in our data is hugely imbalanced, studying just the overall action matching via accuracy does not provide the full
picture. Figure 2 shows the confusion matrices for both our batch AIRL and our interpretable batch iAIRL. We see
that both the models have strong diagonal terms indicating reasonable prediction accuracy for each class. In cases
where the predictions don’t match, the prediction vs. ground truth are close: the model predicts either the adjacent
action bin (same fluid action bin, 1 vasopressor action bin) or an action bin 5 steps away (same vasopressor bin, &1
fluid action bin). The main mismatch occurs for higher dosages of vasopressors and fluids. We suspect it is because
the features we have chosen for DNDT and the decision boundaries learned may not be expressive enough to handle
extreme scenarios in which the clinicians could be taking their decisions based on myriad other factors. That said, the
confusion matrix suggests that our matching is of sufficient quality for most common scenarios.

iIAIRL provides a significantly more parsimonious reward description than AIRL. For initial quantitative val-
idation of our claim that iAIRL learns more interpretable rewards than AIRL, we considered whether AIRL learned
similarly parsimonious rewards as iAIRL. To do so, we fit a decision tree restricted to 243 (3%, the same number of
nodes in the last DNDT layer for a fair comparison) leaf nodes to the rewards learned by AIRL. The decision tree’s
regression RMSE of 0.8 on rewards normalized to fall between [—1, 1] suggests poor learning of the reward function
by the decision tree. This implies that the learned AIRL rewards are more complex and non-smooth compared to
the 1AIRL rewards as they couldn’t be fit well into simple decision rules. This further reinforces the observation we
learned from Figure 1b that iAIRL learns discrete, sparse and neatly interpretable rewards compared to AIRL which
learns non-interpretable rewards.

Confusion Matrix for action matching with AIRL+DNDT

Confusion Matrix for action matching with AIRL only
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Figure 2: Confusion Matrices for action matching of AIRL (left) and iAIRL (right). The overall action matching of
AIRL is about 71% and that of iAIRL is about 65% when both are warm-started with an imitation policy with action
matching 73%. We see strong diagonal matrix meaning acceptable action matching and cases of wrong predictions
have a higher probability of being either the adjacent action bin (same fluid bin, +/- 1 vaso bin) or action bins 5 steps
away (same vaso bin, +/- 1 fluid bin). Remember that the overall action bin = fluid bin * 5 + vaso bin.

Clinical Perspective: Learned Rewards match clinician goals. Figure 3 shows the rewards along with the feature
bins learned by our iAIRL model. From the two extremes of rewards, we can observe certain general trends: The
model penalizes low BP, low urine, high heart rate and on the other hand, rewards stable to high BP, urine outputs and
stable heart rates, lactate levels. Because of our weight regularization, sparsity was enforced and the model placed
non-trivial rewards over only about 73 out of the 243 possible weights. There is no strong signal in creatinine possibly
because our interventions don’t directly control creatinine levels.
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Figure 3: A heatmap showing normalized rewards learned by the iAIRL model with respect to the 5 chosen features
and their corresponding value ranges. The high, medium and low ranges of features have been assigned distinct colors
here and the value ranges (Low, Medium and High) can be seen from the last 3 columns. The first reward (first column)
can be read as extremely low (bad) reward for low BP and Urine, high Heart Rate and Medium Lactate and Creatinine.

These learned reward patterns were shared with a practicing intensivist to study how the low, medium and high reward
decision boundaries learned by the model for each bio-marker compares to ranges that induce clinicians to intensify
patient treatment. (We only shared the rewards learned from our iAIRL model because there was no clear way to
summarize the complex network learned by unconstrained AIRL.) The higher range for blood pressure made sense;
the lower range (around 47) was lower than he expected but potentially made sense as a situation to avoid (that is, one
might act on a blood pressure of 55 to avoid a blood pressure of 47). Similarly, the range for lower urine matched his
cut-offs for actions. Where the ranges differed for the remaining variables, his hypothesis was that this reflected the
fact that blood pressure and urine were the main targets for vasopressors and fluids, and hence it could be reasonable
to see weaker signals on the other set of chosen features.

He noted a similar trend in the actual reward assignments: our algorithm recovered a function that gave higher rewards
to higher blood pressures and higher urine outputs, which he confirmed is the goal of vasopressor and fluid administra-
tion. The effect of heart rate, lactate, and creatinine on the reward also had a trend that was consistent with his notions
of better health, and it was interesting that these trends were discovered even though the interventions are not directly
targeting those measures; it suggests that clinician behavior may be implicitly trying to protect those aspects even
though they are not the goals they are shooting for. Overall, being able to see the learned IRL rewards confirmed that
intensivist behavior matched the goals that he believed he (and his colleagues) were aiming for and helped increase
his confidence in choosing a reward for RL tasks.

While both ends of the reward spectrum—the really high rewards and the really low rewards—matched his intuition,
the learned structure had imperfections for smaller / intermediate reward values. For example, there were times when
the model penalized creatinine levels over blood pressure levels, which ran counter to the intuition of our critical care
expert—especially as he noted that there was little that these interventions (vasopressors and fluids) could do to adjust
creatinine levels compared to their impact on a more obvious control feature such as blood pressure. Since the action-
matching performance of our algorithm, while appreciably high for fully-batch IRL, was still far from perfect, these
inconsistencies might simply be due to the fact that our reward function does not perfectly induce the expert behavior
and only approximates it reasonably; improving the IRL based on these kinds of expert inputs and the model, data
engineering suggestions discussed throughout this work are definitely interesting avenues for future work.

Discussion

In the previous section, we discussed many of the qualities of our batch AIRL and iAIRL algorithms in the context of
recovering rewards associated with hypotension management in the ICU. We provide an in-depth technical discussion
on certain key implementation aspects of the model in Appendix A4 and focus on the broader implications here. Being
able to extract possible reward structures from observational data has important applications, both for the design of
assistive agents—who need very precise descriptions of what they are to assist in optimizing—as well as general
introspection. While our work makes significant progress toward this goal, we do have some fundamental limitations.
One is that rewards are inherently non-identifiable (imagine adding 1 to every reward; the decisions will not change).
Our approach uses that non-identifiability as a feature to find an interpretable reward among many potential rewards.
However, there may be other interpretable rewards that recover expert policies. That said, we noticed that the feature
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bins combinations constituting extreme rewards (close to +1 or -1) were consistently similar across different runs of our
model while we observed variation in the relative ordering of the feature combinations signifying small/intermediate
rewards, implying that our model learns the decisions at the extremes of the reward spectrum robustly. Moreover,
the work here is intended to provide clinicians a starting point for defining and quantifying rewards, and that human
inspection will identify if a particular structure is not sensible.

Another key consideration is that all of our work is predicated on some definition of patient state. In this work, we
assume that the most recent raw observations are sufficient to capture the patient’s state. Future works could benefit
from more sophisticated latent space encodings. We also acknowledge the fact that several clinical decisions are made
using factors that are not part of our data, and that the “clinician policy” that we see is, in fact, a mixture of decisions
made by many people. Our approach can be applied to any set of input, so advances in capturing better notions of
patient state, new variables, and specific decision-makers could be included; we again emphasize that the ability to
validate with experts that our interpretability provides protects us from catastrophic outputs.

Conclusion

Understanding motivations behind ICU interventions purely from logs of patient data is an important and challenging
task. In this work, we developed a robust, batch IRL algorithm (1AIRL) to learn these motivations in a clinically
interpretable fashion. With these enhancements, we learned a parsimonious description of the motivations behind
vasopressor and IV fluids prescription for hypotension management in the ICU from MIMIC-III data and also found
that the learned motivations are largely consistent with clinical practice. Apart from refining the algorithms, future
work can use this model of learning interpretable rewards for building reliable assistive agents, transferring the learned
motivations to similar clinical treatment tasks and further data-driven quantification of the differences between patients.
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