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Abstract

Global explanations of a reinforcement learning (RL) agent’s expected behavior
can make it safer to deploy. However, such explanations are often difficult to
understand because of the complicated nature of many RL policies. Effective
human explanations are often contrastive, referencing a known contrast (policy) to
reduce redundancy. At the same time, these explanations also require the additional
effort of referencing that contrast when evaluating an explanation. We conduct
a user study to understand whether and when contrastive explanations might be
preferable to complete explanations that do not require referencing a contrast. We
find that complete explanations are generally more effective when they are the same
size or smaller than a contrastive explanation of the same policy, and no worse
when they are larger. This suggests that contrastive explanations are not sufficient
to solve the problem of effectively explaining reinforcement learning policies, and
require additional careful study for use in this context.

1 Introduction

Domain experts are increasingly using reinforcement learning (RL) agents to guide high-stakes
decisions, in areas ranging from medical treatment to autonomous driving. Therefore, it is crucial
to provide users with explanations of these agents’ behavior. Global explanations of RL policies
can be useful for answering big picture questions about the agent, like evaluating an agent’s capa-
bilities, choosing the most suitable agent for a given task, and deciding when to trust an agent’s
recommendation ([Huang et al., 2018], [Huang et al., 2019], [Amir and Amir, 2018], [Amir et al.,
2018], [Lage et al., 2019]). However, generating global explanations is challenging because of the
complex computational techniques used by agents and the sheer size of the state space Amir et al.
[2018].

Contrastive explanations describe an event in reference to a known contrast that was expected to
happen instead. These explanations are a natural and commonly-used form of human communication,
and can potentially simplify descriptions by reducing redundancy Miller [2019]. In this paper, we
examine through a user study the use of contrastive explanations as a strategy to reduce unnecessary
complexity in global policy explanations. We find that complete explanations are generally preferred
by at least one metric when they are the same size or smaller than the contrastive explanations,
suggesting there is no innate preference for contrastive explanations in this context. In the case where
contrastive explanations are substantially smaller, there are no significant differences between the two
explanation types. These results suggest that participants generally prefer complete explanations over
contrastive ones, at least in cases when complete explanations are small enough to be understandable,
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and that further study of contrastive explanations is needed to understand how best to use them to
interpret RL policies.

(a) Our interface showing the task and a small, contrastive explanation.
The box on the left shows the maze domain where black squares are
obstacles, and the red circle is the agent position, described in text above
the map. The explanation sometimes provides the action the agent takes
in a state (blue leaves), and sometimes says the agent does the “same as
Alice” (green leaves), which is the known contrast policy.

(b) An example of a complete explana-
tion which does not reference any con-
trast policy. All leaf nodes are blue and
evaluate directly to an action. This par-
ticular example is a “long” explanation
in contrast to the “short” explanation
shown on the left.

2 Related Work

Cognitive science research suggests that when humans generate explanations, they often do so in the
form of contrastive explanations that describe why a particular event happened rather than a different,
expected event–often called a contrast or a foil. [Miller, 2019] relates this literature to explainable AI
and highlights how contrastive explanations can often be more easily and succinctly produced than
complete explanations, but how in order for them to be sensible, there must be significant similarities
between the event that did happen and the foil used in explanation (see [Lipton, 1990] for a more in
depth discussion). In this context, a complete explanation is an explanation that lists all of the causes
of an event without making reference to a contrast. Note that counterfactuals are related, but focus on
alternative causes of an outcome, rather than an alternative outcome [Miller, 2019]. We test whether
and when contrastive explanations of reinforcement learning policies using a known behavior policy
as a contrast are preferable to using a complete explanation of the RL policy.

Explanations of reinforcement learning policies are generally split into two categories: global
explanations that explain the behavior of an agent in the entire state space at once, and local
explanations that explain why an agent took a particular action in a particular state Alharin et al.
[2020]. Global explanations of policies have been shown to be effective for tasks including choosing
between multiple agents ([Amir and Amir, 2018], [Huber et al., 2021]), evaluating the importance
of features towards agent decisions Huber et al. [2021], and anticipating agent actions ([Lage et al.,
2019], [Huang et al., 2019]); and take various forms including decision trees ([Bastani et al., 2018],
[Roth et al., 2019]) and policy summaries that convey the agent’s behavior as a set of state-action pairs
(e.g. [Amir and Amir, 2018], [Huang et al., 2019]). Small decision trees can be readily understood
by users (see e.g. [Freitas, 2014]), but can be difficult to train as effective RL policies requiring
innovations like model distillation Bastani et al. [2018] and Q-learning with constraints on tree
complexity Roth et al. [2019]. In this work, we focus on global, decision tree-based explanations,
however rather than exploring methods for training these, we use decision tree explanations as a
test-bed to systematically compare contrastive and complete explanations.

Several types of contrastive and counterfactual explanations have been proposed for explaining
RL policies. Most previous work on these explanation types has either focused on comparing the
consequences of taking one action over another ([van der Waa et al., 2018b], [Krarup et al., 2019],
[Lin et al., 2020], [Madumal et al., 2020]) and learning local rather than global differences between
policies ([van der Waa et al., 2018a], [Hayes and Shah, 2017]), or on non-RL tasks altogether, such
as classification ([Dhurandhar et al., 2018]). Most are not evaluated through user studies, but [van der
Waa et al., 2018b] asks users to select their preferred explanation and [Madumal et al., 2020] presents
users with a series of contrastive explanations of local agent actions, and then asks users to predict
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the agent’s action at the next step and rate their trust of the agent. While our task is similar, our
explanations are global and convey the entire policy at once. Finally, [Amitai and Amir, 2022]
presents a global method for contrasting 2 learned RL policies and shows through user studies that
the explanation contrasting these 2 policies allows users to more effectively pick the best policy than
2 complete summaries. Our work differs from these in 2 key ways: 1) we evaluate the effectiveness of
global contrastive explanations for anticipating an agent’s behavior, which is important for human-AI
collaboration, and 2) we use contrastive explanations to generate explanations of the policy using a
contrast policy already familiar to the user rather than to compare 2 plausible RL agents.

3 Policy Explanation Methods

We consider two types of global explanations of RL policies in this work: complete explanations that
fully describe the agent’s behavior in each state without reference to any other policy, and contrastive
explanations that describe the agent’s behavior in reference to a known contrast policy. We define
some background RL concepts below, then describe the key properties of each of these explanation
types.

Reinforcement Learning Background Our goal in this work is to explain policies of trained RL
agents. A policy π(S) = A is a mapping between states S and actions A that the agent takes in
those states. An example of a state (as used this work) is the vertical and horizontal coordinates on a
map, as well as whether there are obstacles in each of the four cardinal directions. RL agents are
generally trained so that the learned policy maximizes some specified reward function. In this work,
we consider deterministic policies, where the agent always takes the same action in a given state.

In our context, the contrastive summaries will also rely on a contrast policy, πctrst that is not
necessarily a trained RL agent, but is familiar to the user. This is simply another mapping between
states and actions that the user already knows. One example of a πctrst is the policy that the user
would have followed in the absence of the RL agent.

Complete explanations Complete explanations fully describe the behavior of a trained RL agent
(i.e. its policy). They provide stand-alone descriptions of the agent’s actions across the state space
that can be used to understand how it will behave. Formally, a complete policy explanation is a
human-readable function

ecmplt(S) = π(S) (1)
that represents the RL agent’s policy π. We operationalize this function as a decision tree, which is
relatively easy for users to understand and therefore commonly used in explainable RL Alharin et al.
[2020]. See Figure 1b for an example of a complete explanation used in our experiment.

Contrastive Explanations Rather than representing the trained RL agent’s policy from scratch,
contrastive explanations represent it in contrast to a known policy, πctrst. This is a natural explanation
format for users, and an effective way to reduce redundancy when there is substantial overlap between
what the user already knows and the agent’s policy Miller [2019]. Formally, a contrastive policy
explanation is a a human-readable function

ectrst(S, πctrst) =

{
π(S) if π(S) 6= πctrst(S)

‘Same as contrast’ o.w.
(2)

that represents the RL agent’s policy π. When the contrast policy’s action matches the agent’s action
in a given state, the explanation says to reference the contrast policy. When the actions do not match,
the explanation instead gives the action taken by the agent. This explanation formalization fits into
the framework of a contrastive explanation because the human-understandable function ectrst is
designed to answer only the question of why the agent took actions π(S) rather than πctrst(S) (in the
cases where they differ). As in the complete explanation case, we operationalize ectrst as a decision
tree. See Figure 1a, right box, for an example of a contrastive explanation used in our experiment.

4 Research Questions

As each of these explanation methods has potential advantages and disadvantages, we aim to under-
stand, through a user study, when each of these methods should be employed. Complete explanations
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are cognitively the most straightforward and stand-alone without needing to reference a contrast
policy, while contrastive explanations align with how people are known to process explanations, and
may be more concise in cases with substantial alignment between the agent’s policy and the contrast
policy. These relative strengths and weaknesses lead us to our two main research questions:

RQ1: When both explanation types are of the same size, does one or the other allow for better
task performance? This question allows us to determine whether one of the explanation types is
more effective at facilitating task performance when all other factors are equal between them. We
measure task performance via the response time (the time that it takes the participant to perform the
task).

RQ2: When the explanation sizes differ, does the smaller explanation always lead to better
task performance, or does the better performing explanation from RQ1 remain better? This
question is important because contrastive explanations are often more concise, as well as being a
different form of summary.

RQ3: Do the results hold across different metrics? We check to see if the patterns of perceived
difficulty match the patterns in response time.

5 Experimental Setup

In this section, we describe the domain and method for generating the explanations and task inputs,
then the experimental setup and analysis methods for the user study.

Domain We created a simple maze domain where users could reason about the behavior of the
agent and easily understand and learn the contrast policy we provided. The maze consists of a a
2-dimensional 20× 20 grid with some regions blocked off as impassable, marked as black squares.
See Figure1a, the left box, for the visual representation of the domain given to users.

The agent’s state in this domain consists of its horizontal and vertical location on the grid. Formally,
the discrete states can be written as: S = (x, y). The agent’s action space consists of the following 5
actions: move one unit up, down, right, or left, or stay put in its current position. It cannot enter a
blocked region or leave the grid.

Contrast Policy We defined one simple contrast policy for the experiment: “If vertical position
y < 10, move UP. Otherwise, move DOWN. If that move is blocked, STAY PUT." We required users
to memorize it at the start of the contrastive block of the experiment, and test their recall with an
action prediction question halfway through the block. 98.04% of participants answered this question
correctly, suggesting that they were able to recall the contrast.

5.1 Generating Explanations

We followed a 2-stage process to generate both a complete and a contrastive explanation for the same
policy, facilitating our analysis. To do this, we first randomly generated logical functions to assign
actions across the state space–this was the policy. Then, then we trained decision trees on top of
this function to accurately replicate the policy. As these decision trees were trained to match the
underlying policy in over 99% of sampled states, we do not consider them to be approximations.
However, in practice, one way to generate similar explanations is to use a model distillation approach
on a black-box RL policy (see e.g. [Bastani et al., 2017]).

The final policies and explanations used in our experiment were chosen according to criteria defined in
Section 5.3. Below, we describe the approach for training the decision trees used as the explanations.
The sampling procedure used to generate candidate policies is described in Appendix A.

Generating Explanations from Policies We derive the decision tree explanations from the policy
representations described above by training a decision tree model to solve a supervised learning
problem based on feature representations of each state, φ(S), and labels based on the action taken
in S: lcmplt generated using Equation 1 for the complete explanations, and lctrst generated using
Equation 2 for the constrastive explanations.
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The features we used to represent the states consisted of the x and y coordinates of the state S, as
well as whether the agent is blocked in each of the four cardinal directions. The state representation
φ(S) can be written as:

s′ = [x, y, bup, bdown, bleft, bright]

where x, y ∈ [0, 20) and the bdirection features are binary indicators that tell us whether there is an
obstacle in the adjacent square in each of the 4 directions.

To train the decision tree explanations, we sample N=10, 000 states, S = (x, y) uniformly at random
and produce the label using the approach described above, with a 0.9/0.1 train/test split. When training
decision trees, we use the scikit-learn implementation Pedregosa et al. [2011] and set the following
hyperparameters: the Gini impurity splitting criteria, unlimited max_depth and max_leaf_nodes, and
random_state = 0.

We ensure that all decision tree summaries, complete and contrastive, have test accuracy of at least
0.99 by only considering those policies where this is true for both summary types. This guarantees
that our policy explanations are accurate representations of the policy, rather than approximations
that may introduce additional challenges.

5.2 Task

To measure participants’ understanding, we use the task used in Lage et al. [2019]–we ask them
to predict the agent’s behavior in a specified state. We describe how these states were chosen in
Appendix A This measures to what extent they can anticipate how the agent will behave based on the
provided explanation.

5.3 Conditions

In order to answer our research questions about where each explanation type is effective, we test
both types of explanations across 4 conditions that are determined by the sizes of both the complete
explanation and the contrastive explanation for a given policy. The 4 conditions are:

• complete-small-contrast-small: both explanations are of the same size and small
• complete-small-contrast-large: the complete explanation is smaller than the contrastive

explanation
• complete-large-contrast-small: the contrastive explanation is smaller than the complete

explanation
• complete-large-contrast-large: both explanations are of the same size and large

We make the choice to test these 4 conditions that look at the cross product of both explanation type
sizes for two reasons. The first reason is that it allows us to reduce variance in the results and employ
paired statistical tests for our main research questions, RQ1 and RQ2. The second reason is that
there may be systematic differences in the types of policies that tend to produce a long or a short
explanation of each type, and we wish to avoid those interfering with our analysis.

We define explanation sizes based on both the maximum depth of the decision tree, and the number
of leaves in the tree, whcih controls for path lengths and visual size of the trees. We define a small
summary as a tree of depth 3 (not including the root node) and either 4 or 5 leaves. A large summary
is a tree of depth 5 (not including the root node) and either 9 or 10 leaves. See Figure 1a for an
example of a small explanation, and Figure 1b for an example of a large explanation.

5.4 Selecting Policies and Explanations

For each of the 4 conditions above, we generate 2 policies that satisfy the criteria and their corre-
sponding summaries. We additionally require that there exist states that satisfy the criteria described
in Appendix A.

5.5 Metrics

We record 3 metrics for each question to measure the how effective each of the explanations are
based on the task. These 3 metrics are: standardized response time, subjective difficulty rating, and
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accuracy. We standardize response time by subtracting off the participant specific mean response time.
Accuracy is measured as whether or not the action predicted by the user matches the true action taken
by the agent at that state. We asked participants how difficult it was to make each prediction (after the
response time was stopped), on a likert scale from 1: ‘very easy’ to 5 ‘very hard.’ In the experiment
instructions, we told participants to focus on being accurate rather than fast, so we consider response
time as the primary metric, and accuracy as a secondary metric.

5.6 Experimental Procedure

We measured all independent variables within subjects, allowing us to reduce variance in our statistical
analysis. Participants were given 2 blocks of 4 questions, corresponding to the 2 explanation types.
Within those 4 questions were 1 from each of the 4 summary size conditions described in Section 5.3.
Policies were not repeated for a participant in order to avoid learning effects.

Participants were trained in the task before completing the study, and their understanding was
evaluated with a set of practice questions. Participants who failed to get these practice questions
right in 2 tries were excluded from the analysis. We also told participants that their primary goal
was accuracy and their secondary goal was speed. This results in relatively high task accuracies,
motivating our choice to analyze response time. See Appendix E for details. Additional details about
the experimental procedure are given in Appendix B

5.7 Recruiting Participants

We recruited participants via Amazon Mechanical Turk. We required participants have a HIT approval
rate of 90 or greater and at least 500 HITs approved. We paid participants $5-$7. This study was
approved by our institution’s IRB.

We excluded participants who failed to get the practice questions right within 2 tries. This criteria
excluded 36/87 participants, which is a substantial percent of respondents. This means that these
results may not generalize to the everyone in the general population, but should be representative
of people who are more comfortable completing this task. In a real-world setting, particularly a
high-risk one, users are likely to have more training with the explanation system than we were able
to provide in the context of this experiment. We made a few additional exclusions based on highly
abnormal response times. We describe additional details of participant recruitment in Appendix C.

5.7.1 Experimental Interface

Figure 1a shows a screenshot of our interface with a small, contrastive explanation. In the left box
is the map of the domain with the specific state where the participant is asked to predict the agent’s
action marked with a red circle. The coordinates are also listed in text at the top of the map. The
black squares are obstacles that cannot be moved through. We annotated the map with the numbers
and left and right arrows to facilitate reading the map.

In Figure 1a, the right box shows the explanation of the policy with leaves that evaluate to an agent
action directly marked in blue, and leaves that evaluate to the contrast policy marked in green. True
and False marked on the decision tree arrows facilitate navigating the tree. Figure 1b shows the
explanation for a long complete summary. All leaves evaluate directly to an action, so are marked in
blue. Otherwise, the explanation is presented identically in both explanation types.

Below the interface shown in Figure 1a, we ask participants to predict the action in the red state in
multiple choice format from the 5 action possibilities (up, right, down, left, stay put). See Appendix D
for additional details.

5.7.2 Analysis

We ran statistical tests on our collected data to answer our research questions. We ran paired-sample
2-sided t-tests to compare the standardized response times for the 2 summary types across the 4
conditions as standardized response time is a continuous measure. To compare perceived difficulty, we
chose the Wilcoxon signed-rank test which accounts for paired samples. All tests were implemented
using the scipy stats software.
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Figure 2: This figure shows the distri-
bution of differences in standardized re-
sponse time (RT) between the 2 expla-
nation types for each participant in the
4 explanation size conditions. The box
shows the 1st-3rd quartile with the me-
dian marked in orange and the mean
in green (dotted). Negative differences
mean lower standardized RT for com-
plete explanations, and positive for con-
trastive explanations. Complete explana-
tions have significantly lower (marked
with a star) standardized RT in both con-
ditions where the contrastive explanation
is large.

Table 1: This figure shows the distribution of perceived
difficulty scores for complete (red) and contrastive (blue)
explanations in the 4 explanation size conditions. Purple
indicates overlap between the two explanation types. For
both cases where the complete explanation is small, it is per-
ceived as significantly (star) less difficult than the contrastive
explanations, while in the other case, the differences are not
significant.

We set the threshold for statistical significance at p = 0.05. In order to compare for multiple
hypothesis testing, we used a Benjamini-Hochberg correction for multiple hypothesis testing for 16
tests we ran. Significant results are starred in figures and described in the text. Appendix ?? includes
details about the statistical results including p-values.

6 Results

We describe the results of our research questions RQ1, RQ2 and RQ3 below. We find that that
complete explanations allow for quicker task performance than contrastive explanations when both are
large or when the complete explanations are smaller. Participants also generally perceived complete
explanations as less difficult when they were small. Contrastive explanations never significantly
outperformed complete explanations, even when they were substantially smaller.

Figure2 shows the difference in standardized response times for the cases with large and small
complete and contrastive explanations.

RQ1 Conclusion: When both explanation types are large, complete summaries have signifi-
cantly lower standardized response time, while when the explanation types are both small, the
trend is consistent but not statistically significant. Figure2 shows the difference in standardized
response times for the complete and contrastive explanations in each of the 4 explanation-size con-
ditions. In Figure2, the complete-large-contrast-large condition has a difference in standardized
response time significantly below zero (p = 7.3757e−3, t = −4.3289), suggesting that, when both
summary types are long, a complete explanations allows participants to perform the task more
quickly. In the complete-small-contrast-small condition, we see a similar trend with the difference in
standardized response times below zero suggesting that a small complete explanation is preferred
to a small contrastive explanation, however the result is not statistically significant (p = 5.2015e−2,
t = −1.9905). Overall, these results suggest that, when explanation sizes are similar, a complete ex-
planation allows for more efficient task completion than a contrastive explanation, and the difference
is more exaggerated as explanation sizes grow.

RQ2 Conclusion: When the complete explanation is smaller than the contrastive explanation,
it has significantly lower standardized response time, but the reverse is not true, suggesting
there is no substantial difference in response time between a small contrastive explanation
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and a large complete explanation. In Figure2, in the complete-small-contrast-large condition, the
difference in standardized response times skews lower than 0, indicating that response times are
lower for the smaller complete explanations than the large contrastive ones. This result is statistically
significant (p = 4.0023e−3, t = −3.0337). In the reverse case, the complete-large-contrast-small
condition, the difference in standardized response time is not significant (p = 6.8238e−1, t = 0.411),
and visually, it appears to be closely centered on zero. This suggests that a small contrastive
explanation and a large complete explanation take similar amounts of time to process.

RQ3 Conclusion: Perceived difficulty results suggest a lower perceived difficulty for complete
explanations when they are small, regardless of contrastive explanation size. Figure 1 shows
histograms of subjective difficulty ratings for both explanation types in each of the 4 explanation-size
conditions. In the complete-small-contrast-small and complete-small-contrast-large conditions, there
is a statistically-significantly lower perceived difficulty for the complete summary (p = 1.8259e−03,
W = 15.0; p = 1.1171e− 02, W = 64.5). The differences in perceived difficulty are not significant
for the 2 other conditions. When both explanation sizes are large, the trend is towards complete
explanations having a lower perceived difficulty, which is consistent with the other findings. When
the complete explanation is large and the contrastive explanation is small, the results are mixed.

7 Discussion

Our results suggest that complete explanations may generally be preferrable to contrastive explana-
tions as they are significantly better in either response time or perceieved difficulty for all conditions
where the complete explanation is the same size or smaller than the contrastive explanation. While
these metrics do not perfectly align, they capture slightly different aspects of the problem, both of
which are important.

When the contrastive explanation is shorter than the complete explanation, they appear to perform
quite similarly across metrics. This raises the question of whether, with a complete summary that is
much larger, we might see comparatively better task performance for the contrastive explanation. In
this experiment, we constrained the explanations to sizes that could be reasonably displayed on the
screen, and that were not too challenging for participants to answer correctly. It seems likely that
larger complete summaries will be really difficult for participants to understand, shifting the balance
towards the contrastive summaries.

While it is not clear from our results exactly why the contrastive explanations generally performed
worse, particularly given that they are commonly used in human interactions, it may be due to the
additional cognitive load of keeping the contrast policy in mind, or to other unexplored factors.
Whether there are ways to present contrastive explanations to increase their effectiveness remains an
open question.

8 Conclusion

Contrastive explanations are a natural form of explanation in human communication, and can result
in less complex explanations in cases where the contrast shares many of the features of the event
to be explained. While this suggests they may be useful for providing more effective explanations
of reinforcement learning policies, the results of our user study suggest that complete explanations
are often preferred and never worse, at least in cases where they are reasonably sized. Further work
exploring the use of contrastive explanations for reinforcement learning policies should be careful to
identify and mitigate the factors that cause them to be more challenging to work with than complete
explanations.
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A Sampling Policies

To generate candidate policies, we specified a functional form with parameters that could be randomly
sampled to generate policies with distinct properties. Each policy consisted of at most four conditional
statements, each corresponding to an action.

Each conditional statement corresponds to an ‘and’ or an ‘or’ of 2 thresholds t1 and t2. Each
threshold can be either an upper bound or a lower bound, each threshold can apply to either the x or
y coordinates of the map, and each threshold evaluates to True or False for a given state S = (x, y).
A condition could be written as x < t1 ∨ x > t2, or x > t1 ∧ y < t2, just to give two examples.

Using this procedure to generate conditional statements given 2 sampled thresholds, t1 and t2, we
can generate multiple conditional statements and use them to assign actions, also randomly sampled,
to different parts of the state space. All policies are sampled according to the form described in
Algorithm 1 where the sampled parameters are: {t11, t12, t21, t22, t31, t32, a1, a2, a3, a4}.
While other policies can be specific in this domain, we find that this space of policies is sufficiently
expressive to generate policies that meet the criteria defined for each of our conditions.

Algorithm 1 Form of the logical rules used to generate policies used in our experiments. Parameters
{t11, t12, t21, t22, t31, t32, a1, a2, a3, a4} are all randomly sampled to generate a set of random policies to
select questions from.

if cond1(s, t11, t12) then
if cond2(s, t21, t22) then

return a1
else

return a2
end if

else if cond3(s, t31, t32) then
return a3

else
return a4

end if

Selecting States for the Task The task requires specifying a state in which to predict the action.
We set some requirements on these states to guarantee that the answer is well specified, the questions
are consistent with the conditions, and to reduce the impact of learning effects. To guarantee the
question is well specified, we require that the state is not blocked, that it is not directly on the border
of the grid (where the policy may be ambiguous to users), and the state is at least one away from the

10

http://arxiv.org/abs/1907.01180


x = 10 line as this is where the contrast policy action changes sign and we did not want participants
to be required to remember exactly where this occurred (i.e. is it > 10 or ≥ 10?). To guarantee that
the questions are consistent within a condition, we require the decision path of the state within the
explanation tree to be within 1 of the maximum depth (so we don’t have, for e.g., trees of size 5 and
states with decision paths of length 2). To guard against participants learning a prior on the correct
response for the contrastive explanation, we require one of the two questions in each condition to
evaluate to the contrast policy with the contrastive summary, and the other to evaluate directly to an
action. We used the same state for both explanation types for a given policy.

B Experimental Procedure

In order to train participants in the task, we gave participants a general set of instructions at the
beginning of the task that included a description of the domain, an explanation of how to read decision
trees, and instructions for how to complete the task. The instructions for each specific explanation
type, and the contrast policy for the contrastive questions were shown directly before the start of their
respective question blocks. At the outset of the task, we told participants that their primary goal was
accuracy and their secondary goal was speed. Participants were then given a sample policy with 3
practice questions (each a state where they must prediction the action), and were required to get all 3
questions correct before moving on. If participants did not correctly answer all 3 questions on the
first try, they were given a second try with a new policy. Participants who required more than 2 tries
to get either of the practice questions right were excluded from the analysis. In addition, participants
were given a set of 5 practice questions about the contrast policy after reading its description that they
were required to answer correctly before moving on. This was repeated, along with the instructions,
until they did so. This question was not used to exclude participants.

When completing the task, participants were first asked to make the prediction. Afterwards, they
were given a pop-up where they were asked about the difficulty of the question. After that, they
received a second pop-up telling them whether they answered the question correctly or not. Finally,
some participants were asked to describe the policy in words based on the explanation, although we
removed this question after the first round of data collection as this the question felt ill-specified,
even to participants who otherwise performed well on the task.

In addition to the task, we asked participants several questions about their demographics, and their
experience with the task. At the start of the study, we asked a series of demographic questions.
A single memory-check question was asked in the middle of the contrast block about the contrast
policy to verify that participants remembered the contrast policy. If they answered incorrectly, they
were shown the contrast policy again and given another try. After each block of questions, we
asked participants about their experience with the explanation type, and at the end we asked them to
compare the 2 types. Finally, at end, we ask a free-text question about participants’ experience with
the survey.

C Recruiting Participants

We recruited participants via Amazon Mechanical Turk. For an original set of 27 responses that
included a free-text description of the explanation, we required participants have a HIT approval
rate of > 95 and at least 1000 HITs approved. For the remaining respondents where the free-text
questions were not included, we lowered the HIT approval rate to > 90 and the number of HITs
approved to > 500 as we determined that the difficulties were coming from the ill-specified nature of
the free text question rather than participant qualifications. We paid participants who completed the
version with free-text descriptions of the summaries $7 dollars, and the participants who completed
the version without free-text summaries $5. This study was approved by our institution’s IRB.

We excluded participants based on the practice question criteria described above (requiring more
than 2 tries to get either of the sets of practice questions right, excluding those about the contrast
policy). This criteria excluded 36/87 participants, which is a substantial percent of respondents. This
means that these results may not generalize to the everyone in the general population, but should
be representative of people who are more comfortable completing this task. In a real-world setting,
particularly a high-risk one, users are likely to have more training with the explanation system than
we were able to provide in the context of this experiment.
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Figure 3: The representation of the contrast policy shown in our experiment. This includes both
a textual description and a visual summary of the policy. In the instructions, the contrast policy is
described as a policy belonging to a player in a maze game named Alice.

Figure 4: This is the interface used in our experiment asking the policy description question asked in
a small subset of our responses. We additionally show the explanation, and the maze map without
marking any state in red. For context, we suggest a size for the description, and give some examples.

We additionally exclude a small number of responses based on response time as there was a long tail
of responses taking minutes to make the predictions. We set this threshold at 2 minutes to exclude
responses where the participant likely got distracted while answering the question. We additionally
excluded the paired response (i.e. the response in the same condition with the other explanation
type) to facilitate the statistical analysis. We excluded 8 pairs of questions out of 204 pairs based on
this criteria. We note that setting this threshold higher or removing it does not change the statistical
results. We did not do any exclusions based on accuracy in the main task, but note that accuracies are
generally high in the experiment.

D Interface

We show additional screenshots of the interface showing the explanation of the contrast policy in
Figure 3, and the policy description question asked in a subset of the initial surveys in Figure 4.
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E Experiment Accuracies

Accuracies are generally high across conditions with no significant differences. This motivates our
choice to analyze response time rather than accuracy.

Explanation cmplt-sm cmplt-lrg cmplt-sm cmplt-lrg
type cntrst-sm cntrst-sm cntrst-lrg cntrst-lrg
Complete 0.8627 0.84 0.8261 0.9
Contrastive 0.8039 0.92 0.7174 0.8

Table 2: Accuracies for each summary type for each condition. There are no statistically significant
differences between conditions.

F Statistical Tests

We report significant tests and corresponding statistics in the main body of the paper, but we include
all of the test outcomes in Table 3 here for additional information about multiple hypothesis testing-
corrected significance thresholds, and statistics and p values for tests that were not significant. Note
that several of these tests were run, but are not included in the results of this version, however we still
consider them in the Bonferonni correction.

Test P Value Threshold Statistic Test
Diff. in standardized rt: cmplt-sm-cntrst-sm 5.2015e-02 2.5e-02 -1.9905 2-sided t test
Diff. in standardized rt: cmplt-lrg-cntrst-sm 6.8283e-01 5.e-02 0.411 2-sided t test
Diff. in standardized rt: cmplt-sm-cntrst-lrg 4.0023e-03 1.5625e-02 -3.0337 2-sided t test
Diff. in standardized rt: cmplt-lrg-cntrst-lrg 7.3757e-05 9.3750e-03 -4.3289 2-sided t test
Diff. in accuracy: cmplt-sm-cntrst-sm 5.4883e-01 4.3750e-02 4.0 mcnemar
Diff. in accuracy: cmplt-lrg-cntrst-sm 2.8906e-01 4.0625e-02 2.0 mcnemar
Diff. in accuracy: cmplt-sm-cntrst-lrg 1.7969e-01 3.125e-02 2.0 mcnemar
Diff. in accuracy: cmplt-lrg-cntrst-lrg 2.2656e-01 3.4375e-02 3.0 mcnemar
Diff. in subjective difficulty: cmplt-sm-cntrst-sm 1.8259e-03 1.25e-02 15.0 wilcoxon
Diff. in subjective difficulty: cmplt-lrg-cntrst-sm 2.3269e-01 3.7500e-02 90.5 wilcoxon
Diff. in subjective difficulty: cmplt-sm-cntrst-lrg 1.1171e-02 1.8750e-02 64.5 wilcoxon
Diff. in subjective difficulty: cmplt-lrg-cntrst-lrg 1.097e-01 2.8125e-02 78.5 wilcoxon
Complete size impact 4.8119e-02 2.1875e-02 -1.9888 independent t-test
Contrastive size impact 3.9552e-06 3.125e-03 -4.7489 independent t-test
Contrast reference impact 6.0267e-01 4.6875e-02 0.5214 independent t-test
Explanation preference 1.4192e-05 6.25e-03 18.8431 chi square

Table 3: This table shows the results of the statistical tests ran for each analysis including the type of
test, the test statistic, the p value, and the threshold for significance based on the Benjamini-Hochberg
correction for multiple hypothesis testing. There are 6 significant results, generally suggesting that
complete explanations are less cognitively demanding than contrastive explanations.
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