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Abstract
Neural Linear Models (NLM) are deep mod-
els that produce predictive uncertainty by learn-
ing features from the data and then performing
Bayesian linear regression over these features. De-
spite their popularity, few works have focused on
formally evaluating the predictive uncertainties
of these models. In this work, we show that tra-
ditional training procedures for NLMs can dras-
tically underestimate uncertainty in data-scarce
regions. We identify the underlying reasons for
this behavior and propose a novel training proce-
dure for capturing useful predictive uncertainties.

1. Introduction
In high-stakes, safety critical applications of machine learn-
ing, reliable measurements of model predictive uncertainty
matter just as much as predictive accuracy. Traditionally, ap-
plications that require predictive uncertainty have relied on
Gaussian Processes (GPs) (Rasmussen & Williams, 2006),
a non-parametric model that produces high predictive uncer-
tainty in data-scarce regions and low uncertainty in data rich
ones. Recent works, however, have advocated for the use of
deep Bayesian models as fast and scalable GP alternatives
(Springenberg et al., 2016; Snoek et al., 2015).

Bayesian Neural Networks (BNNs) (Neal, 1995) provide a
way of explicitly capturing model uncertainty - uncertainty
arising from having insufficient observations to determine
the “true” predictor - by placing a prior distribution over
network weights. Just like GPs, rather than point estimate
predictions, Bayesian inference for BNNs produces distribu-
tions over possible predictions, whose variance can be used
as an indicator of model confidence during test time.

However, inference for large BNNs remains extremely chal-
lenging. For this reason, Neural Linear Models (NLM), a
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model with BNN-like properties but highly tractable infer-
ence, is gaining popularity (Pinsler et al., 2019; Snoek et al.,
2015; Riquelme et al., 2018; Zhou & Precioso, 2019). NLM
places priors only on the last layer of network weights and
learns point estimates for the remaining weights; inference
for the last weight layer can then be performed analytically.
One interprets the deterministic network layers as a finite di-
mensional feature space embedding of the data, and the last
layer of NLMs as performing Bayesian linear regression on
the basis defined by these features. So, the NLM is also an
approximation of GPs (the latter performs Bayesian linear
regression on infinite dimensional bases).

Despite their increasing popularity, little work has been done
to formally evaluate the quality of uncertainty estimates
produced by NLMs. In the first paper to do so (Ober &
Rasmussen, 2019), the authors show that NLMs can achieve
high log-likelihood on test data sampled from training data-
scarce regions; they treat this as evidence that NLM uncer-
tainties can distinguish data-scarce and data rich regions.
However, as noted in (Yao et al., 2019), log-likelihood mea-
sures only how well predictive uncertainty aligns with the
variation in the actual data and not how well these uncer-
tainties predict data-scarcity.

Our contributions are both theoretical and methodological:
(1) we show that NLM’s predictive uncertainty may not
be able to distinguish data-scarce regions from data-rich
ones; furthermore, we identify the precise cause of the prob-
lem: the NLM training procedure learns feature bases inca-
pable of expressing uncertainty in data-scarce regions, or
“in-between" uncertainties (2) we propose a new basis train-
ing procedure, LUNA, for NLMs that explicitly optimizes
features to produce expressive in-between uncertainties.

We show, on a number of synthetic and real datasets, that we
are reliably able to identify data-scarce regions in training
where NLM (and other baseline methods) struggle. Fur-
thermore, we show that LUNA is able to learn bases that
outperform NLM bases in terms of transfer learning and
minimizing generalization error. Lastly, we demonstrate
the utility of LUNA’s uncertainty estimates by showing that
LUNA bases outperform baselines on a down-stream task
for uncertainty estimation: Bayesian Optimization.
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2. Background
Let the input space be D dimensional, and suppose we have
a dataset {(x1, y1), . . . , (xN , yN )}, where xn ∈ RD and
yn ∈ R. A Neural Linear Model (NLM) consists of: (1)
a feature map φθ : RD → RL, parameterized by a neural
network with weights θ, and (2) a Bayesian linear regression
model fitted on the data embedded in the feature space:

y ∼ N (Φθw, σ
2I), w ∼ N (0, αI)

where the design matrix Φθ = [φ̃θ(x1), . . . , ˜φθ(xN )]T and

φ̃θ(xn) is the feature vector φθ(xn) augmented with a 1.
Thus, for NLMs, the posterior, marginal and posterior pre-
dictive distributions are all computed analytically.

Intuitively, NLM represents a neural network withL number
of nodes in the last hidden layer and Gaussian priors placed
on the last layer of weights, w.

Typically, the θ is learned by training the entire network
with an maximum a posteriori objective (Snoek et al.,
2015), since marginalizing out w involves backpropagating
through large matrix inversions (Appendix Section A.2):

LMAP(θFull) = logN
(
y; Φθw, σ

2I
)
− γ ‖θFull‖22 (1)

where θFull = (θ,w) are weights of the full network. Infer-
ence on w is then performed with θMAP fixed.

3. Analysis of the Expressiveness of Neural
Linear Model Uncertainties

In this section, we demonstrate that conventional training
for NLMs consistently learns feature bases that span a lim-
ited class of functions in the prior predictive. As a result,
the posterior predictive will be distributed over very limited
function classes. Specifically, the lack of diversity in the
posterior predictive functions leads to limited functional
variations across the input domain, causing NLMs to un-
derestimate in-between uncertainty.

We also identify the precise cause of this problem: the train-
ing objective optimizes the feature bases to maximize the
likelihood of the observed data and doing so does nothing
to encourage the bases to support functions that extrapolate
differently away from the observed data. In fact, we show
that the regularization terms in the NLM training objective
actively discourages functional diversity in the posterior. In
Appendix A.2, we show that our analysis generalizes to the
case where one optimizes the feature map φθ to maximize
the marginal data likelihood (by integrating out w).

Feature map regularization leads to inexpressive fea-
ture bases. When the regularization term in the NLM ob-
jective (Eq 1) is non-zero, the feature map φθ is explicitly
discouraged from producing bases spanning functions that

extrapolate differently away from the observed data. This is
because such diversity comes at the cost of larger values in θ
and does not impact the log-likelihood of the observed data.
In Figure 1a, we show samples from the prior predictive for
two NLMs with regularized and unregularized feature maps
φθ. With the regularization parameter γ set at 0, the basis
for φθ spans a diverse class of functions under the prior
distribution p(w) over their linear combinations - the prior
predictive samples show variation in both the data-rich and
data-scarce regions. With regularization, the feature basis
spans a limited set of functions - the prior predictive samples
show no variation in the data-scarce region. In Figure 6 of
Appendix D.1, we reproduce the effect of regularization on
NLM prior predictives for different γ over random restarts.
In the following, we show that NLMs are biased towards
learning inexpressive bases even when we set γ to be zero!
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(a) Prior predictive samples for NLM with different regularization
parameters γ. For γ1 = 0.00 (left), we get expressive prior predic-
tive samples that are capable of producing the desired in-between
uncertainty. This is not so when γ2 = 10.38 is higher (right).
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(b) Posterior predictive distributions for NLM with different reg-
ularization parameters γ. With γ1 = 0.00 (left), we express
desired in-between uncertainty, but this is not so with γ2 = 10.38
(right). Both models give similar test log-likelihoods, thus test log-
likelihood cannot measure the quality of in-between uncertainty.

Test log-likelihood does not measure the quality of pos-
terior in-between uncertainty. Typically, the hyperparam-
eter γ is chosen by grid-search or BayesOpt maximizing the
test log-likelihood (where the test data is sampled from the
same distribution as the train data). In Figure 1b, the test
log-likelihood for the NLM with a regularized feature map
is a hair higher. Thus, by maximizing test log-likelihood,
we choose a model with a posterior predictive that is inex-
pressive over the data-scarce region and hence unable to
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capture in-between uncertainty.

Likewise, the architecture of the feature map φθ, e.g. the
number of features L, is also chosen by maximizing the
test log-likelihood. In Figures 7 and 8 of Appendix D.1,
we demonstrate that the number of features, more so than
the depth of the network, determines the expressiveness
of priors predictives (and hence posteriors predictives) of
NLMs. In particular, we show that for a small number of
features, even when φθ is unregularized, while some optimal
(with respect to train log-likelihood) settings of θ will result
in expressive prior predictives, most will not. On the other
hand, when the number of features L is large, then most
optimal settings of θ will correspond to expressive priors
predictives. However, when we choose L to be as small
as possible while maximizing test log-likelihood, then we
may very well choose an architecture for which no optimal
setting of θ will correspond to an expressive prior predictive.

4. Learned UNcertainty-Aware (LUNA) Bases
To ensure that the NLM learns a feature basis that spans
a diverse set of functions in the prior predictive, we ex-
plicitly train the feature map φθ to encode for functional
diversity. Specifically, we train M auxiliary linear regres-
sors, fm(x) = Φθwm, on a shared design matrix Φθ (see
illustration in Figure 2). Our training objective, LLUNA,
maximizes the mean log-likelihood of the regressors on
the training data, measured by LFIT, while encouraging for
functional diversity amongst them, measured by LDIVERSE
(defined further below):

LLUNA(Ψ) = LFIT(Ψ)− λ · LDIVERSE(Ψ) (2)

where Ψ = (θ,w1, . . .wM ), θ parametrizes the shared de-
signed matrix and wm are the weights of fm. The constant
λ controls for the degree to which we prioritize diversity. We
encourage for diversity in the regressors trained on our basis
since our analysis in Section 3 shows that if the feature basis
spans diverse functions under the prior p(w), the posterior
predictive will be able to capture in-between uncertainty.

After optimizing our feature map via:

θLUNA, {wm,LUNA} = argmaxΨLLUNA(Ψ),

we discard the auxiliary regressors {wm,LUNA} and per-
form Bayesian linear regression on the diversified feature
basis, the LUNA basis. That is, we analytically compute
the posterior p(w|D, θLUNA) over the last Bayesian layer
of weights w in the Neural Linear Model. In summary,
LUNA training results in a basis that supports a diverse
set of predictions by varying w.

LFIT: Fitting the Auxiliary Regressors. We learn the re-
gressors jointly with Φθ, by maximizing the average train

Figure 2. Illustration of the NLM and LUNA training. During
training, in LUNA, the output layer has M neurons instead (shown
in red) that learn different functions for the data. These neurons
are discarded during inference. This helps the model learn more
optimum features Φθ for well-calibrated uncertainty.

log-likelihood of the regressors on the training data, with `2
penalty on θ as well as on the weights of each regressor:

LFIT(Ψ) =
1

M

M∑
m=1

logN (y; fm(x), σ2I)− γ ‖Ψ‖22 .

LDIVERSE: Enforcing diversity. We enforce diversity in
the auxiliary regressors as a proxy for the diversity of the
functions spanned by the feature basis. We adapt the Local
Independence Training objective in (Ross et al., 2018) to
encourage our regressors to extrapolate differently away
from the training data, where cos sim is cosine similarity:

LDIVERSE(Ψ) =

M∑
i=1

M∑
j=i+1

CosSim2 (∇xfi(x),∇xfj(x)) .

Here we encourage extrapolation difference in every pair of
regressors fi and fj by penalizing non-orthogonal gradients.
Furthermore, we avoid expensive gradient computations us-
ing a finite difference approximation. A detailed explanation
of the training objective is found in Appendix B.1.

5. Experiments
We compare LUNA to traditional NLM inference as well
as a variety of other models on 3 toy problems and 5 UCI
“gap” datasets (Foong et al., 2019). We show that NLMs
with LUNA bases are able to distinguish data-scarce regions
from data rich ones. We also show that with fewer features,
NLM with LUNA bases achieves lower generalization error
and LUNA bases retain their utility in transfer learning.
Finally, we show that NLM with LUNA bases outperform
baselines on a Bayesian Optimization task.

Our baselines are: NLM, MC Dropout (MCD) (Gal &
Ghahramani, 2016), MAP (see Appendix C.3) and ensemble.
Experimental setup details in Appendix C.
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Figure 3. Comparison of posterior predictive distributions on “Cu-
bic Gap” (see Appendix C.1). “Gold standards”: BNN with Hamil-
tonian Monte Carlo sampling, GP. LUNA most resembles gold
standards, while other methods underestimate uncertainty in gap
regions.

LUNA obtains better uncertainty estimation on Toy
Data Following the set-up in (Ober & Rasmussen, 2019),
we construct a synthetic 1-D cubic function with a gap (see
“Cubic Gap” in Appendix C.1). Figure 3 shows that NLM
with LUNA bases matches the performance of the “gold-
standards”: BNN with HMC and GP, while other baselines
drastically underestimate in-between uncertainty.

LUNA obtains better uncertainty estimation for UCI
Gap Datasets We use 5 UCI “gap” datasets (Foong et al.,
2019) with artificially created gaps in the training set, and
demonstrate that, as desired, LUNA’s model uncertainty is
able to distinguish between the gap region and data-rich
regions of the input space. We evaluate test log-likelihoods
and epistemic uncertainties for data sampled inside the gap
and outside the gap (see Appendix C.2). In the gap, a good
model should have higher epistemic uncertainty without a
large decrease in test log-likelihood (i.e. the generalization
error should be low). In Appendix D.4, we see that, across
all data sets, NLM with LUNA bases has higher epistemic
uncertainty for test data in gaps without a large decrease
in log-likelihood. NLM with traditional training results in
significant decrease of log-likelihood on gap data (the model
overfits) and does not provide higher epistemic uncertainty
in gaps. Finally, MCD generalizes well to gap data, but fails
to provide higher epistemic uncertainty in gaps.

LUNA bases are better for generalization and transfer
learning even with few features. We show that for a range
of feature numbers, NLM with LUNA bases outperforms
NLM when generalizing to test data sampled from the same
distribution as train. We construct a synthetic 1-D dataset
(“Squiggle Gap” in Appendix C.1), which unlike the cubic
example, has unexpected variations in the held-out gap re-
gion. In Figure 4a, we see that with a very large number of
features, all models generalize well. However, LUNA bases
generalizes well for even very small number of features.

We now consider transfer learning, that is, we fix the feature
map φθ and re-train the posterior p(w|D, θ) over the last
layer using data from the gap. Figure 4b shows that LUNA
bases can easily be adapted to modeling data from the gap,

while NLM feature bases struggle to adapt as well, even as
we increase the number of features.

LUNA performs better on BayesOpt We compare NLM
with LUNA bases, NLM and GP for Bayesian optimization
on a 1D function (see BayesOpt in Appendix C.1). In Figure
12 of Appendix D.3, we see LUNA and NLM both converge
faster than the GP. Over 10 runs, LUNA outperforms NLM
on average and has much lower variance across runs.
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(a) Generalization task
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Figure 4. Comparison of LUNA and baselines on “Squiggle Gap”
(see Appendix C.1) as the number of features are varied. Gen-
eralization: With any number of features, LUNA outperforms
baselines on test and train data sampled from the same distribution.
Transfer learning: With any number of features, LUNA outper-
forms NLM under covariate shift when the features are fixed but
the Bayesian linear model is retrained on the new data.

6. Conclusion
In this paper, we show that traditional NLM training (maxi-
mizing MAP) learns feature bases that span a limited class
of functions in the prior predictive distribution, and hence
NLM posterior uncertainty cannot distinguish data-poor re-
gions from data rich-ones. We identified the cause of the
problem: optimizing the bases to maximize likelihood on
train data does not encourage them to span diverse functions
away from training data. Furthermore, we showed that this
problem is not solved when the feature map φθ is learned
by maximizing the marginal log-likelihood.

Based on this observation, we propose a new feature train-
ing procedure LUNA that explicitly encourages diversity
in functions spanned by the learned feature basis. On toy
and real data, we show that NLMs with LUNA bases out-
perform baselines on uncertainty estimation, generalization
and transfer learning. On a toy BayesOpt task, we show that
LUNA bases out-perform baselines as well as a GP.

Feature map learning in NLMs is a hyperparameter se-
lection procedure for Bayesian linear regression. Thus,
our work shows that we need general uncertainty-aware
frameworks for hyperparameter selection that are alter-
natives to likelihood-based selection. In future work, we
intend to explore theoretical connections between LUNA
and likelihood-based training in this broader setting.
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A. Neural Linear Model Details
A.1. MAP Training

Here, we largely follow the specification in (Ober & Ras-
mussen, 2019). NLM uses a neural network to parameterize
basis functions for a Bayesian linear regression model by
treating the output weights of the network probabilistically,
while treating the rest of the network’s parameters θ as hy-
perparameters.

Using notation from Section 2 and following standard
Bayesian linear regression analysis, we can derive the pos-
terior predictive as

p(y?|x?,D) = N (y?; w
T
Nφθ(x?), σ

2+φθ(x?)
TVNφθ(x?))

where

wN =
1

σ2
VNΦθ

Ty

V−1
N =

1

α
IM×M +

1

σ2
Φθ

TΦθ.

(3)

For the MAP-trained NLM, we maximize the objective

LMAP(θFull) = logN
(
y; Φθw, σ

2I
)
− γ ‖θFull‖22

= −N
2

log 2πσ2 − 1

2σ2
‖y −Φθw‖22

− γ ‖θFull‖22

where θFull represents the parameters of the full network
(including the output weights). We would then extract θ
from θFull and perform the Bayesian linear regression as
above.

A.2. Marginal Likelihood Training

The NLM is defined the same as above, but we optimize θ
to maximize the evidence or log marginal likelihood of the
data instead (by integrating out w). For training stability
and identifiability, we further regularize θ as in (Ober &
Rasmussen, 2019). The full objective is hence:

LMarginal(θFull) = log

∫
p(y|X,w)p(w)dw

= −N
2

log 2πσ2 − 1

2σ2
‖y −Φθw‖22

− M

2
logα− 1

2α
‖wN‖22

− 1

2
log |VN |

The authors of (Ober & Rasmussen, 2019) note that the
addition of a regularization term γ ‖θ‖22 to LMarginal is nec-
essary for the estimates of the output noise since this tends
to zero when the objective is unregularized. In Theorem A.1,
we also show that without the regularization term γ ‖θ‖22,

the features Φθ experience pathological blow-up for ReLu
networks, since large Φθ reduce the magnitude of the poste-
rior mean wN , and hence increase LMarginal.

Theorem A.1. Suppose that the activations are ReLu func-
tions. For fixed θ, w and any c > 0, we define θc as θ but
with the last layer of weights scaled by c, we also define
wc as 1

cw. For a sufficiently large C > 0 and any c > C,
we have that LMarginal(θFull) < LMarginal(θ

c
Full), where

θFull = (θ,w) and θcFull = (θc,wc).

Proof. Let us first establish the relationship between wN

and Φθ in the asymptotic case ‖Φθ‖ → ∞. From Eq 3,

1

σ2
Φθ

TΦθ �
1

α
IM×M =⇒ V−1

N →
1

σ2
Φθ

TΦθ

=⇒ VN → σ2
(
Φθ

TΦθ

)−1

Hence,

wN →
(
Φθ

TΦθ

)−1

Φθ
Ty =⇒ ‖wN‖ ∼

1

‖Φθ‖
.

Note that the loss ‖y − Φθw‖ is equal to ‖y − Φθcw
c‖,

since Φθc is Φθ scaled by c and this scaling is canceled
by wc = 1

cw. Thus, since ‖wc
N‖ < ‖wN‖, we have that

LMarginal(θFull) < LMarginal(θ
c
Full).

The above theorem tells us that that we can continue to
increase LMarginal by reducing ‖wN‖. Hence, if we do not
regularize θ, the training will continually increase ‖Φθ‖ to
affect a decrease in ‖wN‖.

However, the addition of the regularization term γ ‖θ‖22 to
LMarginal biases training towards inexpressive feature bases
for the same reason we identified in Section 3. In Figure 10,
we show that with regularization, the feature bases learned
by optimizing LMarginal are inexpressive. In Figure 9 we
see that even with γ set close to zero, the learned feature
bases are not consistently expressive across random restarts.

B. LUNA Details
B.1. Training Objective

As stated in section 4, we have adapted the training objec-
tive from (Ross et al., 2018). We use the cosine similarity
function on the gradients of the auxiliary regressors:

CosSim2 (∇xfi(x),∇xfj(x)) =(
∇xfi(x)T∇xfj(x)

)2
(∇xfi(x)T∇xfi(x)) (∇xfj(x)T∇xfj(x))

(4)

This acts as a measure of orthogonality, equal to one when
the two inputs are parallel, and 0 when they are orthogo-
nal. A higher penalty, λ, in the training objective penalizes
parallel components, hence enforcing diversity.
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In practice, we approximate these gradients using a finite
differences approximation. This was done to save on com-
putational cost. That is, we approximate gradients as:

∇xfi(x) ≈ fi (x + δx)− fi (x)

δx
(5)

for some small perturbation δx. We sample perturbations
according to δx ∼ N (0, σ2), where we generally use σ =
0.1.

C. Experimental Setup
C.1. Synthetic Data

Cubic Gap Example Following the set-up in (Ober &
Rasmussen, 2019), we construct a synthetic 1-D dataset
comprising 100 train and 100 test pairs (x, y), where x is
sampled uniformly in the range [−4,−2] ∪ [2, 4] and y is
generated as y = x3 + ε, ε ∼ N (0, 32).

Squiggle Gap Example We construct a synthetic 1-D
dataset where train x is uniformly sampled from the range
[−4,−2] ∪ [2, 4] and y = x3 + 20 exp(−x2) · sin(10x) +
ε, ε ∼ N (0, 32). As seen in Figure 5, this function is like
the Cubic Gap Example, but with unexpected variations in
the gap. For the generalization experiment, test x is sampled
from the same range. For the transfer learning experiment,
test x is sampled from the range [−2, 2], inside the gap.

4 3 2 1 0 1 2 3 4
x

80

40

0

40

80

y

Squiggle Gap Function

Function Not Gap Region Gap Region

Figure 5. The squiggle gap function y = x3 + 20 exp(−x2) ·
sin(10x).

BayesOpt Example We maximize the function f(x) =
sin(0.1x)/0.1x in the range [−100, 100], where the true
maxima lies at x = 0. The samples from the function have
added noise ε ∼ N (0, 10−8). Each model was run 10 times
to get variance across runs.

C.2. Real Data

We used 3 standard UCI (Dua & Graff, 2017) regression
data and modify them to create 5 “gap data-sets”, wherein
we purposefully created a gap in the data where we can
test our model’s in-between uncertainty (i.e. we train our
model on the non-gap data and test the model’s epistemic
uncertainty on the gap data). We adapt the procedure from
(Foong et al., 2019) to convert these UCI data sets into
UCI gap data sets. For a selected input dimension, we
(1) sort the data in increasing order in that dimension, and
(2) remove middle 1/3 to create a gap. We specifically
selected input dimensions that have high correlation with
the output in order to ensure that the learned model should
have epistemic uncertainty in the gap; that is, if we select a
dimension that is not useful for prediction, any model need
not have increased uncertainty in the gap. The features we
selected are:

• Boston Housing: “Rooms per Dwelling” (RM) and
“Percentage Lower Status of the Population” (LSTAT)

• Concrete Compressive Strength: “Cement” and “Su-
perplasticizer”

• Yacht Hydrodynamics: “Froude Number”

C.3. Training

Optimization We used the Adam optimizer (Kingma &
Ba, 2014) with a learning rate of 10−3 in all experiments.
We use 10000 iterations for the cubic and squiggle gap data
experiments, 2000 iterations for the BayesOpt experiment
and 20000 iterations for the real data experiments.

Architecture For the cubic gap example, all neural net-
works are 2-layer 50 hidden units ReLU networks (except
for the full BNN, in which a 1-layer network was used to re-
duce computational cost). The LUNA model uses M = 50
auxiliary functions. The ensemble uses 50 independent net-
works and we use the mean and variance of the outputs as
the predictive mean and uncertainty. For each network in
the ensemble, we train with bootstraps of the training data.
The GP model uses the sum of a Matern-5/2 kernel with
length scale 1.0 and a white kernel with ground truth noise
variance σ2 = 32.

For the squiggle gap example, we use 2-layer ReLU net-
works with 50 units in the first hidden layer and variable
units in the second hidden layer based on the experiment.
The LUNA model uses M = 50 auxiliary functions.

In both these examples, the MAP model is simply the maxi-
mum a posteriori trained neural network with ground truth
noise variance σ2 added as the model variance.

For the BayesOpt example, the neural networks have 2
hidden layers with 10 units in each layer. They use the RBF
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activation with parameter γ = 0.01. The LUNA model uses
M = 20 auxiliary functions. The GP model uses the sum
of an RBF kernel with length scale 10.0 and a white kernel
with ground truth noise variance σ2 = 10−8. The random
guessing baseline just random uniformly samples the input
domain every iteration.

C.4. Hyperparameters

We tuned hyperparameters for all models using 20% of the
training data as a held-out validation set.

Synthetic Data The ground truth noise variance σ2 was
used in all models.

For the Neural Linear model (NLM), the regularization
hyperparameter γ was selected by maximizing validation
log-likelihood using 50 iterations of Bayesian optimization
over the range γ ∈ [10−3, 103], initialized with 10 iterations
of random search. The chosen value was γ = 8.37.

For the LUNA model, the regularization hyperparameter γ
and the diversity hyperparameter λ were selected using grid
search over γ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}
and λ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}. We first
set a minimum threshold and reject all models with vali-
dation log-likelihoods below this threshold. In this case,
our threshold was simply the average of all validation log-
likelihoods of the grid-search models. We then select the
model that has the smallest diversity error LDIVERSE(Ψ) (see
Section 4). This selection procedure ensures we select suffi-
ciently expressive basis features while maintaining reason-
able performance on the training data. The chosen values
were γ = 10−1 and λ = 100.

Since the NLM and LUNA have the same inference archi-
tecture, a reasonable value for the prior variance α = 1.0
was used for consistency.

For the Monte Carlo Dropout (MCD) model, the dropout
rate p was selected by maximizing validation log-likelihood
using 50 iterations of Bayesian optimization over the range
p ∈ [10−3, 0.5], initialized with 10 iterations of random
search. The chosen value was p = 0.00225. The model
precision τ was set to the inverse of the ground truth noise
variance σ2. A reasonable 1000 forward passes were used
to obtain model uncertainty.

Real Data We first fit a maximum a posteriori (MAP)
model to the data sets and use the variance of the output
errors as the noise variance σ2 in all models.

For the NLM, the regularization hyperparameter γ was se-
lected by maximizing validation log-likelihood using grid
search over γ ∈ {10−2, 10−1, 100, 101, 102}.

For the LUNA model, the regularization hyperparameter

γ and the diversity hyperparameter λ were selected us-
ing grid search over γ ∈ {10−2, 10−1, 100, 101, 102} and
λ ∈ {10−3, 10−2, 10−1, 100, 101, 102, 103}. We first set a
minimum threshold and reject all models with validation
log-likelihoods below this threshold. In this case, our thresh-
old was simply the average of all validation log-likelihoods
of the grid-search models. We then select the model that
has the smallest diversity error LDIVERSE(Ψ). This selection
procedure ensures we select sufficiently expressive basis
features while maintaining reasonable performance on the
training data.

Since the NLM and LUNA have the same inference archi-
tecture, a reasonable value for the prior variance α = 10.0
was used for consistency.

For the Monte Carlo Dropout (MCD) model, we follow (Gal
& Ghahramani, 2016) and set the dropout rate p = 0.05.
Since the other models used the same learned noise variance
σ2, we set the model precision τ to the inverse of this σ2. A
reasonable 1000 forward passes were used to obtain model
uncertainty.

The selected hyperparameters are shown in Table 1.

D. Experimental Results
D.1. Toy Problem

We show NLM prior predictive samples and posterior pre-
dictive distributions, with and without regularization, across
random restarts in Figure 6. With regularization, NLM is
unable to get expressive prior predictive samples and hence
increased in-between posterior predictive uncertainty. While
this can be achieved with no regularization, it is inconsis-
tent in doing so. A good initialization is needed, which is
currently impossible to select a priori. For high dimensional
cases, since we cannot plot the distributions, it is impossible
to select these few good initialization out of random restarts.
In a real case, this issue is further exacerbated because we
do not know where the gaps are. We have shown in Section
3 that we cannot use log-likelihood to judge this either.

We also show the posterior predictive distributions for
NLMs with different numbers of basis features across ran-
dom restarts in Figure 7, and with different numbers of
hidden layers across random restarts in Figure 8. We see
that increasing number of features is more important than
increasing depth for improving posterior predictives.

Finally, we show NLM prior predictive samples and pos-
terior predictive distributions for marginal data likelihood
training, described in Appendix A.2. This is shown for
different regularization and prior variances across random
restarts in Figures 9 and 10. We see the same trends here
as what was observed above with traditional MAP training.
With high regularization (high γ or low α), the feature bases
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for the learned θ do not span diverse functions in the prior
predictive and hence cannot capture in-between uncertainty.
With low regularization (low γ or high α), the model has
the potential to capture in-between uncertainty, but it does
so inconsistently across random restarts and needs to rely
on good initialization.

D.2. Generalization

We show the full result from the generalization experiment
(see Section 5) in Figure 11. All models, except MCD, con-
verge to good generalization ability when a enough features
are used. While MCD has relatively good performance with
low feature numbers, there is not much of an improvement
as more features are used. We believe this is worthy of
further investigation.
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Figure 11. With any number of features, LUNA outperforms other
models on test data sampled from the same distribution as train
data. While the other models converge to LUNA’s performance
with large number of features, this does not happen with MCD.

D.3. BayesOpt Downstream Task

We show the results from the BayesOpt experiment (see
Appendix B.1) in Figure 12. We see that LUNA shows the
fastest convergence and has smaller variance over 10 runs
than NLM.
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Figure 12. Bayesian Optimization using LUNA and baselines.
LUNA converges the fastest and has much lower variance than
NLM across runs.
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Figure 6. This experiment was run with a 2-layer ReLU network with 50 and 20 neurons in the first and second layers respectively (20
features). We used MAP training. With no regularization and very noisy priors, the NLM is able to model in-between uncertainty, albeit
inconsistently. With regularization, we see the priors are not expressive enough and the NLM fails to ever capture in-between uncertainty.
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Figure 7. This experiment was run with a 2-layer ReLU network with 50 neurons in the first layer and without regularization. We used
MAP training. The number of neurons in the second layer correspond to the number of features. We see clearly as model capacity
increases NLM better fits the data. However, this increased capacity still fails to consistently model in-between uncertainty.
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Figure 8. This experiment was run with a 2-layer ReLU network with 50 and 20 neurons in the first and second layers respectively (20
features). We used MAP training. We see that NLM is able to capture more complex relationships as capacity increases, but this increased
capacity does not lead to consistent in-between uncertainty. Additionally, these added layers make NLM susceptible to overfitting.
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Figure 9. This experiment was run with a 2-layer ReLU network with 50 and 20 neurons in the first and second layers respectively (20
features). We used marginal likelihood training and a smaller γ = 0.1. We see that this NLM is able to capture higher in-between
uncertainty when α is high enough, but is inconsistent in doing so.
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Figure 10. This experiment was run with a 2-layer ReLU network with 50 and 20 neurons in the first and second layers respectively (20
features). We used marginal likelihood training and a larger γ = 1.0. We see that this NLM is unable to capture higher in-between
uncertainty even when α is high.



Learned Uncertainty-Aware (LUNA) Bases for Bayesian Regression

D.4. UCI Gap

We visualize test log-likelihoods and epistemic uncertain-
ties inside and outside the gap for the Yacht “Froude” data
set in Figure 13. Outlier removal was done, where an out-
lier is defined as having modified z-score greater than 3.5
(Iglewicz & Hoaglin, 1993). Outliers were calculated inde-
pendently for each metric. In total, 1.33% of data points
were treated as outliers and removed. Exact outlier details
are shown in Table 4. Note that NLM shows catastrophic
gap likelihood failure without significant gap epistemic un-
certainty increase, while MCD fails to capture higher gap
epistemic uncertainty. LUNA is able to capture this higher
gap epistemic uncertainty while maintaining good gap log-
likelihood.
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Figure 13. Average test log-likelihoods (left) and epistemic uncer-
tainties (right) outside and inside the gap for Monte Carlo Dropout
(MCD), Neural Linear model (NLM) and LUNA model, with a
gap created in the “Froude Number” feature for the Yacht UCI
dataset. We see that LUNA expresses higher epistemic uncertainty
in the gap while maintaining good log-likelihood.

We also present tabulated values for experiments run using
multiple architectures across many more features of the UCI
gap data sets. The metrics reported are root mean squared
error (RMSE), average log-likelihood (LL), and epistemic
uncertainty (standard deviation). These are seen below in
Table 2 for two layer models and Table 3 for one layer
models.



Learned Uncertainty-Aware (LUNA) Bases for Bayesian Regression

Yacht - Froude Boston - RM Boston - LSTAT Concrete - CEMENT Concrete - SUPER

LUNA NLM LUNA NLM LUNA NLM LUNA NLM LUNA NLM

γ λ γ γ λ γ γ λ γ γ λ γ γ λ γ

1 Layer 0.1 10.0 100.0 0.1 0.001 100.0 10.0 10.0 100.0 1.0 1.0 0.01 1.0 0.01 100.0
2 Layer 0.01 0.001 100.0 0.01 10.0 1.0 0.01 10.0 100.0 100.0 10.0 1.0 0.01 0.1 100.0

Table 1. Selected hyperparameters for all models across the different data sets.

Root Mean Square Error
Yacht - Froude Boston - RM Boston - LSTAT

LUNA NLM MCD LUNA NLM MCD LUNA NLM MCD

Not Gap 0.25 ± 0.10 2.01 ± 0.45 1.38 ± 0.04 2.39 ± 2.06 7.09 ± 1.57 1.17 ± 0.03 1.76 ± 0.91 5.17 ± 1.38 1.35 ± 0.03
Gap 0.38 ± 0.17 2.98 ± 0.43 1.08 ± 0.04 2.32 ± 1.28 5.61 ± 1.12 0.90 ± 0.03 2.19 ± 1.16 5.30 ± 1.41 0.78 ± 0.03

Concrete - CEMENT Concrete - SUPER

LUNA NLM MCD LUNA NLM MCD

Not Gap 1.11 ± 0.54 2.57 ± 0.79 1.28 ± 0.03 0.49 ± 0.09 1.88 ± 0.49 1.21 ± 0.02
Gap 1.54 ± 0.43 5.38 ± 0.86 1.07 ± 0.02 2.77 ± 0.79 5.92 ± 1.59 1.01 ± 0.02

Avg. Log-Likelihood
Yacht - Froude Boston - RM Boston - LSTAT

LUNA NLM MCD LUNA NLM MCD LUNA NLM MCD

Not Gap -0.09 ± 0.41 -212 ± 104 -12.93 ± 1.71 -4.10 ± 2.06 -524 ± 215 -4.99 ± 0.53 -2.72 ± 1.29 -145 ± 73 -5.40 ± 0.37
Gap -1.39 ± 2.04 -458 ± 134 -2.67 ± 0.36 -4.58 ± 2.80 -325 ± 117 -2.33 ± 0.14 -3.97 ± 1.68 -155 ± 73 -1.50 ± 0.12

Concrete - CEMENT Concrete - SUPER

LUNA NLM MCD LUNA NLM MCD

Not Gap -2.70 ± 2.15 -66.01 ± 36.17 -3.78 ± 0.13 -1.25 ± 0.70 -34.54 ± 18.71 -3.53 ± 0.22
Gap -4.59 ± 0.96 -275 ± 94 -2.88 ± 0.05 -7.01 ± 3.18 -346 ± 168 -2.49 ± 0.13

Epistemic Uncertainty (STD)
Yacht - Froude Boston - RM Boston - LSTAT

LUNA NLM MCD LUNA NLM MCD LUNA NLM MCD

Not Gap 0.57 ± 0.40 0.07 ± 0.00 0.39 ± 0.02 1.44 ± 0.41 0.19 ± 0.02 0.31 ± 0.01 2.53 ± 0.65 0.22 ± 0.03 0.30 ± 0.01
Gap 0.72 ± 0.60 0.09 ± 0.01 0.38 ± 0.01 2.21 ± 0.86 0.16 ± 0.02 0.33 ± 0.01 2.87 ± 0.76 0.23 ± 0.04 0.31 ± 0.01

Concrete - CEMENT Concrete - SUPER

LUNA NLM MCD LUNA NLM MCD

Not Gap 0.42 ± 0.10 0.08 ± 0.00 0.39 ± 0.01 0.20 ± 0.08 0.07 ± 0.00 0.39 ± 0.01
Gap 1.81 ± 0.77 0.12 ± 0.01 0.37 ± 0.01 2.50 ± 0.70 0.14 ± 0.02 0.38 ± 0.01

Table 2. RMSE, average log-likelihood and epistemic uncertainty for 2-layer 50 hidden units ReLU networks. The metrics are computed
both inside and outside the gap. We see that MCD and NLM consistently fail to capture in-between uncertainty in the gap across all UCI
gap data sets explored. LUNA captures the expected increased uncertainty without showing catastrophic RMSE and log-likelihood failure
in the gaps.
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Root Mean Square Error
Yacht - Froude Boston - RM Boston - LSTAT

LUNA NLM MCD LUNA NLM MCD LUNA NLM MCD

Not Gap 0.06 ± 0.01 0.04 ± 0.01 1.38 ± 0.05 0.53 ± 0.06 0.35 ± 0.01 1.24 ± 0.10 0.59 ± 0.07 0.44 ± 0.02 1.48 ± 0.04
Gap 0.11 ± 0.01 0.08 ± 0.01 1.08 ± 0.04 0.54 ± 0.07 0.37 ± 0.01 0.99 ± 0.03 0.63 ± 0.09 0.39 ± 0.01 0.82 ± 0.03

Concrete - CEMENT Concrete - SUPER

LUNA NLM MCD LUNA NLM MCD

Not Gap 0.41 ± 0.05 0.32 ± 0.01 1.20 ± 0.02 0.49 ± 0.09 1.88 ± 0.49 1.21 ± 0.02
Gap 0.63 ± 0.13 0.40 ± 0.02 1.02 ± 0.02 2.77 ± 0.79 5.92 ± 1.59 1.01 ± 0.02

Avg. Log-Likelihood
Yacht - Froude Boston - RM Boston - LSTAT

LUNA NLM MCD LUNA NLM MCD LUNA NLM MCD

Not Gap 1.21 ± 0.05 1.34 ± 0.02 -10.15 ± 1.65 -1.69 ± 0.47 -0.65 ± 0.05 -4.53 ± 0.36 -0.98 ± 0.13 -0.79 ± 0.07 -4.41 ± 0.35
Gap 0.78 ± 0.17 1.09 ± 0.07 -3.40 ± 0.40 -1.70 ± 0.57 -0.85 ± 0.07 -3.21 ± 0.21 -1.52 ± 0.44 -0.60 ± 0.04 -1.99 ± 0.09

Concrete - CEMENT Concrete - SUPER

LUNA NLM MCD LUNA NLM MCD

Not Gap -0.88 ± 0.29 -0.44 ± 0.08 -4.49 ± 0.20 -1.25 ± 0.70 -34.54 ± 18.71 -3.53 ± 0.22
Gap -3.13 ± 1.55 -0.94 ± 0.15 -4.39 ± 0.16 -7.01 ± 3.18 -346 ± 168 -2.49 ± 0.13

Epistemic Uncertainty (STD)
Yacht - Froude Boston - RM Boston - LSTAT

LUNA NLM MCD LUNA NLM MCD LUNA NLM MCD

Not Gap 0.05 ± 0.01 0.03 ± 0.00 0.43 ± 0.01 0.10 ± 0.02 0.08 ± 0.00 0.42 ± 0.01 0.19 ± 0.03 0.09 ± 0.01 0.47 ± 0.01
Gap 0.05 ± 0.00 0.04 ± 0.00 0.37 ± 0.01 0.12 ± 0.02 0.07 ± 0.00 0.32 ± 0.01 0.17 ± 0.03 0.08 ± 0.00 0.29 ± 0.01

Concrete - CEMENT Concrete - SUPER

LUNA NLM MCD LUNA NLM MCD

Not Gap 0.06 ± 0.00 0.07 ± 0.00 0.37 ± 0.01 0.20 ± 0.08 0.07 ± 0.00 0.39 ± 0.01
Gap 0.07 ± 0.01 0.07 ± 0.00 0.27 ± 0.01 2.50 ± 0.70 0.14 ± 0.02 0.38 ± 0.01

Table 3. RMSE, average log-likelihood and epistemic uncertainty for 1-layer 50 hidden units ReLU networks. The metrics are computed
both inside and outside the gap. We see that without the added capacity of a second layer, all models fail to capture any significant
in-between uncertainty on the scale of what was observed in 2-layer networks in Table 2.
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Outliers
Model Layers Data Feature Metric Gap Outliers Not Gap Outliers

LUNA 1 Yacht - FROUDE Avg. Log-Likelihood 1 0
LUNA 1 Boston - RM Avg. Log-Likelihood 0 1
LUNA 1 Concrete - CEMENT RMSE 2 0
LUNA 1 Concrete - CEMENT Avg. Log-Likelihood 2 0
LUNA 1 Concrete - SUPER Avg. Log-Likelihood 1 0
LUNA 2 Yacht - FROUDE RMSE 1 1
LUNA 2 Yacht - FROUDE Avg. Log-Likelihood 1 0
LUNA 2 Yacht - FROUDE Epistemic Uncertainty 2 0
LUNA 2 Boston - RM RMSE 0 1
LUNA 2 Boston - RM Avg. Log-Likelihood 0 1
LUNA 2 Boston - LSTAT Avg. Log-Likelihood 1 0
LUNA 2 Boston - LSTAT Epistemic Uncertainty 2 0
LUNA 2 Concrete - CEMENT RMSE 0 1
LUNA 2 Concrete - CEMENT Avg. Log-Likelihood 0 2
LUNA 2 Concrete - SUPER Avg. Log-Likelihood 1 0
NLM 1 Yacht - Froude Epistemic Uncertainty 0 1
NLM 1 Boston - LSTAT RMSE 1 0
NLM 1 Boston - LSTAT Avg. Log-Likelihood 1 0
NLM 1 Boston - RM Epistemic Uncertainty 0 1
NLM 2 Yacht - FROUDE Avg. Log-Likelihood 0 2
MCD 1 Boston - RM RMSE 0 1
MCD 1 Boston - LSTAT Epistemic Uncertainty 0 1
MCD 2 Boston - LSTAT Epistemic Uncertainty 1 1
MCD 2 Concrete - CEMENT Epistemic Uncertainty 0 1

Table 4. The tabulated number of outlier points removed for each metric calculation.


