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Abstract
Bayesian Neural Networks with Latent Variables
(BNN+LV) is a deep model that provides esti-
mates of predictive uncertainties through priors
on the network parameters as well as a latent in-
put noise variable. However, BNN+LV suffers
from model non-identifiability: there are many
sets of parameter and latent input values that
are equally plausible for a given set of observed
data. We show that traditional inference methods
tend to yield parameters that reconstruct observed
data well, but generalize in undesirable ways. In
this paper, we describe the non-identifiability in
BNN+LV models and propose a novel inference
procedure that yield high quality predictions as
well as uncertainty estimates. We demonstrate
that our inference method improves upon bench-
mark methods across a range of synthetic and real
datasets.

1. Introduction
While deep learning has been recently applied to many real-
world tasks with significant success (LeCun et al., 2015), the
current focus of deep learning on learning point estimates
of model parameters can lead to overfitting and provides no
uncertainty quantification on predictions. When machine
learning models are applied to critical domains such as au-
tonomous driving, precision health care, or criminal justice,
reliable measurements of a model’s predictive uncertainty
may be as crucial as correctness of its predictions.

In general, prediction uncertainty comes from two sources.
Epistemic uncertainty, or model uncertainty, comes from
having insufficient knowledge about the “true” predictor. In
contrast, aleatoric uncertainty comes from the stochastic-
ity inherent the environment (Der Kiureghian & Ditlevsen,
2009; Kendall & Gal, 2017). Bayesian Neural Networks
with latent variables (BNN+LV) (Wright, 1999; Depeweg

*Equal contribution 1Harvard University, Cambridge, MA. Cor-
respondence to: Yaniv Yacoby <yanivyacoby@g.harvard.edu>,
Weiwei Pan <weiweipan@g.harvard.edu>.

Presented at the ICML 2019 Workshop on Uncertainty and Ro-
bustness in Deep Learning. Copyright 2019 by the author(s).

et al., 2018) provide a way of explicitly modeling these
two types of uncertainties in deep models. In particular, a
BNN+LV model assumes a predictor of the following form:

y = f(x, z;W ) + ε

where ε is the output noise, W are the parameters of a neu-
ral network, z is an unobserved (latent) random variable
associated with each (x, y) pair. In BNN+LV, distributions
over W captures model uncertainty (epistemic uncertainty),
while the stochastic input z captures the stochasticity of the
data generating process. Together with the output noise ε,
the stochastic input z model the sources of aleatoric uncer-
tainty; and while z can have a fixed variance, it can capture
heteroscedastic noise patterns after being transformed by
the non-linear function f (Depeweg et al., 2018).

In this paper, we first show that BNN+LV models are uniden-
tifiable in many cases. Specifically, there are multiple sets
of values for network parameters and latent variables that
are equally highly plausible for the observed data, but most
of these parameters will parametrize networks that general-
ize poorly. We show that traditional training methods tend
to find suboptimal solutions. Secondly, we introduce an
approximate inference scheme, Noise Constrained Approxi-
mate Inference (NCAI), that explicitly mitigates the effects
of model non-identifiability during training. We demon-
strate that our approach consistently recovers approximate
posteriors that are closer to the true posteriors on synthetic
examples, and that we achieve better generalization on an
array of synthetic and real-world data sets.

Related Works In Bayesian regression, one generally as-
sumes that the irreducible noise (aleatoric uncertainty) in
the data is identically, independent distributed and that struc-
ture in the predictive uncertainty arises from complex forms
of epistemic uncertainty (due to insufficient observation).
Bayesian Neural Networks (BNN’s) capture epistemic un-
certainty with a prior distribution over the parameters of
a neural network predictor (MacKay, 1992; Neal, 2012).
However, for many real-world tasks one needs to model
complex forms of aleatoric uncertainty via heteroscedastic
noise (Kendall & Gal, 2017; Depeweg et al., 2018).

Heteroscedastic noise in regression has been addressed by
incorporating an input-dependent output noise variable or
by incorporating a simple input noise variable that is able
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to capture heteroscedasticity after being transformed by a
non-linear predictor. Input-dependent output noise models
have been formulated for Gaussian Processes (GP’s) (Le
et al., 2005; Wang & Neal, 2012; Kersting et al., 2007)
and Bayesian Neural Networks (Kendall & Gal, 2017; Gal,
2016). On the other hand, while there are a number of works
that model heteroscedastic noise for GP’s through an input
noise variable (Lawrence & Moore, 2007; McHutchon &
Rasmussen, 2011; Damianou et al., 2014), there are only
a few works that do the same for Bayesian Neural Net-
works (Wright, 1999; Depeweg et al., 2018).

To our knowledge, we provide the first description of model
non-identifiability in Bayesian Neural Networks with Latent
Variables and of how non-identifiability impacts inference.
Based on our analysis of the sources of non-identifiability
in BNN+LV models, we propose a novel framework for
performing high quality approximate inference.

2. Background
Let D = {(x1, y1), . . . (xN , yN )} be a dataset of N obser-
vations. Where each input xn ∈ RD is a D-dimensional
vector and each output yn ∈ RL is L-dimensional.

A Bayesian Neural Network (BNN) assumes a predictor of
the form y = f(x;W ) + ε, where f is a neural network
parametrized by W and ε is a normally distributed noise
variable. Predictive uncertainty in a BNN is modeled by a
posterior predictive distribution p(y|x,D), obtained by plac-
ing a prior p(W ) on the network parameters and inferring a
posterior distribution p(W |D) over W .

Bayesian Neural Network with Latent Variables (BNN+LV),
extends BNN’s by introducing a latent variable zn ∼
N (0, σ2

z · I) per observation (xn, yn) explicitly modeling
white noise in the data generation process (Depeweg et al.,
2018). We assume the following data generation process:

W ∼ p(W ), εn ∼ N (0, σ2
ε ), zn ∼ p(z),

yn = f(xn, zn;W ) + εn, n = 1, . . . , N.
(1)

For this paper, we will set W ∼ N (0, σw · I). We note
that when f is non-linear, BNN+LV is able to model het-
eroscedastic noise through z.

Our goal is to learn the posterior distribution,
p(W, {z1, . . . , zN}|D), over both network weights
and the latent input noise. During test time, pre-
dictions are then made using the mean value of
the posterior predictive distribution, p(y|x,D):
p(y|x,D) =

∫∫
p(y|x, z,W )p(W |D)p(z)dzdW .

3. Non-identifiability in BNN+LV Models
Unfortunately, BNN+LV suffers from model non-
identifiability. Consider output generated by a single node

neural network with LeakyRelu activation (assuming zero
network biases, unit input weights and additive input noise):

f(x, z;W ) = max {W (x+ z), αW (x+ z)} , (2)

where α ∈ (0, 1). For any non-zero constant C, the pair
Ŵ (C) = W/C, ẑ(C) = (C− 1)x+Cz reconstructs the ob-
served data equally well: f(x, z;W ) = f(x, ẑ, Ŵ ). Now,
suppose that the output is observed with Gaussian noise.
Then the true values of the parameter W and the latent in-
put noise z are equally likely as Ŵ (C) and ẑ(C) under the
likelihood. In theses cases, one typically place a prior on
W in order to bias the posterior towards the ground truth
parameter. However, we show in Theorem 1 (Appendix
7.1) that the posterior over the model parameter W is bi-
ased away from the ground truth, regardless of the choice of
W prior and even as the sample size grows. Furthermore,
in Appendix 7, we show that sources of non-identifiability
increases when f is a neural network.

Model non-identifiability decreases the quality of the predic-
tive distribution, even when the latter can be exactly inferred.
This is because predictions are averaged during test time
across weights drawn from multiple posterior high density
regions, many of which, we show, will parameterize func-
tions that generalize differently than the function generating
the data. We argue that the effect of non-identifiability on
approximate inference can be especially significant. Al-
though a number of recently introduced approximate infer-
ence methods demonstrate increasing ability to approximate
complex posterior distributions (Hernández-Lobato et al.,
2016; Hernández-Lobato & Adams, 2015; Liu & Wang,
2016; Louizos & Welling, 2016; 2017), when approximate
inference happens to capture posterior regions correspond-
ing to functions different from the ground truth, the learned
models will generalize poorly on new data (see Section 5).

4. Noise Constrained Approximate Inference
From the forms of non-identifiability we derive in Section 3
and Appendix 7.3, we see that when we scale the parameters
W , the learned latent variable z becomes directly depen-
dent on the input x or indirectly dependent on x through y,
thus violating our assumption that z represents i.i.d. noise.
Also, the distribution of z may no longer have the original
isotropic Gaussian form assumed in the generative process.
Based on these observation, we propose a framework, Noise
Constrained Approximate Inference (NCAI), for performing
variational inference on BNN+LV models that consists of:
(1) an intelligent initialization – we initialize W with param-
eters from a model that explains the data without using input
noise and we initialize z’s that are sampled i.i.d. from the
prior; (2) a constrained learning procedure – we explicitly
penalize violation of modeling assumptions during training.

Model-satisfying Initialization. Since local optima are a
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major concern in BNN+LV inference, we start with settings
of the variational parameters φ that satisfy the properties
implied by our generative model (Equation 1). In particular,
we initialize the variational means µzn of the latent noise
variable be draws from the prior (and thus independent of
x). We initialize the variational means µwi of the weights
(except for weights associated with the input noise) with
those of a neural network trained on the same data. We do
so based on the observation that a neural network is often
able to capture the mean of the data (but not the uncertainty).
Lastly, we initialize all variational variances randomly.

Model Constrained Inference. We further ensure that the
two key modeling assumptions—that the noise variables z
are drawn independently and identically from p(z)—remain
satisfied during training by adding constraints to our varia-
tional objective:

min
φ
−ELBO(φ) s.t

Dep(x, z) = 0 and Div(q(z), p(z)) = 0.
(3)

where Dep(x, z) is any metric measuring the statistical de-
pendence between z and x (enforcing the independent sam-
pling assumption), and Div(q(z), p(z)) is any metric quan-
tifying the distance between q(z) and p(z) (enforcing identi-
cal sampling from p(z) assumption). We solve the problem
in (3) by gradient descent on the Lagrangian:

LNCAI(φ) =− ELBO(φ)

+ λ1Dep(x, z) + λ2Div(q(z), p(z)).
(4)

where in (3) and (4), q(z) is the aggregated poste-
rior (Makhzani et al., 2015):

q(z) = Ep(x,y) [q(z|x, y)] ≈ 1

N

N∑
n=1

p(z|xn, yn). (5)

Choosing differentiable non-parametric forms of Dep and
D is the key challenge. In Appendix 10, we describe our
choices for tractable instantiations of the NCAI objective.

5. Experiments
We consider 5 synthetic datasets that are frequently used
in heteroscedastic regression literature and 6 real datasets.
Appendix 11 describes all datasets. Each dataset is split into
5 random train/validation/test sets. For every split of each
data set, each method is evaluated on the best learned model
out of 10 random restarts (details in Appendix 12).

We compare NCAI on BNN+LV with unconstrained Mean
Field BBB (Blundell et al., 2015) (the latter denoted
BNN+LV). We also compare selecting constraint strength
parameters λi of NCAI through cross validation (denoted
NCAIλ) against fixing them at zero (denoted NCAIλ=0).

Furthermore, we compare the performance of BNN+LV’s
(for all inference procedures) with that of BNN’s.

We evaluate the learned models for quality of fit (measured
by test average log-likelihood, Root Mean Square Error,
calibration of posterior predictives) and the learned latent
variables for satisfaction of the white noise assumption
(measured by the Henze-Zirkler test-statistic for normal-
ity, mutual information, Jensen-Shannon and KL divergence
between the recovered and true noise priors). Computational
details for evaluation metrics are in Appendix 12.

Experimental results are summarized in Table 1, 8 and 3
(additional evaluations of model generalization and model
assumption satisfaction are summarized in Appendix 13).
Overall, we see that training with NCAIλ recovers latent
variables that better satisfy model assumptions – have
low mutual information with x and are distributed like
an isotropic Gaussian. NCAIλ also learns models with
improved generalization – across average marginal log-
likelihood and predictive RMSE, our method is compara-
ble or better on all datasets except for Energy Efficiency,
where the BNN model performs best in terms of test log-
likelihood but drastically underestimates the uncertainty
in the data (see posterior predictive metrics in Table 14).
Furthermore, we see that intelligent initialization without
constraints (NCAIλ=0), while always outperforming the
baselines, does not always learn the best models – that is,
the constraints imposed in NCAI are indeed necessary.

Figure 1 shows a qualitative comparison of the posterior
predictive distributions of BNN+LV trained with NCAIλ
compared with benchmarks (posterior predictives visualiza-
tion for all univariate data sets are in the Appendix 13).
We see that, as expected, BNNs underestimate the pos-
terior predictive uncertainty, whereas BNN+LV with un-
constrained inference improves upon the BNN in terms of
log-likelihood by expanding posterior predictive uncertainty
nearly symmetrically about the predictive mean. The predic-
tive distribution obtained by BNN+LV trained with NCAI,
however, is able to capture the asymmetry of the observed
heteroscedasticity. Furthermore, while unconstrained in-
ference on BNN+LV recovers latent noise that is highly
correlated with y, NCAIλ recovers latent noise that better
aligns with the data generating model.

6. Discussion & Conclusion
In this paper we identify a key issue – model non-
identifiability – with a class of flexible latent variable mod-
els for Bayesian regression, BNN+LV. By analyzing the
sources of non-identifiability in BNN+LV models, we pro-
pose a novel approximate inference framework, NCAI, that
explicitly enforces model assumptions during training.

Non-identifiability negatively impacts inference in the-
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(a) BNN (b) BNN+LV with Mean Field BBB (c) BNN+LV with NCAI

Figure 1. Comparison of posterior predictives. BNN captures trend but underestimates variance; BNN+LV with Mean Field BBB captures
more variance but learns z’s that dependend on the input. BNN+LV with NCAIλ best captures heteroscedasticity and learns z’s that best
resemble white noise.

Heavy Tail Goldberg Williams Yuan Depeweg
BNN −2.47± 0.083 −1.055± 0.08 −1.591± 0.417 −2.846± 0.346 −2.306± 0.059
BNN+LV −1.867± 0.078 −1.026± 0.056 −1.033± 0.156 −1.278± 0.164 −2.342± 0.048
NCAIλ=0 −1.481± 0.018 −0.962 ± 0.040 −0.414 ± 0.184 −1.211 ± 0.083 −1.973 ± 0.049
NCAIλ −1.426 ± 0.042 −0.963± 0.041 −0.414 ± 0.184 −1.211 ± 0.083 −1.973 ± 0.049

Table 1. Comparison of test log-likelihood on synthetic datasets (± std). For all datasets NCAIλ training yields comparable if not better
generalization. NCAI training outperforms BNN+LV with Mean Field BBB as well as BNN. Results for RMSE are in Appendix 13.

Heavy Tail Goldberg Williams Yuan Depeweg
BNN+LV 0.243± 0.079 0.229± 0.113 0.982± 0.121 0.24 ± 0.129 0.428± 0.04
NCAIλ=0 0.051± 0.049 0.02 ± 0.024 0.519 ± 0.091 0.283± 0.112 0.032 ± 0.017
NCAIλ 0.036 ± 0.04 0.046± 0.067 0.519 ± 0.091 0.283± 0.112 0.032 ± 0.017

Table 2. Comparison of mutual information between z and x on synthetic datasets (± std). Across all but one of the datasets, NCAIλ
training learns z’s that has the least mutual information. Additional evaluations of model assumption satisfaction are in Appendix 13.

Abalone Airfoil Energy Lidar Wine Yacht
BNN −1.248± 0.153 −0.995± 0.143 1.281 ± 0.171 −0.31± 0.069 −1.143± 0.027 0.818± 0.187
BNN+LV −0.843± 0.071 −0.512± 0.083 0.573± 0.288 0.129± 0.131 −1.709± 0.22 0.638± 0.121
NCAIλ=0 −0.831 ± 0.086 −0.462 ± 0.056 0.862± 0.138 0.269 ± 0.107 −1.147± 0.025 0.832 ± 0.077
NCAIλ −0.831 ± 0.086 −0.462 ± 0.056 0.898± 0.452 0.263± 0.11 −0.849 ± 0.038 0.832 ± 0.077

Table 3. Comparison of test log-likelihood on real datasets (± std). Across all but one dataset BNN+LV with NCAIλ training yields
better or comparable generalization. In particular, NCAI training outperforms BNN+LV with Mean Field BBB. Results for RMSE are in
Appendix 13. Evaluations of model assumption satisfaction are in Appendix 13

ory and practice. In Section 3 we show that BNN+LV
models are generally non-identifiable, the data generating
model is difficult to learn regardless of the choices of priors
and the quantity of observed data. Specifically, in the poste-
rior distribution, ground truth model parameters (and true
latent noise variables) can be as less likely as parameters
that generalize poorly. At test time, averaging over models
or sampling a single model from this posterior will decrease
predictive quality, even when inference can be performed
exactly. Empirically, we show that non-identifiability poses
problems for inference on most datasets (BNN+LV with
unconstrained training results in inferior models).

The ELBO cannot distinguish optimal and suboptimal
models. We empirically verified that the ELBO cannot
distinguish qualitatively different solutions. Across all syn-
thetic data sets, we’ve observed cases where the ELBO
evaluates a superior model as equal to an inferior one. Thus,
by optimizing ELBO alone one cannot hope to consistently

recover models that match the data generation process.

The NCAI constraints are necessary and effective. In
Section 3 and Appendix 7, we show that when learned mod-
els reconstruct the observed data well but generalize poorly,
the discrepancy is often attributable to the latent variable
encoding the data. This encoding yields latent variables
that violate our white-noise assumption and justifies the
constraints that we impose in NCAI. Experiments show that
NCAIλ training recovers z’s that satisfy model assumptions
and W ’s that generalize well, providing empirical evidence
that our constraints are necessary and effective.

Overall On synthetic and real datasets we demonstrate the
ability of NCAI to recover latent variables that better satisfy
the white-noise assumption as well as to learn models that
have improved generalization.
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7. Theoretical Analysis of the Impact of
Model Non-identifiability on Inference

7.1. Theorems for Single-Node BNN+LV Models

Assume that our generative process is the following:

W ∼ N (0, 1)

zn ∼ N (0, σ2
z)

xn ∼ N (0, σ2
x)

ε ∼ N (0, 0.001)

yn = max {W (x+ z), αW (x+ z)}+ ε

(6)

where α is a fixed constant in (0, 1). For any non-zero
constant C, define Ŵ (C) = W/C and ẑ(C)

n = (C − 1)xn +
Czn.
Theorem 1 (Bias in the Posterior). For every pair of
ground truth parameterW and choice of priorN (µW , σ

2
W )

for W , there exist a non-zero C such that, for every c ∈
(0, C), the scaled values (Ŵ (c), {ẑ(c)n }) become more likely
than (W, {zn}) under the expected posterior as the sample
size N grows.

Proof. Given W and {zn}, since

max {W (x+ zn), αW (x+ zn)} (7)

= max
{
Ŵ (C)(x+ ẑ(C)

n ), αŴ (C)(x+ ẑ(C)
n )

}
(8)

we have that the ground truth values (W, {zn}) are as likely
as (Ŵ (C), ẑ

(C)
n ) under the likelihood, that is,∏

n

p(yn|xn, zn,W ) =
∏
n

p
(
yn|xn, ẑ(C)

n , Ŵ (C)
)
. (9)

Thus, to compare the likelihood of (W, {zn}) and
(Ŵ (C), {ẑ(C)

n }) under the log posterior, we need only to
compare their log prior values. Now, define K to be the dif-
ference between the log prior of W evaluated at the ground
truth and Ŵ (C) respectively,

K
def
= logN (W ;µW , σ

2
W )− logN

(
Ŵ (C);µW , σ

2
W

)
, (10)

and define M to be the difference between the log prior of z
evaluated at the ground truth {zn} and {ẑ(C)

n } respectively,

M
def
=
∑
n

(
logN (zn; 0, σ

2
z)− logN

(
ẑ(C)
n ; 0, σ2

z

))
. (11)

Now, the expected value of M over different samples of
training data can be written as

Ezn,xn [M ] =Kz −N ∗Varzn [zn] (12)

− (Kz −N ∗Varzn,xn [ẑ(C)]) (13)

=N(Varzn,xn [ẑ(C)]−Varzn [zn]) (14)

=N((C − 1)2σ2
x + (C2 − 1)σ2

z) (15)

where Kz is the normalizing constant for the prior distri-
bution of z. In the above, Equation 13 follows straightfor-
wardly from Equation 11 by taking the log of the normal
pdf’s and then applying the expectation; Equation 15 fol-
lows from 14 by noting our definition:

ẑ(C)
n = (C − 1)xn + Czn. (16)

We observe that for 0 < C < 1, we have Varzn,xn [ẑ(C)] <
Varzn [zn], hence Ezn,xn [M ] is less than zero. Thus, as
N → ∞, we have that Ezn,xn [M ] + K → −∞. In other
words, as the training set increases in size, the ground
truth values (W, {zn}) become less and less likely than
(Ŵ (C), {ẑ(C)

n }) under the expected log posterior, thus com-
pleting the proof.

Example 1 (A Case wherein Non-identifiability Biases
the Posterior Predictive). For the model in Equation 6,
suppose that the ground truth parameter W is equal to 1 and
set σ2

x = 1 and σ2
z = 0.5. We show empirically that the

posterior mean, E
w∗∼p(W |Data)

[w∗], of W is not equal to 1,

and that the posterior predictive mean,

E
z∗∼p(z)

ε∗∼N (0,σ2
ε )

E
w∗∼p(W |Data)

[f(x∗, z∗;w∗) + ε∗], (17)

of this model is biased away from the ground truth predictive
mean,

E
z∗∼p(z)

ε∗∼N (0,σ2
ε )

[f(x∗, z∗;w∗) + ε∗]. (18)

https://books.google.com/books?id=_vkyfs5_OAoC
https://books.google.com/books?id=_vkyfs5_OAoC


Mitigating Model Non-Identifiability in Bayesian Neural Networks with Latent Variables

We compute these expectation numerically using Monte
Carlo estimation with 250000 samples and we apply a num-
ber of computational techniques for encouraging numerical
stability, the results are summarized in Figure 2. We see
that the ground truth value is not recovered by the posterior
mean of W even as sample size increases. We also see
that the posterior predictive mean is biased away from the
ground truth even with large numbers of observations.

Theorems 1 and Example 1 indicate that non-identifiability
in the functional form of f(x, z;W ) can negatively impact
inference – the learned model does not generalize well. In
the following, we show an example where this is not the
case.
Example 2 (A Case wherein Non-identifiability Does Not
Impact Generalization). Assume that our generative pro-
cess is the following:

W ∼ N(0, 1)

zn ∼ N(0, 0.5)

xn ∼ N(0, 1)

ε ∼ N(0, 0.001)

yn = W · (xn + zn)3 + ε

(19)

Suppose that the ground truth parameter W is equal to 1.
Following the proof for theorem 1, we can show that the
alternate model Ŵ = 8 and ẑn = −0.5x+ 0.5zn is valued
as more likely than the ground truth in the expected log
posterior distribution p(W, z1, . . . , zn|Data) as the training
data increases. That is, the posterior is biased away from
the ground truth. On the other hand, the posterior predictive
mean,

E
z∗∼p(z)

ε∗∼N (0,σ2
ε )

E
w∗∼p(W |Data)

[w∗(x∗ + z∗)3 + ε∗], (20)

of this model is unbiased, i.e. it is equal to the ground truth
predictive mean

E
z∗∼p(z)

ε∗∼N (0,σ2
ε )

[(x∗ + z∗)3 + ε∗]. (21)

Note that we can write:

E
z∗∼p(z)

ε∗∼N (0,σ2
ε )

(
E

w∗∼p(W |Data)
[w∗](x∗ + z∗)3 + ε∗

)
. (22)

Thus, showing the equality of the posterior predictive mean
and the true predictive mean is equivalent to showing that

E
w∗∼p(W |Data)

[w∗] = 1. We compute this expectation numer-

ically using Monte Carlo estimation with 250000 samples,
the result is summarized in Figure 3. We see that as the
training data set grows in size, E

w∗∼p(W |Data)
[w∗] converges

to 1.

7.2. Theorems for 1-Layer BNN+LV Models

Assume that our generative process is the following:

W x,W z,W out ∼ N (0, I)
bhidden, bout ∼ N (0, 1)

zn ∼ N (0,Σz)

xn ∼ N (0,Σx)

ε ∼ N(0, 0.001)

ahidden = g
(
W xx+W zz + bhidden) ,

yn = (ahidden)>W out + bout + ε

(23)

Let W denote the set

{W x,W z,W out, bhidden, bout}. (24)

For a given W , let Ŵ denote the set

{Ŵ x, Ŵ z,W out, b̂hidden, bout}. (25)

where we define

Ŵ x = W x +W zS, (26)

Ŵ z = R, (27)
ẑ = Tz − TSx− U, (28)

b̂hidden = b+RU. (29)

Theorem 2 (Bias in the Posterior). For every pair of
ground truth parameters W and any choice of prior
N (µW ,ΣW ) on W , there exist scaled values

(
Ŵ , {ẑn}

)
that become more likely than (W, {zn}) under the expected
posterior as the sample size N grows.

Proof. The proof follows in the same fashion as the one for
Theorem 1 For any 0 < ε < 1. Let S be the identity matrix
I; let T = εI, R = 1

εW
z and U = 0. Then we have

Ŵ x = W x +W z, (30)

Ŵ z =
1

ε
W z, (31)

b̂hidden = bhidden, (32)
ẑn = ε(zn − xn). (33)

Clearly, the alternate values Ŵ for the model parame-
ters and the alternate values for the latent noise ẑn re-
construct the observed data as well as the ground truth:
p(yn|xn, zn;W ) = p(yn|xn, ẑn; Ŵ ). We now compare the
two sets of values under the log priors. In particular, define

K
def
= (logN (W x;µW ,ΣW ) + logN (W z; 0, I)) (34)

−
(

logN (Ŵ x; 0, I) + logN (Ŵ z; 0, I)
)

(35)
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(a) Log posterior mean of W as number of observations increases (b) Log posterior predictive mean of W at x∗ = 1 as number of
observations increases

Figure 2. Visualization of the posterior mean of W and the log posterior predictive for x∗ = 1 in the model described by Equation 6.
Each point in the scatter plot is the corresponding mean computed for a particular sample of training data of size N . The ground truth
value of W is 1 (log 0), which is not recovered by the posterior mean of W even as the number of training points N increases. The true
predictive mean for x∗ = 1 is approximately 0.445, which is not recovered by the posterior predictive mean even a sample size increases.

Figure 3. Visualization of the log posterior mean of W in the model described by Equation 19. Each point in the scatter plot is the
posterior mean computed for a particular sample of training data of size N . The ground truth value of W is 1 (log 0), which is recovered
by the posterior mean of W as the number of training points N increases.

and

M
def
=

N∑
n=1

(logN (zn; 0,Σz)− logN (ẑn; 0,Σz)) (36)

Then we have that

Ezn,xn [M ] =
∑
d

(
(Kzd −N ∗Varzn [zdn]) (37)

−(Kzd −N ∗Varzn,xn [ẑdn])
)
, (38)

= N
∑
d

(
Varzn,xn [ẑdn])−Varzn [zdn]

)
,

(39)

whereKzd is the normalizing constant for the distribution of
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zd. Choose ε such that Varzn,xn [ẑdn] < Varzn [zdn], for each
dimension 0 < d < D. Then, as N becomes sufficiently
large, Ezn,xn [M ] +K becomes negative and large. In other
words, the alternate values (Ŵ , {ẑn}) is more likely under
the expected log posterior than the ground truth values (W ,
{zn}).

7.3. Additional types of non-identifiability for 1-Layer
BNN+LV Models

Assume that the activation function g is invertible. Let
{(xn, yn)}Nn=1 be a set of observed data generated by the
model parameters W . Define b̂hidden, bout to be zero, Ŵ x

to be the H × D zero matrix and Ŵ out to be the 1 × H
matrix of consisting of 1

DH in all entries. Finally, let Ŵ z be
a H ×D matrix of 1’s and let ẑn = g−1(yn).

Then, we have that yn = f(xn, ẑn; Ŵ ). That is, the alter-
nate set of model parameters Ŵ x reconstructs the observed
data perfectly. We note that in this case, the latent noise
variable z is a function of the observed output y and is hence
dependent on the input x.

8. Mutual Information Computation
For our model, the mutual information between x and z is
intractable to compute as is:

I(x; z) = DKL[q(z|x)p(x) ‖ q(z)p(x)] (40)

= Eq(z|x)p(x)
[
log

q(z|x)p(x)
q(z)p(x)

]
(41)

=
1

N

N∑
n=1

Eq(zn|xn)

log q(zn|xn)
1
N

N∑
n=1

q(zn|xn, yn)

 (42)

where

q(zn|xn) = Eq(yn|xn) [q(zn|xn, yn)] (43)
q(yn|xn) = Eq(Z,W |D) [p(yn|xn, zn,W )] (44)

The nested expectations in the above formulation require too
many samples in order to evaluate I(x; z) with low variance.
For this reason we choose to compute the above correlation
based proxies.

9. Optimization Techniques
We perform a number of optimization ‘tricks’ to encourage
convergence to a desirable local optimum.

Choosing Hyper-parameters We choose hyper-
parameters of the priors as well as the likelihood using
empirical Bayes (MAP Type II). That is, we place Inverse
Gamma priors (α = 3.0, β = 0.5) on the variances of

the network weights and the latent variables; then we
approximate the negative ELBO with the MAP estimates
of the variances, making the assumption that these term
dominate the respective integrals in which they appear:

−ELBO(φ) ≈− Eq(Z,W |φ)[p(Y |X,W,Z)]

+DKL[q(W |φ) ‖ p(W |s∗w)p(s∗w)]

+DKL[q(Z|φ) ‖ p(Z|s∗z)p(s∗z)]

where we define:

s∗z = argmin
sz

DKL[q(Z|φ) ‖ p(Z|sz)p(sz)]

=

2β + 1
N

∑
n

[
tr (Σqn) + µTqnµqn

]
K + 2α− 2

,

s∗w = argmin
sw

DKL[q(W |φ) ‖ p(W |sw)p(sw)]

=
2β + tr (Σq) + µTq µq

H + 2α− 2
.

with K and H as the dimensionality of zn and W , respec-
tively. The optimal variances, s∗z, s

∗
w, have analytic solu-

tions. In training, we update the objective as well as the
optimal hyper-parameters via coordinate descent. That is,
we iteratively compute s∗z, s

∗
w in closed-form given the cur-

rent φ, and then optimize φ while holding s∗z, s
∗
w fixed.

10. Choosing Differentiable Forms of the
NCAI Objective

Tractable training with NCAI depends on instantiating a
differentiable form of the training Equation 4. In the follow-
ing, we choose computationally efficient proxies for the two
constraints in the NCAI objective.

Defining Div(q(z)||p(z)). As a proxy for
Div(q(z), p(z)), we penalize the Henze-Zirkler non-
parametric test-statistic for normality (Henze & Zirkler,
1990) applied to the set of latent noise means, {µzn}. This
encourages the aggregated posterior q(z) to be Gaussian,
and hence the learned zn’s will appear as if sampled from
this Gaussian. In addition, we penalize the `2 penalty of the
off diagonal terms of the empirical covariance of the latent
noise means:

λ1HZ({µzn}Nn=1) + λ2
∥∥offdiag Σ̂

(
{µzn}Nn=1

) ∥∥
2

(45)

This ensures that the learned zn’s are independent of each
other. We find that, in practice, unlike more traditional
divergences (e.g. reverse/forward-KL, Jensen-Shannon,
MMD (?)), our proxy cannot be trivially minimized by
inflating the variational variances, σ2

zn .

Defining Dep(x; z). Ensuring that zn’s are independent of
each other is not sufficient to satisfy the properties implied
in the generative model. From our analysis in Section ??,
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we see that the latent variable can compensate for incorrectly
learned network weights by absorbing a copy of the input,
x, or by becoming dependent on x through encoding for y.
We therefore penalize the dependence between x and z by
penalizing correlation between x and z and the correlation
between y and z:

λ3 PairwiseCorr({xn}, {µzn})
+ λ4 PairwiseCorr({yn}, {µzn})

(46)

where PairwiseCorr(·, {µzn}) is a measure of the average
correlation between pairs of dimensions in x or y and the
latent noise means {µzn}. We find that, in practice, un-
like mutual information lower bounds and estimators (e.g.
MINE (?)) and upper bounds, our proxy cannot be triv-
ially minimized by inflating the variational variances, σ2

zn .
See Appendix 8 for details about the difficulty in directly
minimizing mutual information for this model.

Relationship between Div(q(z)||p(z)) and Dep(x; z).
The two constraints are theoretically orthogonal to one
another: a small Dep(x, z) does not imply a small
Div(q(z), p(z)), and vice versa. For example, one can ad-
versarially construct z’s and x’s such that Div(q(z), p(z)) is
small and Dep(x, z) is high by initializing the variational pa-
rameters φ such that q(z) = p(z), and then, for the given x’s
pairing small x’s with small z’s. As such, both constraints
are theoretically necessary.

Defining the NCAI Objective. Finally, we incorporate the
ELBO and the differentiable forms of the constraints (as
exponentially smoothed penalties) into Equation 4:

LNCAI(φ) =− ELBO(φ)

+ λ1N exp

(
HZ({µz1 , . . . , µzN }

εT

)
+ λ2N‖offdiag Σ̂({µz1 , . . . , µzN })‖2

+ λ3N exp

(
PairwiseCorr({xn}, {µzn})

εx

+
PairwiseCorr({yn}, {µzn})

εy

)
(47)

where εT , εx, εy control the growth rate of the exponen-
tial penalties. We minimize the negative ELBO follow-
ing Bayes by Backprop (BBB) (Blundell et al., 2015):
back-propagating through Eq(Z,W |φ)[·] in the ELBO using
the reparametarization trick (Kingma & Welling, 2013),
computing the KL-divergence terms and constraints using
closed-form expressions.

11. Datasets
Synthetic Data: We consider 4 synthetic datasets, most
of which have been widely used to evaluate heteroscedas-

tic regression models (Wright, 1999; Kersting et al., 2007;
Wang & Neal, 2012; Goldberg et al., 1998):

1. Goldberg (Goldberg et al., 1998): targets are given by
y = 2 sin(2πx) + ε(x), where ε(x) ∼ N (0, x+ 0.5).
Evaluated on 200 training input, 200 validation and
200 test inputs uniformly sampled from [0, 1].

2. Yuan (Yuan & Wahba, 2004): targets are given by
y = 2[exp{−30(x− 0.25)2 + sin(πx2)}]− 2 + ε(x),
where ε(x) ∼ N (0, exp{sin(2πx)}). Evaluated on
200 training input, 200 validation and 200 test inputs
uniformly sampled from [0, 1].

3. Williams (Williams, 1996): the targets are given by
y = sin(2.5x) · sin(1.5x) + ε(x), where ε(x) ∼
N (0, 0.01 + 0.25(1− sin(2.5x))2). Evaluated on 200
training input, 200 validation and 200 test inputs uni-
formly sampled from [0, 1].

Synthetic Data Generated with Ground Truth: We
also generate two synthetic data-sets with corresponding
ground truth in order to guarantee that our generative pro-
cess matches our data. We generate these data-sets by train-
ing a neural network to map the xn’s and ground truth zn’s
to yn’s, specified by some function. We then re-generate the
yn’s from the learned neural network and treat that network
as the ground truth function.

The two data-sets we have generated in this way are the
following:

1. Heavy-Tail: targets are given by a neural network ap-
proximation of y = 6 tanh(0.1x3(z + 1)6 − 10xz2 +
z) + ε, where ε ∼ N (0, 0.1) and z ∼ N (0, 0.01).
Evaluated on 300 training input, 300 validation and
300 test inputs uniformly sampled from [−4, 4].

2. Depeweg (Depeweg et al., 2018): targets are
given by a neural network approximation of
y = 7 sin(x) + 3| cos(x/2)|z + ε, where
ε ∼ N (0, 0.1) and z ∼ N (0, 1.0). Evaluated
on 750 training input, 250 validation and 250 test
inputs uniform mixture of the following gaussians:
N (0,−4.0, 0.16),N (0, 0, 0.81),N (0, 4.0, 0.16).
(Note the original data-set from (Depeweg et al.,
2018) sampled y = 7 sin(x) + 3| cos(x/2)|ε, where
ε ∼ N (0, 1.0)).

Real Data: We use 6 UCI datasets (Dua & Graff, 2017)
and a dataset commonly used in the heteroscedastic litera-
ture, Lidar (Sigrist et al., 1994) (see Table 4 for details).

12. Experimental Details and Evaluation
Architecture The network architectures we use for all
experiments are summarized in Tables 4 and 5. We note
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that we have purposefully selected lower capacity architec-
tures to encourage for the non-identifiability described in
the paper to occur in practice. We also note that the non-
identifiability occurs even when the ground-truth network
capacity is known, as in the case of the HeavyTail and De-
peweg data-sets, which have been generated using a neural
network. As such, even when the data was generated by the
same generative process as the one assumed by the model,
the problem of non-identifiability still occurs.

Train/Validation/Test Data-splits We each data-set into
train/validation/test set 6 times. We use the first data-split to
select hyper-parameters by selecting the hyper-parameters
that yield the best average log-likelihood performance on
the validation set across 10 random restarts. After having
selected the hyper-parameter for each method, we select
between NCAIλ=0 and NCAIλ by picking the approach
that yielded the best log-likelihood performance on the val-
idation set across the 10 random restarts. Now, using the
selected hyper-parameters and form of NCAI, we train our
models on the remaining 5 data-splits, averaging the best-of-
10 random restarts across the data-splits (using the validation
log-likelihood).

For Abalone, Airfoil, Boston Housing, Energy Efficiency,
Lidar, Wine Quality Red, Yacht, Goldberg, Williams, Yuan,
we splits the data into a %70 training set, %20 validation
set and %10.

Hyperparameter Selection: For the data-sets Abalone,
Airfoil, Boston Housing, Energy Efficiency, Lidar, Wine
Quality Red, Yacht, Goldberg, Williams, Yuan, we used
grid-searched over the following parameters:

• BNN: σ2
ε = {1.0, 0.1, 0.01}

• BNN+LV: σ2
ε = {0.1, 0.01}

• NCAI:
σ2
ε = {0.1, 0.01},
λ2 = {10.0},
εT = {0.01, 0.0003},
εy = {0.1, 0.5},
εx = {0.5, 1.0}

For HeavyTails we grid-searched over the following param-
eters:

• BNN: σ2
ε = {1.0, 0.1, 0.5}

• BNN+LV: σ2
ε = {0.1}, σ2

z = {0.01}

• NCAI:
σ2
ε = {0.1},
λ2 = {10.0},
εT = {0.01, 0.0003},

εy = {0.1, 0.5},
εx = {0.5, 1.0}

For Depeweg we grid-searched over the following parame-
ters:

• BNN: σ2
ε = {1.0, 0.1, 0.5}

• BNN+LV: σ2
ε = {0.1}, σ2

z = {1.0}

• NCAI:
σ2
ε = {0.1},
λ2 = {10.0},
εT = {0.01, 0.0003},
εy = {0.1, 0.5},
εx = {0.5, 1.0}

12.1. Evaluation Metrics

Quality of Fit We measure the training reconstruction
MSE, the ability of the model to reconstruct the training
targets with the learned weights and latent variables:

1

N

N∑
n=1

Eq(zn)q(W )

[
‖yn − f(zn,W )‖22

]
. (48)

At test time, we measure the quality of the posterior pre-
dictive distribution of the model by computing the average
marginal log-likelihood

1

N

N∑
n=1

Ep(z)q(W ) [log p(yn|xn,W, zn)] . (49)

We also compute the predictive quality of the model by
computing the predictive MSE:

1

N

N∑
n=1

[
‖yn − Ep(zn)q(W )f(zn,W )‖22

]
. (50)

Note that the difference between the reconstruction MSE
(48) and the predictive MSE (50) is that in the latter we
sample the latent variables from the prior distributions rather
than the learned posterior distributions.

Posterior Predictive Calibration We measure the qual-
ity of the model’s predictive uncertainty by computing the
percentage of observations for which the ground truth y
lies within a 95% predictive-interval (PI) of the learned
model – this quantity is called the Prediction Interval Cov-
erage Probability (PICP). We measure the tightness of the
model’s predictive uncertainty by computing the 95% Mean
Prediction Interval Width (MPIW).



Mitigating Model Non-Identifiability in Bayesian Neural Networks with Latent Variables

Data-set Size Dimensionality Hidden Nodes
Lidar 221 1 10
Yacht 309 6 5
Energy Efficiency 768 8 10
Airfoil Subsampled to 1000 5 30
Abalone Subsampled to 1000 10 (1-hot for categorical) 10
Wine Quality Red 1600 1 20

Table 4. Experimental Details for the Real Data-sets

Data-set Number of Hidden Nodes Number of Layers
Williams 20 2
Yuan 20 1
Goldberg 20 1
HeavyTail 50 1
Depeweg 50 1

Table 5. Experimental Details for the Synthetic Data-sets

Satisfaction of Model Assumptions We estimate the mu-
tual information between x and z by computing the Kraskov
nearest-neighbor based estimator (Kraskov et al., 2004)
(with 5 nearest neighbors) on the x’s and the means of
the z’s: Î(x;µz). We use µzn’s instead of z ∼ q(z), since
if the σ2

zn ’s are large the dependence between z’s and x’s is
more difficult to detect.

For the univariate case, when D = K = 1, we use the
Kolmogorov-Smirnov (KS) two-sample test statistic (kst,
2008) to evaluate divergence between q(z) and p(z). When
computing the test statistic, we represent q(z) using µzn’s
and p(z) using its samples. This is because the σ2

zn’s are
large, the distance between q(z) and p(z) more difficult
to detect. A lower KS test-statistic indicates that q(z) and
p(z) are more similar. We compute the Jensen-Shannon
divergence between q(z) and p(z) in multivariate cases.

13. Experimental Results
Qualitative Evaluation For the univariate datasets (all
synthetic data sets as well as Lidar), we provide visualiza-
tions of the posterior predictive distributions of NCAI and
benchmarks against the ground truth, as well as the joint dis-
tribution of the input and learned latent noise (see Figures 4,
5, 6, 7, 8). We find that in all cases, NCAI training produces
qualitatively superior posterior predictives and learned latent
noise that is less dependent on the input: NCAI captures
the trend of the data while estimating a tight uncertainty
around the data. This is in contrast to the BNN, which
does not capture heteroscedasticity, and to the BNN+LV
which often has difficulty capturing the trend in the data
well and tends to over-estimate the uncertainty. We also find
that NCAI qualitatively satisfies our modeling assumptions:
one can visualize discern that the z’s learned by NCAI are

less dependent on the x’s than the z’s learned by BNN+LV.
Lastly, we note that even though NCAI learns z’s that are
less dependent on the x’s, it is still uncapable to remove
all dependence. This is because minimizing the informa-
tion shared between the x’s and the z’s is intractable (see
Appendix 8). Even by reducing some of the dependence,
however, NCAI is able to model the data significantly better.

Quantitative Evaluation For all datasets, we compare
NCAI training with benchmarks evaluated under all our
metrics (generalization, calibration and modeling assump-
tion satisfaction – see Section 12.1). We find that BNN+LV
with NCAI training consistently outperform BNN+LV with
Mean Field BBB (in terms of average test log likelihood,
RMSE) and recovers latent noise variables that better sat-
isfy modeling assumptions (mutual information, divergence
metrics, normality test statistics – see Table ??). We note
that the BNN, when properly trained, is able to capture the
trends in the data (measured by RMSE) but tends to un-
derestimate the variance (log likelihood and calibration) –
this tendency is especially apparent in the presence of het-
eroscedastic noise. This is especially apparent on the Energy
Efficiency dataset, in which the BNN achieves the highest
log-likelihood on average, while significantly underestimat-
ing the uncertainty; the %95-PICP and MPIW show that
BNN has a small predictive interval width that only covers
about %80 of the data, whereas NCAI overs about %94 of
the data (see Table 14 for more details).

Selecting between NCAIλ=0 and NCAIλ>0 Generally,
we observe that on data-sets in which the noise is roughly
symmetric around the posterior predictive mean (as in the
Goldberg, Yuan, Williams, Lidar, and Depeweg data-sets)
NCAIλ=0 and NCAIλ>0 perform comparably well on aver-
age test log-likelihood – see Tables 16, 18, 17, 18 and 22.
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However, when the noise is skewed around the posterior
predictive mean (like in the HeavyTail dataset), we find that
NCAIλ>0 out-performs NCAIλ=0 – see Table 15. This is
because NCAIλ=0 first fits the variational parameters of the
weights to best capture as best as possible, often fitting a
function that represents the mean. After the warm-start,
when training with respect to the variational parameters of
the z’s, the uncertainty is increased about the mean to best
capture the data, often in a way that does not significantly
alter the parameters of the weights, thereby resulting in a
posterior predictive with symmetric noise.

Visualization of experimental results for all univariate data
sets are in Section 14, table summaries of quantitative ex-
perimental results are in Section

14. Experimental Results: Visualilzations
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(a) BNN with Mean Field BBB (b) BNN+LV with Mean Field BBB (c) BNN+LV with NCAI

Figure 4. Comparison of the posterior predictives for Goldberg.

(a) BNN with Mean Field BBB (b) BNN+LV with Mean Field BBB (c) BNN+LV with NCAI

Figure 5. Comparison of the posterior predictives for Yuan.

(a) BNN with Mean Field BBB (b) BNN+LV with Mean Field BBB (c) BNN+LV with NCAI

Figure 6. Comparison of the posterior predictives for Williams.

(a) BNN with Mean Field BBB (b) BNN+LV with Mean Field BBB (c) BNN+LV with NCAI

Figure 7. Comparison of the posterior predictives for Lidar.

15. Experimental Results: Tables
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(a) BNN with Mean Field BBB (b) BNN+LV with Mean Field BBB (c) BNN+LV with NCAI

Figure 8. Comparison of the posterior predictives for Depeweg.

Log-Likelihood on Test Data for Synthetic Data sets
Heavy Tail Goldberg Williams Yuan Depeweg

BNN −2.47± 0.083 −1.055± 0.08 −1.591± 0.417 −2.846± 0.346 −2.306± 0.059
BNN+LV −1.867± 0.078 −1.026± 0.056 −1.033± 0.156 −1.278± 0.164 −2.342± 0.048
NCAIλ=0 −1.481± 0.018 −0.962± 0.040 −0.414± 0.184 −1.211± 0.083 −1.973± 0.049
NCAIλ −1.426± 0.042 −0.963± 0.041 −0.414± 0.184 −1.211± 0.083 −1.973± 0.049

Table 6. Comparison of model generalization in terms of test log-likelihood on synthetic datasets (± std). Across all datasets BNN+LV
with NCAIλ training yields comparable if not better generalization. NCAI training always outperforms BNN+LV with Mean Field BBB
as well as BNN (the latter comparison is in terms of test log-likelihood).

RMSE on Test Data for Synthetic Data sets
Heavy Tail Goldberg Williams Yuan Depeweg

BNN 1.831± 0.074 0.335± 0.025 1.017± 0.06 0.607± 0.035 1.953± 0.071
BNN+LV 1.882± 0.088 0.376± 0.032 1.118± 0.096 0.622± 0.039 3.523± 0.501
NCAIλ=0 1.787± 0.094 0.339± 0.026 0.978± 0.083 0.619± 0.039 1.932± 0.059
NCAIλ 1.79± 0.09 0.337± 0.025 0.978± 0.083 0.619± 0.039 1.932± 0.059

Table 7. Comparison of RMSE on synthetic datasets (± std). Across all datasets BNN+LV with NCAIλ training yields comparable if not
better generalization. NCAI training always outperforms BNN+LV with Mean Field BBB as well as BNN.

Mutual Information on Test Data for Synthetic Data sets
Heavy Tail Goldberg Williams Yuan Depeweg

BNN+LV 0.243± 0.079 0.229± 0.113 0.982± 0.121 0.24± 0.129 0.428± 0.04
NCAIλ=0 0.051± 0.049 0.02± 0.024 0.519± 0.091 0.283± 0.112 0.032± 0.017
NCAIλ 0.036± 0.04 0.046± 0.067 0.519± 0.091 0.283± 0.112 0.032± 0.017

Table 8. Comparison of model assumption satisfaction (in terms of mutual information between z and x) on synthetic datasets (± std).
Across all datasets, NCAIλ training learns z’s has the least mutual information with x’s and looks the most Gaussian (lowest HZ).

HZ Metric on Test Data for Synthetic Data sets
Heavy Tail Goldberg Williams Yuan Depeweg

BNN+LV 4.701± 5.439 0.918± 0.41 6.445± 2.818 5.252± 5.607 6.408± 2.439
NCAIλ=0 7.137± 5.436 0.621± 0.234 7.248± 2.598 8.091± 5.185 0.792± 0.357
NCAIλ 0.027± 0.011 0.026± 0.038 7.248± 2.598 8.091± 5.185 0.792± 0.357

Table 9. Comparison of model assumption satisfaction (in terms of the HZ metric) on synthetic datasets (± std). Across all datasets,
NCAIλ training learns z’s has the least mutual information with x’s and looks the most Gaussian (lowest HZ).
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Mutual Information on Test Data for Real Data sets
Abalone Airfoil Energy Wine Lidar Yacht

BNN+LV 0.152± 0.015 0.485± 0.054 0.139± 0.086 0.045± 0.012 0.667± 0.061 0.077± 0.012
NCAIλ=0 0.149± 0.078 0.29± 0.021 0.162± 0.063 0.047± 0.011 0.373± 0.037 0.087± 0.012
NCAIλ 0.149± 0.078 0.29± 0.021 0.226± 0.041 0.029± 0.008 0.842± 0.06 0.087± 0.012

Table 10. Comparison of model assumption satisfaction on real datasets (± std). Across most datasets, NCAI training learns z’s has the
least mutual information with x’s and looks the most Gaussian (lowest HZ).

HZ Metric on Test Data for Real Data sets
Abalone Airfoil Energy Wine Lidar Yacht

BNN+LV 26.148± 4.394 28.108± 3.205 16.976± 3.519 52.566± 2.633 5.09± 0.991 27.059± 4.144
NCAIλ=0 17.975± 6.725 49.122± 11.426 19.071± 5.414 53.201± 1.247 7.804± 1.727 51.283± 9.548
NCAIλ 17.975± 6.725 49.122± 11.426 1.186± 0.558 1.641± 0.242 0.005± 0.001 51.283± 9.548

Table 11. Comparison of model assumption satisfaction, in terms of the HZ metric on real datasets (± std). Across most datasets, NCAI
training learns z’s that generally looks the most Gaussian (lowest HZ).

NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.007± 0.004 0.021± 0.019 N/A 0.009± 0.003
DKL(p(z)||q(z)) 0.015± 0.012 0.05± 0.046 N/A 0.015± 0.006

Î(x;µz) 0.146± 0.131 0.149± 0.078 N/A 0.152± 0.015

Î(x; z) 0.015± 0.006 0.012± 0.005 N/A 0.011± 0.002
HZ({µz1 , . . . , µzN }) 0.839± 0.15 17.975± 6.725 N/A 26.148± 4.394
s∗w 0.2± 0.018 1.272± 1.043 0.948± 0.68 0.202± 0.02
s∗y 0.01± 0.0 0.01± 0.0 0.1± 0.0 0.1± 0.0

s∗z 0.252± 0.004 0.248± 0.001 N/A 0.249± 0.0
95%-MPIW Test (Unnorm) 7.564± 0.459 7.027± 0.357 4.112± 0.103 7.127± 0.311
95%-MPIW Train (Unnorm) 7.716± 0.448 7.096± 0.446 4.111± 0.099 7.248± 0.215
95%-PICP Test 94.3± 2.515 92.3± 0.975 76.9± 4.292 94.4± 2.329
95%-PICP Train 94.771± 0.559 93.343± 1.743 77.771± 1.476 94.4± 0.509
PairwiseCorr(x, µz) 0.001± 0.0 0.006± 0.002 N/A 0.005± 0.002
PairwiseCorr(y, µz) 0.032± 0.003 0.063± 0.023 N/A 0.115± 0.016
Post-Pred Avg-LL Test −0.837± 0.105 −0.831± 0.086 −1.248± 0.153 −0.843± 0.071
Post-Pred Avg-LL Train −0.798± 0.051 −0.799± 0.064 −1.086± 0.099 −0.832± 0.022
RMSE Test (Unnorm) 0.208± 0.012 0.205± 0.013 0.194± 0.011 0.204± 0.012
RMSE Train (Unnorm) 0.208± 0.012 0.205± 0.013 0.194± 0.011 0.204± 0.011
Recon MSE 0.011± 0.0 0.012± 0.0 N/A 0.165± 0.002
Hyperparams σ2

ε = 0.01,
λ2 = 10,
εT = 0.01,
εx = 0.54,
εy = 1.0

σ2
ε = 0.01 σ2

ε = 0.1 σ2
ε = 0.1

Table 12. Experiment Evaluation Summary for Abalone (± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) −0.0± 0.003 −0.001± 0.003 N/A 0.001± 0.004
DKL(p(z)||q(z)) 0.002± 0.002 −0.0± 0.002 N/A 0.005± 0.003

Î(x;µz) 0.262± 0.03 0.29± 0.021 N/A 0.485± 0.054

Î(x; z) 0.107± 0.005 0.105± 0.008 N/A 0.174± 0.025
HZ({µz1 , . . . , µzN }) 0.25± 0.11 49.122± 11.426 N/A 28.108± 3.205
s∗w 0.548± 0.084 0.509± 0.076 0.762± 0.182 0.105± 0.032
s∗y 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0

s∗z 0.25± 0.001 0.247± 0.0 N/A 0.25± 0.0
95%-MPIW Test (Unnorm) 10.426± 0.81 10.283± 0.423 8.999± 0.164 17.023± 1.972
95%-MPIW Train (Unnorm) 10.294± 0.732 10.15± 0.41 8.985± 0.148 16.974± 1.925
95%-PICP Test 94.7± 2.797 95.5± 1.969 91.9± 1.475 92.9± 1.245
95%-PICP Train 97.429± 0.598 97.286± 0.769 93.2± 2.077 94.686± 0.584
PairwiseCorr(x, µz) 0.001± 0.0 0.005± 0.002 N/A 0.004± 0.001
PairwiseCorr(y, µz) 0.002± 0.001 0.03± 0.01 N/A 0.162± 0.069
Post-Pred Avg-LL Test −0.48± 0.076 −0.462± 0.056 −0.512± 0.083 −0.995± 0.143
Post-Pred Avg-LL Train −0.407± 0.043 −0.401± 0.026 −0.422± 0.043 −0.972± 0.137
RMSE Test (Unnorm) 0.05± 0.005 0.05± 0.003 0.05± 0.003 0.094± 0.009
RMSE Train (Unnorm) 0.05± 0.005 0.05± 0.003 0.05± 0.003 0.094± 0.008
Recon MSE 0.177± 0.01 0.174± 0.006 N/A 0.139± 0.013
Hyperparams σ2

ε = 0.1,
λ2 = 10,
εT = 0.01,
εx = 0.5,
εy = 1.0

σ2
ε = 0.1 σ2

ε = 0.1 σ2
ε = 0.1

Table 13. Experiment Evaluation Summary for Airfoil(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.01± 0.005 0.011± 0.009 N/A 0.032± 0.012
DKL(p(z)||q(z)) 0.021± 0.01 0.025± 0.01 N/A 0.066± 0.029

Î(x;µz) 0.226± 0.041 0.162± 0.063 N/A 0.139± 0.086

Î(x; z) 0.14± 0.006 0.122± 0.011 N/A 0.127± 0.02
HZ({µz1 , . . . , µzN }) 1.186± 0.558 19.071± 5.414 N/A 16.976± 3.519
s∗w 0.496± 0.403 2.91± 2.843 1.87± 1.005 0.921± 1.313
s∗y 0.01± 0.0 0.01± 0.0 0.01± 0.0 0.01± 0.0

s∗z 0.251± 0.003 0.245± 0.001 N/A 0.247± 0.0
95%-MPIW Test (Unnorm) 11.828± 2.308 10.534± 1.751 5.704± 0.16 15.159± 5.563
95%-MPIW Train (Unnorm) 11.925± 2.154 10.329± 1.331 5.71± 0.146 13.813± 2.45
95%-PICP Test 94.51± 2.384 93.464± 1.533 81.438± 2.758 94.51± 2.981
95%-PICP Train 95.139± 2.296 94.36± 1.556 84.527± 4.621 94.731± 2.809
PairwiseCorr(x, µz) 0.002± 0.001 0.005± 0.004 N/A 0.008± 0.004
PairwiseCorr(y, µz) 0.003± 0.001 0.014± 0.006 N/A 0.022± 0.006
Post-Pred Avg-LL Test 0.898± 0.452 0.862± 0.138 1.281± 0.171 0.573± 0.288
Post-Pred Avg-LL Train 0.953± 0.393 0.941± 0.108 1.443± 0.16 0.657± 0.205
RMSE Test (Unnorm) 0.035± 0.007 0.029± 0.005 0.016± 0.002 0.041± 0.011
RMSE Train (Unnorm) 0.035± 0.007 0.029± 0.005 0.016± 0.002 0.041± 0.011
Recon MSE 0.028± 0.001 0.031± 0.003 N/A 0.028± 0.002
Hyperparams σ2

ε = 0.01,
λ2 = 10,
εT = 0.0003,
εx = 0.1,
εy = 1.0

σ2
ε = 0.01 σ2

ε = 0.01 σ2
ε = 0.01

Table 14. Experiment Evaluation Summary for Energy Efficiency(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.014± 0.004 0.019± 0.006 N/A 0.037± 0.022
DKL(p(z)||q(z)) 0.032± 0.009 0.041± 0.015 N/A 0.082± 0.058

Î(x;µz) 0.036± 0.04 0.051± 0.049 N/A 0.243± 0.079

Î(x; z) 0.018± 0.025 0.023± 0.03 N/A 0.214± 0.052
HZ({µz1 , . . . , µzN }) 0.027± 0.011 7.137± 5.436 N/A 4.701± 5.439
s∗w 2.643± 0.226 2.355± 0.28 0.12± 0.007 1.246± 0.149
s∗y 0.1± 0.0 0.1± 0.0 0.5± 0.0 0.1± 0.0

s∗z 0.01± 0.0 0.01± 0.0 N/A 0.01± 0.0
95%-MPIW Test (Unnorm) 5.428± 0.403 5.418± 0.729 2.979± 0.016 6.789± 0.408
95%-MPIW Train (Unnorm) 5.371± 0.38 5.368± 0.7 2.98± 0.005 6.67± 0.342
95%-PICP Test 94.933± 0.723 93.333± 1.054 74.2± 2.834 94.733± 0.641
95%-PICP Train 95.4± 0.894 93.467± 2.116 73.867± 3.288 94.867± 1.095
KS Test-Stat 0.023± 0.004 0.051± 0.028 N/A 0.058± 0.035
PairwiseCorr(x, µz) 0.001± 0.0 0.0± 0.0 N/A 0.0± 0.0
PairwiseCorr(y, µz) 0.111± 0.017 0.068± 0.086 N/A 0.126± 0.107
Post-Pred Avg-LL Test −1.426± 0.042 −1.481± 0.018 −2.47± 0.083 −1.867± 0.078
Post-Pred Avg-LL Train −1.399± 0.058 −1.429± 0.066 −2.6± 0.143 −1.894± 0.078
RMSE Test (Unnorm) 1.79± 0.09 1.787± 0.094 1.831± 0.074 1.882± 0.088
RMSE Train (Unnorm) 1.789± 0.09 1.787± 0.094 1.831± 0.074 1.883± 0.087
Recon MSE 0.142± 0.003 0.16± 0.017 N/A 0.13± 0.007
Hyperparams σ2

z = 0.01,
σ2
ε = 0.1,
λ2 = 10,
εT = 0.01,
εx = 0.1,
εy = 1.0

σ2
z = 0.01,σ2

ε = 0.1 σ2
ε = 0.5 σ2

z = 0.01,σ2
ε = 0.1

Table 15. Experiment Evaluation Summary for Heavy-Tail (± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.002± 0.002 0.001± 0.002 N/A 0.003± 0.003
DKL(p(z)||q(z)) 0.001± 0.001 0.002± 0.002 N/A 0.007± 0.002

Î(x;µz) 0.046± 0.067 0.02± 0.024 N/A 0.229± 0.113

Î(x; z) −0.006± 0.008 −0.011± 0.007 N/A 0.076± 0.101
HZ({µz1 , . . . , µzN }) 0.026± 0.038 0.621± 0.234 N/A 0.918± 0.41
s∗w 0.456± 0.093 0.463± 0.087 0.627± 0.039 0.416± 0.152
s∗y 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0

s∗z 0.249± 0.002 0.247± 0.0 N/A 0.248± 0.001
95%-MPIW Test (Unnorm) 3.969± 0.184 4.091± 0.21 2.265± 0.102 4.226± 0.676
95%-MPIW Train (Unnorm) 3.948± 0.171 4.099± 0.176 2.264± 0.096 4.298± 0.674
95%-PICP Test 91.8± 2.308 92.7± 1.924 73.4± 3.681 91.8± 2.49
95%-PICP Train 93.9± 0.894 94.1± 0.822 75.5± 2.598 93.5± 1.173
KS Test-Stat 0.016± 0.004 0.019± 0.005 N/A 0.025± 0.003
PairwiseCorr(x, µz) 0.001± 0.001 0.0± 0.0 N/A 0.0± 0.0
PairwiseCorr(y, µz) 0.247± 0.148 0.403± 0.04 N/A 0.193± 0.227
Post-Pred Avg-LL Test −0.963± 0.041 −0.962± 0.04 −1.055± 0.08−1.026± 0.056
Post-Pred Avg-LL Train −0.885± 0.03 −0.884± 0.033 −0.95± 0.07 −0.981± 0.107
RMSE Test (Unnorm) 0.337± 0.025 0.339± 0.026 0.335± 0.025 0.376± 0.032
RMSE Train (Unnorm) 0.337± 0.026 0.339± 0.026 0.335± 0.025 0.376± 0.031
Recon MSE 0.16± 0.008 0.151± 0.007 N/A 0.156± 0.013
Hyperparams σ2

ε = 0.1,
λ2 = 10,
εT = 0.0003,
εx = 0.1,
εy = 1.0

σ2
ε = 0.1 σ2

ε = 0.1 σ2
ε = 0.1

Table 16. Experiment Evaluation Summary for Goldberg(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.012± 0.005 0.015± 0.005 N/A 0.006± 0.005
DKL(p(z)||q(z)) 0.025± 0.011 0.031± 0.009 N/A 0.016± 0.008

Î(x;µz) 0.614± 0.075 0.519± 0.091 N/A 0.982± 0.121

Î(x; z) 0.155± 0.048 0.059± 0.02 N/A 0.235± 0.035
HZ({µz1 , . . . , µzN }) 0.015± 0.019 7.248± 2.598 N/A 6.445± 2.818
s∗w 2.927± 1.612 2.368± 1.55 0.75± 0.065 0.997± 0.943
s∗y 0.01± 0.0 0.01± 0.0 0.1± 0.0 0.1± 0.0

s∗z 0.247± 0.002 0.246± 0.001 N/A 0.247± 0.001
95%-MPIW Test (Unnorm) 1.468± 0.207 1.314± 0.126 0.89± 0.036 1.881± 0.171
95%-MPIW Train (Unnorm) 1.479± 0.249 1.31± 0.162 0.889± 0.033 1.908± 0.165
95%-PICP Test 95.4± 1.517 92.9± 1.294 77.2± 3.439 92.9± 3.008
95%-PICP Train 96.9± 0.894 95.0± 0.5 78.8± 3.978 95.1± 0.418
KS Test-Stat 0.03± 0.008 0.034± 0.008 N/A 0.033± 0.011
PairwiseCorr(x, µz) 0.005± 0.002 0.001± 0.001 N/A 0.0± 0.0
PairwiseCorr(y, µz) 0.018± 0.007 0.41± 0.113 N/A 0.572± 0.068
Post-Pred Avg-LL Test −0.489± 0.154 −0.414± 0.184−1.591± 0.417−1.033± 0.156
Post-Pred Avg-LL Train −0.228± 0.125 −0.195± 0.108−1.357± 0.119−0.965± 0.078
RMSE Test (Unnorm) 0.987± 0.103 0.978± 0.083 1.017± 0.06 1.118± 0.096
RMSE Train (Unnorm) 0.988± 0.101 0.979± 0.083 1.017± 0.06 1.117± 0.096
Recon MSE 0.017± 0.001 0.017± 0.001 N/A 0.145± 0.004
Hyperparams σ2

ε = 0.01,
λ2 = 10,
εT = 0.01,
εx = 0.5,
εy = 0.5

σ2
ε = 0.01 σ2

ε = 0.1 σ2
ε = 0.1

Table 17. Experiment Evaluation Summary for Williams(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.005± 0.003 0.006± 0.003 N/A 0.008± 0.003
DKL(p(z)||q(z)) 0.01± 0.005 0.013± 0.006 N/A 0.012± 0.004

Î(x;µz) 0.254± 0.057 0.283± 0.112 N/A 0.24± 0.129

Î(x; z) 0.128± 0.025 0.006± 0.03 N/A 0.028± 0.017
HZ({µz1 , . . . , µzN }) 0.004± 0.004 8.091± 5.185 N/A 5.252± 5.607
s∗w 0.418± 0.083 0.304± 0.028 0.251± 0.137 0.311± 0.031
s∗y 0.1± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0

s∗z 0.248± 0.001 0.248± 0.0 N/A 0.249± 0.0
95%-MPIW Test (Unnorm) 6.862± 1.262 5.243± 0.573 2.007± 0.155 5.275± 0.569
95%-MPIW Train (Unnorm) 6.346± 0.821 4.906± 0.354 2.006± 0.153 4.957± 0.36
95%-PICP Test 95.5± 2.151 94.5± 2.0 63.4± 1.981 93.6± 2.485
95%-PICP Train 97.4± 1.14 95.5± 0.707 69.6± 4.519 94.9± 0.822
KS Test-Stat 0.031± 0.012 0.027± 0.006 N/A 0.029± 0.009
PairwiseCorr(x, µz) 0.0± 0.0 0.0± 0.0 N/A 0.0± 0.0
PairwiseCorr(y, µz) 0.109± 0.036 0.879± 0.028 N/A 0.813± 0.159
Post-Pred Avg-LL Test −1.285± 0.066 −1.211± 0.083−2.846± 0.346−1.278± 0.164
Post-Pred Avg-LL Train −1.111± 0.065 −1.04± 0.057 −2.347± 0.154−1.079± 0.065
RMSE Test (Unnorm) 0.635± 0.042 0.619± 0.039 0.607± 0.035 0.622± 0.039
RMSE Train (Unnorm) 0.635± 0.042 0.62± 0.039 0.607± 0.035 0.622± 0.039
Recon MSE 0.145± 0.008 0.159± 0.007 N/A 0.153± 0.006
Hyperparams σ2

ε = 0.1,
λ2 = 10,
εT = 0.01,
εx = 0.1,
εy = 1.0

σ2
ε = 0.1 σ2

ε = 0.1 σ2
ε = 0.1

Table 18. Experiment Evaluation Summary for Yuan(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.012± 0.012 0.002± 0.002 N/A 0.001± 0.002
DKL(p(z)||q(z)) 0.042± 0.012 0.003± 0.003 N/A 0.003± 0.003

Î(x;µz) 0.029± 0.008 0.047± 0.011 N/A 0.045± 0.012

Î(x; z) 0.013± 0.007 0.022± 0.003 N/A 0.02± 0.004
HZ({µz1 , . . . , µzN }) 1.641± 0.242 53.201± 1.247 N/A 52.566± 2.633
s∗w 0.209± 0.017 0.15± 0.002 0.197± 0.183 0.147± 0.005
s∗y 0.01± 0.0 0.1± 0.0 0.1± 0.0 0.1± 0.0

s∗z 0.257± 0.001 0.251± 0.0 N/A 0.251± 0.0
95%-MPIW Test (Unnorm) 2.4± 0.121 2.45± 0.04 1.028± 0.014 2.466± 0.026
95%-MPIW Train (Unnorm) 2.396± 0.106 2.439± 0.04 1.027± 0.013 2.463± 0.034
95%-PICP Test 94.796± 1.185 94.279± 1.479 61.191± 2.176 94.734± 1.426
95%-PICP Train 94.897± 1.145 94.893± 0.286 63.265± 1.179 94.969± 0.257
PairwiseCorr(x, µz) 0.001± 0.0 0.004± 0.001 N/A 0.003± 0.0
PairwiseCorr(y, µz) 0.049± 0.01 0.142± 0.041 N/A 0.154± 0.055
Post-Pred Avg-LL Test −0.849± 0.038 −1.147± 0.025 −1.709± 0.22 −1.143± 0.027
Post-Pred Avg-LL Train −0.805± 0.033 −1.119± 0.013−1.479± 0.056−1.123± 0.015
RMSE Test (Unnorm) 0.983± 0.023 0.976± 0.016 0.92± 0.022 0.981± 0.017
RMSE Train (Unnorm) 0.983± 0.023 0.976± 0.017 0.92± 0.022 0.981± 0.017
Recon MSE 0.011± 0.001 0.114± 0.001 N/A 0.113± 0.001
Hyperparams σ2

ε = 0.01,
λ2 = 10,
εT = 0.01,
εx = 0.1,
εy = 0.5

σ2
ε = 0.01 σ2

ε = 0.1 σ2
ε = 0.1

Table 19. Experiment Evaluation Summary for Wine Quality Red(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.006± 0.008 −0.0± 0.002 N/A 0.005± 0.004
DKL(p(z)||q(z)) 0.003± 0.006 0.001± 0.005 N/A 0.002± 0.004

Î(x;µz) 0.086± 0.013 0.087± 0.012 N/A 0.077± 0.012

Î(x; z) 0.108± 0.002 0.108± 0.004 N/A 0.107± 0.001
HZ({µz1 , . . . , µzN }) 5.42± 0.747 51.283± 9.548 N/A 27.059± 4.144
s∗w 1.094± 0.903 1.137± 0.84 1.395± 1.155 0.384± 0.026
s∗y 0.01± 0.0 0.01± 0.0 0.01± 0.0 0.01± 0.0

s∗z 0.251± 0.001 0.246± 0.001 N/A 0.247± 0.0
95%-MPIW Test (Unnorm) 6.734± 0.212 6.712± 0.235 6.163± 0.178 8.095± 0.762
95%-MPIW Train (Unnorm) 6.724± 0.223 6.703± 0.217 6.163± 0.193 8.118± 0.601
95%-PICP Test 99.016± 2.199 98.689± 2.933 97.377± 5.865 98.033± 2.137
95%-PICP Train 99.444± 0.387 99.444± 0.387 97.593± 2.544 98.611± 0.655
PairwiseCorr(x, µz) 0.007± 0.003 0.007± 0.002 N/A 0.007± 0.003
PairwiseCorr(y, µz) 0.005± 0.002 0.022± 0.01 N/A 0.017± 0.01
Post-Pred Avg-LL Test 0.836± 0.074 0.832± 0.077 0.818± 0.187 0.638± 0.121
Post-Pred Avg-LL Train 0.865± 0.025 0.872± 0.024 0.868± 0.074 0.678± 0.047
RMSE Test (Unnorm) 0.005± 0.001 0.005± 0.001 0.005± 0.001 0.008± 0.001
RMSE Train (Unnorm) 0.005± 0.001 0.005± 0.001 0.005± 0.001 0.008± 0.001
Recon MSE 0.014± 0.0 0.014± 0.0 N/A 0.014± 0.001
Hyperparams σ2

ε = 0.01,
λ2 = 10,
εT = 0.01,
εx = 0.5,
εy = 0.5

σ2
ε = 0.01 σ2

ε = 0.01 σ2
ε = 0.01

Table 20. Experiment Evaluation Summary for Yacht(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.004± 0.002 0.004± 0.001 N/A 0.006± 0.002
DKL(p(z)||q(z)) 0.008± 0.003 0.008± 0.004 N/A 0.01± 0.003

Î(x;µz) 0.842± 0.06 0.373± 0.037 N/A 0.667± 0.061

Î(x; z) 0.035± 0.012 −0.015± 0.007 N/A 0.146± 0.026
HZ({µz1 , . . . , µzN }) 0.005± 0.001 7.804± 1.727 N/A 5.09± 0.991
s∗w 0.488± 0.026 0.444± 0.019 0.28± 0.132 0.231± 0.002
s∗y 0.01± 0.0 0.01± 0.0 0.1± 0.0 0.01± 0.0

s∗z 0.247± 0.0 0.247± 0.0 N/A 0.248± 0.0
95%-MPIW Test (Unnorm) 0.258± 0.026 0.247± 0.022 0.366± 0.005 0.313± 0.03
95%-MPIW Train (Unnorm) 0.293± 0.011 0.277± 0.012 0.366± 0.005 0.336± 0.014
95%-PICP Test 96.818± 2.591 96.364± 2.033 96.364± 3.447 95.455± 2.784
95%-PICP Train 95.871± 0.736 94.968± 0.957 93.161± 1.08 93.29± 0.866
KS Test-Stat 0.028± 0.005 0.025± 0.005 N/A 0.024± 0.009
PairwiseCorr(x, µz) 0.0± 0.0 0.0± 0.0 N/A 0.0± 0.0
PairwiseCorr(y, µz) 0.007± 0.003 0.084± 0.009 N/A 0.121± 0.008
Post-Pred Avg-LL Test 0.263± 0.11 0.269± 0.107 −0.31± 0.069 0.129± 0.131
Post-Pred Avg-LL Train 0.155± 0.043 0.159± 0.046 −0.386± 0.035−0.021± 0.053
RMSE Test (Unnorm) 0.995± 0.059 0.988± 0.061 1.143± 0.087 1.231± 0.057
RMSE Train (Unnorm) 0.994± 0.059 0.988± 0.062 1.143± 0.087 1.231± 0.056
Recon MSE 0.017± 0.0 0.017± 0.0 N/A 0.015± 0.001
Hyperparams σ2

ε = 0.01,
λ2 = 10,
εT = 0.01,
εx = 0.5,
εy = 0.5

σ2
ε = 0.01 σ2

ε = 0.1 σ2
ε = 0.01

Table 21. Experiment Evaluation Summary for Lidar(± std).
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NCAIλ NCAIλ=0 BNN BNN+LV
DJS(q(z)||p(z)) 0.003± 0.001 0.005± 0.001 N/A 0.031± 0.005
DKL(p(z)||q(z)) 0.008± 0.002 0.009± 0.002 N/A 0.357± 0.088

Î(x;µz) 0.057± 0.017 0.032± 0.017 N/A 0.428± 0.04

Î(x; z) 0.047± 0.015 0.024± 0.014 N/A 0.387± 0.045
HZ({µz1 , . . . , µzN }) 0.015± 0.004 0.792± 0.357 N/A 6.408± 2.439
s∗w 34.575± 17.89 22.305± 7.342 1.805± 0.094 12.39± 4.903
s∗y 0.1± 0.0 0.1± 0.0 1.0± 0.0 0.1± 0.0

s∗z 1.0± 0.0 1.0± 0.0 N/A 1.0± 0.0
95%-MPIW Test (Unnorm) 7.375± 0.263 7.145± 0.16 4.011± 0.006 22.165± 10.073
95%-MPIW Train (Unnorm) 7.433± 0.299 7.114± 0.217 4.011± 0.001 22.267± 10.346
95%-PICP Test 93.84± 1.78 93.44± 1.757 73.68± 1.842 96.0± 1.095
95%-PICP Train 95.493± 0.256 95.227± 0.289 75.493± 1.489 96.773± 0.446
KS Test-Stat 0.014± 0.001 0.02± 0.002 N/A 0.044± 0.007
PairwiseCorr(x, µz) 0.003± 0.001 0.0± 0.0 N/A 0.0± 0.0
PairwiseCorr(y, µz) 0.035± 0.009 0.138± 0.014 N/A 0.161± 0.039
Post-Pred Avg-LL Test −1.979± 0.04 −1.973± 0.049 −2.306± 0.059 −2.342± 0.048
Post-Pred Avg-LL Train −1.92± 0.021 −1.895± 0.018 −2.217± 0.069 −2.229± 0.04
RMSE Test (Unnorm) 1.985± 0.051 1.932± 0.059 1.953± 0.071 3.523± 0.501
RMSE Train (Unnorm) 1.985± 0.051 1.933± 0.059 1.953± 0.071 3.521± 0.501
Recon MSE 0.124± 0.002 0.122± 0.001 N/A 0.123± 0.005
Hyperparams σ2

z = 1.0,
σ2
ε = 0.1,
λ2 = 10,
εT = 0.01,
εx = 0.5,
εy = 1.0

σ2
z = 1.0, σ2

ε = 0.1 σ2
ε = 1.0 σ2

z = 1.0,σ2
ε = 0.1

Table 22. Experiment Evaluation Summary for Depeweg(± std).


