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Abstract

We consider the problem of batch multi-task reinforcement learning with observed
context descriptors, motivated by its application to personalized medical treatment.
In particular, we study two general classes of learning algorithms: direct policy
learning (DPL), an imitation-learning based approach which learns from expert
trajectories, and model-based learning. First, we derive sample complexity bounds
for DPL, and then show that model-based learning from expert actions can, even
with a finite model class, be impossible. After relaxing the conditions under which
the model-based approach is expected to learn by allowing for greater coverage of
state-action space, we provide sample complexity bounds for model-based learn-
ing with finite model classes, showing that there exist model classes with sample
complexity exponential in their statistical complexity. We then derive a sample
complexity upper bound for model-based learning based on a measure of concen-
tration of the data distribution. Our results give formal justification for imitation
learning over model-based learning in this setting.

1 Introduction

Families of context-dependent tasks are common in many real-world settings. For example, con-
trolling a UAV might depend on factors such as the parameters of the specific UAV’s weight and
wingspan. After successfully controlling several different UAVs, one might hope to be able to
control a new UAV quickly. Similarly, managing hypotension well may depend on some specific
properties of the patient; after treating many distinct patients, one may hope to manage a new patient
well.

The question of efficiently learning a collection of related, context-dependent tasks has been stud-
ied in the reinforcement learning (RL) literature under many names such as lifelong RL, multi-task
RL, and, more generally, transfer learning (see, e.g., Isele et al. [2017], D’Eramo et al. [2019]), and
Taylor and Stone [2009]). Even more specifically, the question of learning to generalize from a col-
lection of data has been considered, for example, in Brunskill and Li [2013] and Lazaric and Restelli
[2011]. These works consider the problem in an online setting and develop algorithmic contributions
in the batch setting, respectively.

In this work, motivated by the problem of treating patients with personalized strategies, we con-
sider the following setting and question: Suppose we are given a batch of trajectories obtained from
experts in multiple contexts, where each context’s transition is parametrized by some observed pa-
rameter θ—a framework called a Contextual MDP (CMDP). Will it be more sample efficient to
directly learn a policy from these data (that is, imitate the expert), or to learn the transition function,
parametrized by θ, and then plan according to it? We derive upper and lower sample-complexity
bounds for direct policy learning (DPL); our upper bound for DPL is polynomial in all the relevant
parameters.
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Along the way, we prove impossibility results for learning certain transitions in the model-based
paradigm, while our sample complexity upper bound for direct policy learning holds in a more
general sense. Next, we show that, under a relaxed data generation process which affords greater
coverage of state-action space, their exist hard families of CMDPs for model-based learning; our
results extending those of Chen and Jiang [2019] and Krishnamurthy et al. [2016] to the multiple
context setting. Finally, we derive a distribution-dependent sample complexity upper bound for
model-based learning.

Our theory provides a formal justification for why imitation may be more successful than model-
based learning in these settings, confirming trends observed in several more empirical and
application-oriented works, including Yao et al. [2018] and Yang et al. [2019]. In particular, we
note that while both DPT and model-based learning depend linearly on the complexity of the hy-
pothesis class, model-based learning requires an extra dependence on the concentratability of the
data distribution which can, in some cases, render learning hard. Our results extend the sample com-
plexity bounds derived for data collected online in Brunskill and Li [2013] to the batch imitation
learning and model-based context, as well as some of the single MDP results of Piot et al. [2013] to
CMDPs.

2 Related Work

Some papers have considered the problem when the context is observable; that is, the learner is
allowed to see some high-level labeling of each MDP in the training set as well as that of the target
MDP before being asked to return a policy for the target MDP. In particular, Isele et al. [2017]
describe the problem as zero-shot transfer learning and provide an algorithm which, under certain
linearity assumptions regarding the task descriptions, is able to perform zero-shot transfer on large
classes of MDPs. While they consider the problem both empirically and theoretically, they provide
only convergence results and not a finite-sample analysis. This framework has also been studied in
a more applied setting by Sohn et al. [2018], who, under the further assumption that the learner is
given access to not only task descriptions, but also a graph describing relationships among tasks,
embed the graph and use a non-parametric gradient-based policy to obtain a policy for the target
MDP. Both works differ most notably from ours in that we make no assumption on the structure
of the task descriptors nor the relationships between them and we also derive sample complexity
results.

The problem has also been cast as an imitation learning problem. Osa et al. [2018] describe behavior
cloning, the analog of DPL on a single MDP. They describe various algorithms and supervised learn-
ing techniques with which the learner can use to learn the expert policy, but do not give any sample
complexity bounds. Furthermore, Piot et al. [2013] consider Apprenticeship Learning, whereby the
learner has access to a set of states and expert actions and is tasked with learning a policy. They
upper bound the difference in the value function of the learner with that of the expert in terms of the
classification error of the learner’s hypothesis. Our work most notably differs from these two in that
we consider the contextual setting: DPL reduces to these works, in the case when |Θ| = 1, and thus
only a single MDP is being considered.

Other works have viewed the problem in the domain where the task descriptors are not available
to the learner (i.e. the parameter θ is latent). In particular, Lazaric and Restelli [2011] consider the
problem of transfer learning between MDPs in the batch setting, where they design the All-sample
Transfer and Best Average Transfer algorithms, both Q-value approximation algorithms designed to
learn from a batch of trajectories to plan on a new MDP with potentially different transitions. We
approach the problem of model-based learning in a different way from their approach, and instead
extend off the analysis of Chen and Jiang [2019]. In the case where transfer is not considered,
Sun et al. [2018] consider the model-based approach on contextual decision processes (CDPs). They
show a poly(L, 1/ǫ, log(1/δ)) sample complexity is attainable for the model-based approach, in the
batch setting. Our problem of transfer learning on multiple MDPs reduces to theirs in the case
when |Θ| = 1. Finally, Yao et al. [2018] consider both a direct policy approach to the unobservable
problem—direct policy transfer (DPT)—as well as a model-based approach in an empirical setting.
They evaluate both learning strategies on a 2D Navigation task, Acrobot, and a simulated HIV
treatment domain, and find that, empirically, DPT is more sample-efficient than the model-based
approach.
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3 Notation and Background

CMDPs A CMDP is a tuple 〈S,A,R, T, L, γ,Θ,Ps0,PΘ〉 where S ⊂ R
n and A denote the state

and (discrete) action space, respectively; R : S × A→ R is a reward function; γ, a discount factor
used in evaluating long-term return; Θ ⊂ R

d; and T : S ×A×Θ→ ∆(S), is a conditional density
over next states given the current state, action, and value of θ parametrizing the transition. The initial
state s0 is drawn from Ps0 ; at the start of an episode, the task parameter θ is drawn from some Pθ .
This is a slight simplification of the standard definition of CMDP of Hallak et al. [2015] in that we
assume the reward and initial distribution remain the same.

Setting In this paper, we shall consider the case in which the learner is given a batch of m trajec-
tories of length L, each labeled with its associated context θ; that is, for each trajectory, the learner
is allowed to see the value of θ corresponding to the MDP from which it was drawn. There is one
trajectory per parameter setting θ, corresponding to real settings in which one only gets to treat each
patient once. This is in contrast to the setting of Hidden Parameter MDPs (HiP-MDPs), introduced
by Doshi-Velez and Konidaris [2016], in which the parameter θ is latent. We will further assume
that the learner has access to the reward function, R.

Throughout this paper, we will assume that the trajectories are formed via following a deterministic
(but possibly time-dependent) expert policy π that is α-optimal; that is, vLπ ≥ vLπ∗ − α, where π∗

is the optimal deterministic time-dependent policy and vLπ := E[
∑L−1

l=0 rl] is the expected undis-
counted value associated with the first L rewards, where here the expectation also includes the

randomness with respect to the draw of θ ∼ PΘ. We also define V L
π (s; θ) = E[

∑L−1
l=0 rl|s0 = s, θ].

Goal Under this data generation process, the learner’s goal is to return a policy π̂ : S × Θ ×
{0, . . . , L − 1} → A, such that its value vlπ̂ is maximized. Specifically, we will define the error in
value of a hypothesis below:

Definition 3.0.1. We define the error (of reinforcement learning) of a policy π̂ to be the difference
in undiscounted value vLπ∗ − vLπ̂ .

Formally, the goal is thus to return a policy with small error in value.

Following learning theory terminology, we shall also refer to π̂ as the hypothesis returned by the
learner.

4 Sample Complexity Bounds for DPL

We now turn to our learning problems. One approach to learning a hypothesis π̂ above is simply
to treat the problem as a supervised learning problem and directly learn the association between
the inputs—the states s and the task parameters θ—and the expert’s action a. In the following, we
assume the learner is allowed to return any hypothesis from some hypothesis class, H with

h : S ×Θ× {0, . . . , L− 1} → A, ∀h ∈ H.

In particular, just as in Yao et al. [2018], who consider a related algorithm called Direct Policy
Transfer, we assume that DPL is agnostic to the reward sequence of the expert.

4.1 DPL Sample Complexity Upper Bound

We now derive a sample complexity upper bound for DPL. Our analysis is similar to that of the
standard agnostic PAC learning upper bound, except that, in this setting, the batch of data are not
i.i.d, but rather, come from a Markov chain. This, however, can be remedied, by simply replacing
one of the key concentration inequalities in the standard setting (McDiarmid’s) with an analogous
concentration inequality which applies to Markov chains, shown in Paulin et al. [2015]. We define
notions of classification error in this setting.

Definition 4.0.1 (nth Marginal Error). Let n ∈ N be at most L − 1. Define the nth marginal error
of a hypothesis h to be

Lmarginal,n
π (h) = Pπ(h(sn, n) 6= π(sn, n)),
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where the probability is being taken with respect to the randomness of drawing θ ∼ PΘ, drawing
s0 ∼ Ps0 , and the randomness from following the deterministic policy π for n steps under the
(potentially stochastic) transitions indexed by θ.

We now arrive at a definition of true error in this setting.

Definition 4.0.2. Define the true error of the hypothesis h to be

LLD,π(h) =
1

L

L−1
∑

l=0

Lmarginal,l
π (h).

Finally, the definition of empirical error is same as in the standard setting:

Definition 4.0.3. Letting S consist of mL tuples, as outlined in the data generation procedure above,
we define the empirical error to be

Lm,L
S (h) =

|{(i, j) ∈ {1, . . . ,m} × {0, . . . , L− 1} : h(sθij , θi, j) 6= π(sθij , θi, j)}|

mL
.

With these definitions in place, we are able to derive a sample complexity of classification upper
bound for DPL using any hypothesis class H. Our analysis follows the standard agnostic PAC
analysis (see, e.g., Shalev-Shwartz and Ben-David [2014]) but applied to the non-i.i.d. setting, in
which we use a concentration result of Paulin et al. [2015]. We state the agnostic sample complexity
of classification upper bound in terms of the Natarajan dimension of the hypothesis class Ndim(H)
(for proof of the theorem and definition of Natarajan dimension, see Appendix Section A.1)

Theorem 4.1. Let the concept class H have Natarajan dimension d. There exists a learning algo-
rithm A such that for any distribution over the data, there exists m with

m = O

(

d

ǫ2

(

log

(

d

ǫL

)

+
d

L
(log(L) + log(|A|)) + L2 log(1/δ)

))

,

such that if A receives at least m L-long trajectories in the batch, thenA returns a hypothesis inH
which has classification error at most ǫ greater than the true error minimizer of H with probability
at least 1− δ.

Before considering how the classification error of π affects its error in value, we make two standard
assumptions regarding the hypothesis classH as well as the reward structure:

Assumption 4.1 (Realizability). The hypothesis classH contains the expert’s labeling, π.

Assumption 4.2. All rewards are in the range [0, 1].

We use an extension of a result of Ross and Bagnell [2010] who bound the error of a time-
independent policy in terms of its classification error for a single sequential decision-making task.
By carefully comparing the marginal distribution of states under π̂ and π at each time step, they are
able to bound the difference in values by L2ǫ, where ǫ is the classification error of π̂ with respect to
π. The proof in our multi-task setting with time-dependent policies follows theirs (for details, see
Ross and Bagnell [2010]). With this result as well as our above sample complexity of classification
bound, we now show that DPL requires only a poly(Ndim(H), 1

ǫ
, log(1

δ
), L, log(|A|)) number of

samples.

Theorem 4.2. Let the concept class H have Natarajan dimension d. There exists a learning algo-
rithm A such that for any distribution over the data, there exists m that is

O

(

L4d

ǫ2

(

log

(

Ld

ǫ

)

+
d

L
(log(L) + log(|A|)) + L2 log(1/δ)

))

receives at least m L-long trajectories in the batch, then A returns a hypothesis in H which has
error (in terms of undiscounted value) at most ǫ+ α with probability at least 1− δ.

4.2 DPL Sample Complexity Lower Bound

We derive a DPL lower bound by constructing a family of CMDPs for which the problem reduces to
a standard PAC learning problem that must be learned to error ǫ/L with confidence δ. To do so, we

4



essentially put all the decision making power on the action taken at the first state. That is, let Ps0 be
fully concentrated on the state s0, and let all transitions be deterministic so that there are |A| distinct
potential next states. For each value of θ, call the state s, that satisfies T (s|s0, π(s0, θ), θ) = 1
good, and call the other |A| − 1 states bad. The good state satisfies the condition that it and all
subsequent states give reward 1 independent of the actions taken in them, while any bad state and
all subsequent states give reward 0, again, independently from actions. The learning problem is thus
reduced to learning the first action to error at most ǫ/L with probability at least 1 − δ. Choosing
H so that there is a shattered set of the form {(θ1, s0), . . . , (θm, s0)}, the following lower bound
follows immediately from the standard i.i.d PAC lower bound.

Theorem 4.3. There exist a family of CMDPs, a hypothesis class,H of Natarajan dimension d, and
value of m with

m = Ω

(

L(d+ log(1/δ))

ǫ

)

,

such that any learning algorithm given at most m L-long trajectories returns a policy whose error
(in terms of value) is at most ǫ with probability at most 1− δ.

Our results thus give a Õ
(

L2d
ǫ

+ L5

ǫ

)

separation between upper and lower bounds, in particular,

highlighting how poorly the bounds scale with L, but how slowly they separate with δ and A; we
discuss this further in Section 6.

5 Model-based Approach

In contrast to DPL, the model-based approach does not attempt to directly learn the expert policy,
but rather attempts to learn the transition function parametrized by θ, and then plan according to the
transition and reward function. One might believe that learning models would be more general than
trying to directly learn policies, because one can use them to explore counterfactuals. Indeed, model-
based learning is often the go-to approach in low data regimes (see, e.g. Rasmussen [2003] ver-
sus Deisenroth et al. [2013], Kamthe and Deisenroth [2017], Kocijan et al. [2004], Ko et al. [2007]).
However, we first show that the paradigm of learning from expert actions is, in general settings,
impossible—even if direct policy learning is possible in these settings. Thus, we relax the data gen-
eration process under which the model-based method is expected to learn and introduce a process
which allows for greater coverage of S ×A.

Throughout our analysis, for simplicity, we will assume the model-based approach has access to an
oracle called PLAN, which, upon receiving a transition function, T for a single MDP, and reward
function, R (which, as mentioned in Section 3, the learner has access to), returns an optimal deter-
ministic (possible time-dependent) policy under T and R in that MDP. Hence, if the model-based
algorithm returns a hypothesis transition function h, its corresponding value is simply vL

PLAN(h(θ),R),

where h(θ) denotes the transition function restricted to θ. Note that evaluating a model-based al-
gorithm in this sense implicitly defines the policy, π̂h, corresponding to the hypothesis transition
function h, returned as π̂h(s, θ, l) = (PLAN(h(θ), R))(s, l).

5.1 Impossibility of Model-Based Learning via Expert Actions

The primary issue a model-based approach having access only to an expert’s trajectory is the lack of
coverage of state-action space. In particular, it may be the case that a large portion of the learner’s
hypothesis class always agree on the subset of state-action space traversed by the expert, making
it hard—and, as we show below, in some cases impossible—to output a low-error hypothesis with
high confidence. We now give a construction formalizing the above which demonstrates an infinite
sample complexity for the model-based approach. Under our construction, the learner is given a
finite model hypothesis class from which to return its hypothesis transition function. This eliminates
the possibility of the infinite sample complexity being explained away by the hypothesis class having
infinite statistical complexity, and instead highlights the fundamental difficulty model-based learning
faces when attempting to learn from a single expert’s actions.

Theorem 5.1. There exist classes of CMDPs which, if the learner must learn from expert trajectories,
require infinite sample complexity even with a finite hypothesis class containing the true model.
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Proof. Our construction is inspired by that of Chen and Jiang [2019] who use a similar setup to
derive an information-theoretic lower bound in the single MDP batch setting. First, let Θ =
[|A|L−1 − 1] and PΘ = Unif(Θ). Now, let a CMDP be represented as a rooted complete tree
with branching factor |A| and depth L. Each non-leaf node represents a distinct state giving 0 re-
ward, while each leaf node represents two possible states; we furthermore restrictPs0 to concentrate
all its mass on some single initial state. Taking action a|A| (the rightmost action) from the rightmost

node in the penultimate layer transitions to a state with reward 0 with probability 1−ǫ
2 and reward 1

with probability 1+ǫ
2 . Finally, let all other edges leaving the penultimate layer, except the θth edge

from the left, transition to a state with reward 0 with probability 1/2 and a state with reward 1 with
probability 1/2, while the θth edge transitions to a state with reward 0 with probability 1

2 −
4
3 ǫ and

reward 1 with probability 1
2 + 4

3ǫ (so our result will hold for ǫ < 3
8 ). We will call this edge, leading

to the highest rewarding leaf, in expectation, the special edge, and we will let the expert’s policy
be that which continually chooses the rightmost action—notice that the expert is 5

6ǫ-optimal. Call a
CMDP of the above form a tree CMDP: Notice that a tree CMDP is fully characterized by the map
taking θ to the special edge—in this case, the identity map. It is thus clear that any permutation of
Θ will yield a different special edge map (i.e. the permutation σ says that θ corresponds to the MDP
with special edge given by the σ(θ)th edge of the penultimate layer). So, the learner is given as its
hypothesis model class two hypotheses: the identity permutation and some derangement σ. Notic-
ing that any algorithm must determine precisely the target CMDP in order to return an ǫ-optimal
hypothesis (since otherwise, PLAN gives a policy with value 1/2 because if h ∈ H is not equal to the
target concept, it will disagree with the target concept on every value of θ, since we chose σ to be
a derangement) and that the expert’s trajectory gives no information about which member of H is
the target CMDP, any learning algorithm returns an ǫ-optimal hypothesis with probability at most 1

2 ,

and, in particular, cannot guarantee ǫ-optimality with δ confidence for any δ, ǫ < 1
2 , thus indicating

the impossibility of learning this model class.

The above construction illustrates that learning from a single expert’s trajectory can be impossible
for any model-based learning algorithm. In particular, while DPL, with sufficiently many samples,
is able to return a policy which is nearly 5

6ǫ-optimal, any model-based learning algorithm will, with

probability at least 1
2 (regardless of the size of m), return a policy which has suboptimality larger

than ǫ. This highlights the key difficulty with model-based learning in a CMDP from an expert’s
trajectories: while DPL can always achieve suboptimality arbitrarily close to that of the expert (as
long as the Natarajan dimension of its hypothesis class is finite), the same cannot be said for model-
based learning even when its hypothesis class is finite.

5.2 Hardness of Model-based Learning under strictly-positive visitation distributions

The impossibility result above motivates the use of the following more standard framework under
which we expect batch model-based approaches to learn:

Definition 5.1.1 (Model-based Learning Data Generation Process). Let µ be some distribution over
S × A which assigns non-zero mass/density to every (s, a) ∈ S × A. For each value of θ ∼ PΘ,

the model-based approach draws L pairs (s, a)
i.i.d
∼ µ and, for each pair, draws s′ ∼ T (·|s, a, θ)

and r = R(s, a). The model-based approach then has access to each of these one-step trajectories,
labelled by θ. We also make the assumption that every element of S × A is reachable in at most L
steps.

Under the framework defined in Definition 5.1.1, we show that there are still classes for which model-
based learning is hard. In fact, the construction of Chen and Jiang [2019] for single MDPs gives a
lower bound in our setting as well since we can simply consider the CMDP which concentrates all its
mass on a single value of θ, thus reducing to the single MDP case. Their construction is very similar
to the above tree construction: States are the nodes of a complete tree with branching factor |A|, and
all leaf nodes give Bern(1/2) rewards while the leaf node corresponding to the special edge gives
Bern(1/2 + 3ǫ/2) reward. In our setting, the construction of Krishnamurthy et al. [2016] yields a

sample complexity lower bound of Ω
(

|A|L

Lǫ2

)

when active exploration is allowed. This sample com-

plexity is super-polynomial in statistical complexity of the hypothesis class, which has cardinality
|A|L. In Appendix Section A.2, we give a construction of a family of MDPs, motivated by con-
textual bandits and the constructions of Krishnamurthy et al. [2016] and Auer et al. [2003], which
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yields a sample complexity lower bound of Ω
(

|A|
ǫ2

)

, allowing exploration for a hypothesis class of

cardinality |A|. Our bound, on the surface, is asymptotically lower than that of Krishnamurthy et al.
[2016]; however, since the hypothesis class as well as the size of each CMDP in the class have size
only O(|A|), our bound exhibits a stronger dependence on the size of the model class. That is, while
the original bound of Krishnamurthy et al. [2016] precludes poly(log(|H|), 1

δ
, 1
ǫ
) sample complex-

ity, our second bound gives a Ω
(

|H|
ǫ2

)

dependence on the size of the hypothesis class, rather than

the immediate Ω
(

|H|
Lǫ2

)

of Krishnamurthy et al. [2016].

The above constructions show how the sample complexity for model-based learning can scale poorly
with both horizon as well as the size and statistical complexity of the hypothesis class, but fail to
show that model-based learning can scale poorly with |Θ| when it is finite. Modi et al. [2017], who
consider online CMDPs, essentially suggest constructing hard CMDPs by making the MDP for each
context, which is drawn uniformly from Θ, hard and disallowing any information corresponding to
one context be useful to another. That is, having knowledge of the target transition function for all
values in Θ\{θ} provides no information about the target transition for θ. While this technique gives
a generic way to increase any hard MDP lower bound by a multiplicative factor of O(|Θ|) in expec-
tation for CMDPs, it unfortunately makes the hypothesis class have cardinality exponential in |Θ|,
therefore explaining away the factor of O(|Θ|) by the complexity of the hypothesis class. We give
a construction of a class of CMDPs in Appendix Section A.2, extending off of Krishnamurthy et al.
[2016], which yields the same lower bound, but does so in a way that scales linearly with |Θ|, while
having a hypothesis class of cardinality |Θ|.

We now state lower bounds both in the setting where active exploration is allowed and also when it
is not. The latter bound is in terms of, C, the concentratability coefficient of µ, which measures how
much µ covers reachable state-action pairs (for a definition, see Section 5.3.1).

Theorem 5.2. There exist hard families of CMDPs which are subject to the following sample com-

plexity lower bounds (all are asymptotically at most Ω
(

|A|L

Lǫ2

)

): Ω
(

|A|L

Lǫ2

)

, Ω
(

|H|
ǫ2

)

, and Ω
(

|Θ|
Lǫ2

)

with |Θ| = |H|. Furthermore, when active exploration is not allowed, we have the following lower

bound, in expectation, with respect to the randomness of drawing a leaf state from µ: Ω
(

C|A|L

Lǫ2

)

Thus, to summarize, we have shown not only that the sample complexity for model-based learning
can grow poorly with |Θ| and L even when H is not too large, but also that the sample complexity
depends on the concentratability coefficient at least linearly.

5.3 Model-based Learning Sample Complexity Upper Bound

We now derive an upper bound for model-based learning to contrast the above lower bound and, in
particular, show that the dependence on C is in fact linear. To do so, we extend off the work of
Chen & Jiang (2019), who derive an upper bound for Fitted Q-Iteration (FQI). The FQI sample com-
plexity upper bound then immediately yields a sample complexity upper bound for any model-based
approach with a finite model class. In their approach, they consider an infinite-horizon discounted
setting on a single MDP, whereas in our setting, we consider a finite-horizon undiscounted setting on
CMDPs, in which time-dependent policies are allowed. First, we show how FQI can be applied in
this setting, define a complexity measure which controls µ, the distribution from which state-action
pairs are drawn, and then state a sample complexity result for FQI from which a sample complexity
upper bound for model-based learning follows as an immediate upper bound.

5.3.1 FQI on Finite-Horizon Undiscounted CMDPs

We give a brief outline of finite-horizon FQI on a CMDP below; it is essentially the same as FQI on
a single MDP except that Bellman backups are done with respect to the context, θ. We first define
this back-up and give the algorithm below:

Definition 5.2.1. Define the lth Bellman backup of f : S × Θ× {0, . . . , L} → R with respect to θ
to be

(Tl(θ)f)(s, a) = R(s, a) + Es′∼T (·|s,a,θ)Vf (s
′, θ, l),

where Vf (s, θ, l) = maxa∈A f(s, a, θ, l).
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We will also assume FQI has access to a family of time-indexed Q functions. That is we have a set
F which contains Q-value functions of the form Q : S×A×Θ×{0, . . . , L}, where Q(s, a, θ, l) =
(Tl−1(θ)Q)(s, a) for l ≥ 1, and Q(s, a, θ, 0) = 0. FQI on CMDPs operates in essentially the
same way as the finite horizon case except that all backups and value functions are additionally
parametrized by θ (see Appendix Section A.3 for pseudocode).

We now give the definition of admissible distribution and the assumption of concentratability of the
data disitribution µ which extends that of Chen & Jiang (2019).

Definition 5.2.2 (Admissible Distribution). A conditional distribution ν over S ×A given θ ∈ Θ is
said to be admissible if there exists 0 ≤ l ≤ L−1 if there exists a possibly time-dependent stochastic
policy π such that (ν(θ))(s, a) = P [sl = s, ah = a|θ, s0 ∼ Ps0 , π]

Assumption 5.1 (Concentratability). We assume that there exists some C < ∞ such that, for any
admissible distribution ν,

(ν(θ))(s, a)

µ(s, a)
≤ C, ∀(s, a, θ) ∈ S × A×Θ.

With these definitions, we now state a sample complexity upper bound for FQI, and then derive,
as an immediate corollary, a sample complexity upper bound for model-based learning; again, we
assume realizability for the hypothesis class H and thus of the class F . For proofs, see Appendix
A.3.

Theorem 5.3 (FQI Upper Bound). There exists m with

m = O

(

CL6 log(L|F|/δ)

ǫ2

)

,

such that if FQI receives at least m samples of L one-step trajectories under µ, then it returns a
policy with error at most ǫ with probability at least 1− δ.

Corollary 5.3.1 (Model-based Upper Bound). Given the finite hypothesis model class H, there
exists a model-based learning algorithmA and m with

m = O

(

CL6 log(L|H|/δ)

ǫ2

)

,

such that ifA receives at least m samples of L one-step trajectories under µ, then it returns a policy
with error at most ǫ with probability at least 1− δ.

6 Discussion

In this paper we investigate the sample complexities of an imitation learning-base approach for
learning of CMDPs, DPL, as well as a model-based approach. We find that the upper bounds for

each approach are, respectively, Õ
(

L4d
ǫ2

(

d
L
+ L2

)

)

and Õ
(

CL6

ǫ2

)

. Our results indicate that DPL

is, theoretically, more sound than model-based approaches in the sense that the latter scales with
respect to the concentratability coefficient of the distribution µ. In particular, while both upper
bounds scale polynomially in all the relevant parameters—and, importantly, in the complexity of
hypothesis class—our upper bound for model-based learning scales with C. As our lower bound
for model-based learning shows, this additional dependence is, in fact, necessary: Data distributions
µ which concentrate low mass to regions of S × A which differentiate hypotheses are harder to
learn under. This highlights the importance of the data generation process for model-based learning:
When data is gotten from expert trajectories, model-based learning can be impossible even with
finite hypothesis classes, but even when data is drawn i.i.d. from the distribution µ, model-based
learning depends greatly on the coverage of reachable state-action pairs.

We believe the following are primary interests for future work: Deriving general model-based sam-
ple complexity upper bounds which do not grow, even logarithmically with |H|, but rather grow with
some other complexity measure of the hypothesis class which can be finite even for infinite H (e.g.
perhaps with an extension of witness rank introduced in Sun et al. [2018]); investigating a tighter
relationship between the upper and lower bounds for DPL, in particular, bounds whose degree of
separation scales more slowly with L; and understanding the sample complexity of similar imitation
learning and model-based algorithms in the unobserved parameter setting of HiP-MDPs.
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7 Broader Impact

The primary real-world impact of this research—and, in fact, the application by which the
authors were motivated—is to the world of healthcare. In particular, this work serves as a
first-step to formally understanding the more complex framework of HiP-MDPs introduced in
Doshi-Velez and Konidaris [2016] to encapsulate learning to generalize from expert actions when
the parametrization of the transition of each MDP is unknown and the parameter corresponding to
each trajectory in the batch is unknown. In particular, the motivation for HiP-MDPs is to learn how
to generalize from a healthcare professional’s actions when treating patients whose response to the
same treatment strategy may differ. Thus, we see our work as a first step in formally understand-
ing what types of algorithms may be most sample-efficient for learning to generalize well in such
settings. That said, this work is theoretical in nature, and makes standard theory assumptions such
as Markovianity under the definition of state s, existence of the true function with the hypothesis
class, etc. Thus, while we provide theoretical foundations and insights for empirical observations,
any application of our work to real settings should be mindful of the assumptions we make.
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A Proofs

A.1 DPL Sample Complexity of Classification Upper Bound

Our proofs below follow the analysis of Shalev-Shwartz and Ben-David [2014] and use similar notation.

Lemma A.0.1. Let S be a batch of trajectories. Then ES[Lm,L
S (h)] = LL

D,π(h).

Proof. Note that

Lm,L
S (h) =

1

mL

m∑

i=1

L−1∑

l=0

1
{h(s

θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}
,

and notice that

E

[
1
{h(s

θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}

]
= Lmarginal,l

π ,

and so

ELm,L
S (h) =

1

mL

m∑

i=1

L−1∑

l=0

Lmarginal,l
π =

1

L

L−1∑

l=0

Lmarginal,l
π = Lm,L

D,π (h),

as desired.

Definition A.0.1. A training set, S, of m L-long trajectories is ǫ-representative if

sup
h∈H

|LL
D,π(h)− Lm,L

S (h)| ≤ ǫ.

Now we proceed with a lemma regarding bounds on ǫ-representativeness; it is essentially the same as that in
Shalev-Shwartz and Ben-David [2014] save for a few minor modifications.

Lemma A.0.2. Let S be a training set consisting of m L-long trajectories. Then

ES

[
sup
h∈H

(
LL

D,π(h)− Lm,L
S (h)

)]
≤ 2ESR(F ◦ S),

where R denotes the Rademacher complexity and

F ◦ S =

{(
1
{h(s

θ1
0

,θ1,0) 6=π(s
θ1
0

,θ1,0)}
, . . . ,1

{h(s
θm
L−1

,θm,L−1) 6=π(s
θm
L−1

,θm,L−1)}

)
: h ∈ H

}
.

Proof. Let S and S′ be two datasets both sampled according to the procedure above and recall that LL
D,π(h) =

ES′Lm,L
S′ (h),∀h ∈ H. Thus, noting that the supremum of the expectation is at most the expectation of the

supremum, we have

sup
h∈H

(
LL

D,π(h)− Lm,L
S (h)

)
= sup

h∈H
ES′

[
Lm,L

S′ (h)− Lm,L
S (h)

]

≤ ES′

[
sup
h∈H

(Lm,L
S′ (h)−Lm,L

S (h))

]
,

so taking expectations gives

ES

[
sup
h∈H

(
LL

D,π(h)−Lm,L
S (h)

)]
≤ ES,S′

[
sup
h∈H

(Lm,L
S′ (h)− Lm,L

S (h))

]

=
1

mL
ES,S′

[
sup
h∈H

m∑

i=1

L−1∑

l=0

(1
{h(s

θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}
− 1

{h(s
θ′
i′

l
,θ′

i
,l) 6=π(s

θ′
i′

l
,θ′

i
,l)}

)

]
.

Now, notice that since θi and θ′i are independent and identically distributed and sθil and s
θ′
i′

l are independent
and identically distributed, we see that

E

[
sup
h∈H

(
(1

{h(s
θ′
i′

l
,θ′

i
,l) 6=π(s

θ′
i′

l
,θ′

i
,l)}

− 1
{h(s

θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}
)

+
∑

k 6=i

∑

j 6=l

(1
{h(s

θ′
k′

j
,θ′

k
,j) 6=π(s

θ′
k′

j
,θ′

k
,j)}

− 1
{h(s

θk
j

,θk,j) 6=π(s
θk
j

,θk,j)}
)
)]

= E

[
sup
h∈H

(
(1

{h(s
θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}
− 1

{h(s
θ′
i′

l
,θ′

i
,l) 6=π(s

θ′
i′

l
,θ′

i
,l)}

)

+
∑

k 6=i

∑

j 6=l

(1
{h(s

θ′
k′

j
,θ′

k
,j) 6=π(s

θ′
k′

j
,θ′

k
,j)}

− 1
{h(s

θk
j

,θk,j) 6=π(s
θk
j

,θk,j)}
)
)]

,
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so that if σi,l is a random sign, we see that, by the law of total expectation,

ES,S′,σi,l

[
sup
h∈H

(
σi,l(1

{h(s
θ′
i′

l
,θ′

i
,l) 6=π(s

θ′
i′

l
,θ′

i
,l)}

− 1
{h(s

θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}
)

+
∑

k 6=i

∑

j 6=l

(1
{h(s

θ′
k′

j
,θ′

k
,j) 6=π(s

θ′
k′

j
,θ′

k
,j)}

− 1
{h(s

θk
j

,θk,j) 6=π(s
θk
j

,θk,j)}
)
)]

= ES,S′

[
sup
h∈H

(
(1

{h(s
θ′
i′

l
,θ′

i
,l) 6=π(s

θ′
i′

l
,θ′

i
,l)}

− 1
{h(s

θi
l

,θi,l) 6=π(s
θi
l

,θi,l)}
)

+
∑

k 6=i

∑

j 6=l

(1
{h(s

θ′
k′

j
,θ′

k
,j) 6=π(s

θ′
k′

j
,θ′

k
,j)}

− 1
{h(s

θk
j

,θk,j) 6=π(s
θk
j

,θk,j)}
)
)]

,

which, repeating for all i, l, indicates that

ES,S′

[
sup
h∈H

( m∑

i=1

L−1∑

l=0

(1
{h(s

θ′
k′

l
,θ′

k
,l) 6=π(s

θ′
k′

l
,θ′

k
,l)}

− 1
{h(s

θk
l

,θk,l) 6=π(s
θk
l

,θk,l)}
)
)]

= ES,S′,σ

[
sup
h∈H

( m∑

i=1

L−1∑

l=0

σi,l(1
{h(s

θ′
k′

l
,θ′

k
,l) 6=π(s

θ′
k′

l
,θ′

k
,l)}

− 1
{h(s

θk
l

,θk,l) 6=π(s
θk
l

,θk,l)}
)
)]

,

where σ denotes the m× L matrix of iid random signs. Noting that

sup
h∈H

( m∑

i=1

L−1∑

l=0

σi,l(1
{h(s

θ′
k′

l
,θ′

k
,l) 6=π(s

θ′
k′

l
,θ′

k
,l)}

− 1
{h(s

θk
l

,θk,l) 6=π(s
θk
l

,θk,l)}
)
)

≤ sup
h∈H

m∑

i=1

L−1∑

l=0

σi,l1
{h(s

θ′
k′

l
,θ′

k
,l) 6=π(s

θ′
k′

l
,θ′

k
,l)}

+ sup
h∈H

m∑

i=1

L−1∑

l=0

−σi,j1
{h(s

θk
l

,θk,l) 6=π(s
θk
l

,θk,l)}
,

we have that, since σ ∼ −σ,

ES,S′,σ

[
sup
h∈H

( m∑

i=1

L−1∑

l=0

σi,l(1
{h(s

θ′
k′

l
,θ′

k
,l) 6=π(s

θ′
k′

l
,θ′

k
,l)}

− 1
{h(s

θk
l

,θk,l) 6=π(s
θk
l

,θk,l)}
)
)]

≤ ES,S′,σ

[
sup
h∈H

m∑

i=1

L−1∑

l=0

σi,j1
{h(s

θ′
k′

l
,θ′

k
,l) 6=π(s

θ′
k′

l
,θ′

k
,l)}

+ sup
h∈H

m∑

i=1

L−1∑

l=0

σi,l1
{h(s

θk
l

,θk,l) 6=π(s
θk
l

,θk,l)}

]

= 2mLES [R(F ◦ S)],
implying that

ES

[
sup
h∈H

(
Lm,L

D,π (h)− Lm,L
S (h)

)]
≤ 2ESR(F ◦ S).

Now, the classical approach would now rely on McDiarmid’s concentration inequality. However, we are unable
to do so due to the dependent structure on our sample S. Instead we use an analogous concentration inequality
suited for Markov processes. To handle this setting, we define the notion of mixing time in the case of time-
inhomogeneous Markov chains and then state the key lemma from Paulin et al. [2015].

Definition A.0.2. Let X1, . . . , XN be a Markov chain on Polish state space Ω1×· · ·×ΩN . Let S(Xi+t|Xi =
x) be the conditional distribution of Xi+t given Xi = x. Define

d(t) = max
1≤i≤N−t

sup
x,y∈Ωi

dTV (S(Xi+t|Xi = x),S(Xi+t|Xi = y)) and τ (ǫ) = min{t ∈ N : d(t) ≤ ǫ}.

Furthermore, define

τmin = inf
0≤ǫ<1

τ (ǫ) ·
(
2− ǫ

1− ǫ

)2

.

Then, from Paulin et al. [2015], we use the following lemma:

Lemma A.0.3. Let X1, . . . , XN be a Markov chain on Polish state space Λ = Λ1 × · · · × ΛN . Suppose that

f : Λ → R satisfies, for all x, y ∈ Λ that f(x) − f(y) ≤ ∑N
i=1 ci1[xi 6= yi], for some ci ∈ R+. Then, for

any t ≥ 0,

P (|f(x)− Ef(X)| ≥ t) ≤ 2 exp

(
−2t2

τmin

∑N
i=1 c

2
i

)
.
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We rewrite the following immediate consequence of the claim of Paulin et al. [2015], stated above, in the
following form:

Corollary A.0.1. Let f : Xn → R satisfy bounded differences. That is, for all i and ∀x1, . . . , xn, x
′
i ∈ X ,

|f(x1, . . . , xn)− f(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ c.

Then with probability at least 1− δ,

|f(s1, . . . , sn)− E[f(s1, . . . , sn)]| ≤ c

√
nτmin log(2/δ)

2
,

where again the states are sampled according to the Markov process induced by π.

Finally, we arrive at the main lemma, which we will use to prove the main result: a sample complexity bound
in this special setting.

Lemma A.0.4. Let S, containing mL data points, be sampled according to the procedure described above.
Then with probability at least 1− δ,∀h ∈ H,

LL
D,π(h)−Lm,L

S (h) ≤ 2ES′R(F ◦ S′) +

√
(3L+ 1)τmin log(2/δ)

2m
.

Proof. Write S as S = (θ1, 0, s
θ1
0 , aθ1

0 , . . . , θm, . . . , L− 1, sθmL−1, a
θm
L−1), define

ζ(θ1, 0, s
θ1
0 , aθ1

0 , . . . , θm, . . . , L− 1, sθmL−1, a
θm
L−1) = sup

h∈H
(LL

D,π(h)− Lm,L
S (h)).

We verify that ζ satisfies the bounded differences condition above. Letting S′ be the vector equal to S except
in one component (which may be a component containing either a θ or a sθ or a time index or aθ), we have that

|ζ(S)− ζ(S′)| = | sup
h∈H

(LL
D,π(h)− Lm,L

S (h))− sup
h∈H

(LL
D,π(h)−Lm,L

S′ (h))|

≤ sup
h∈H

|Lm,L
S′ (h)− Lm,L

S (h)| ≤ 1/m,

since, the worst case scenario is when the entry which disagrees is a θ entry, which will result in, at worst,
incorrect classification for each state in the trajectory associated with that θ resulting in L mistakes. Therefore,
by the above corollary, we get that, with probability at least 1− δ,

sup
h∈H

(Lm,L
D,π (h)− Lm,L

S (h)) ≤ E sup
h∈H

(Lm,L
D,π (h)− Lm,L

S (h)) +
1

m

√
(m+ 3mL)τmin log(2/δ)

2
,

which, by Lemma A.0.2 is at most, with probability at least 1− δ,

2ES′R(F ◦ S′) +

√
(3L+ 1)τmin log(2/δ)

2m
,

implying the desired result.

Now, we will upper bound R(F ◦ S) for any dataset S. First, we recall the definition of Natarajan dimension,
Natarajan’s lemma, and recall that our hypothesis is a classifier on |A| different classes:

Definition A.0.3 (Natarajan Dimension for k-class classification). A subset S ⊂ X is said to be shattered by
H if there exist functions f0, f1 : C → [k] such that for all B ⊂ S, there exists h ∈ H such that h agrees with
f0 on B and agrees with f1 on S\B.

Lemma A.0.5 (Natarajan’s). Let H be a hypothesis class from some finite set X → [k]. Then

|H| ≤ |X |Ndim(H) · k2Ndim(H).

From this lemma, we see that
∣∣∣∣
{(

1
{h(s

θ1
0

,θ1,0) 6=π(s
θ1
0

,θ1,0)}
, . . . ,1

{h(s
θm
L−1

,θm,L−1) 6=π(s
θm
L−1

,θm,L−1)}

)
: h ∈ H

}∣∣∣∣ ≤ (mL)Ndim(H)·|A|2Ndim(H).

Now, we state Massart’s Lemma:

Lemma A.0.6 (Massart). Let B = {b1, . . . , bN} denote a finite set of vectors in R
m. Define b = 1

N

∑N
i=1 bi.

Then

R(B) ≤ max
b∈B

||b− b||
√

2 log(N)

m
.
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Thus, the above two lemmas imply that, letting d = Ndim(H),

R(F ◦ S′) ≤
√

2d (log(mL) + 2 log(|A|))
mL

.

Thus, by a union-bound we have that with probability at least 1− δ, for every h ∈ H, we have

|Lm,L
D,π (h)− Lm,L

S (h)| ≤ 2

√
2d (log(mL) + 2 log(|A|))

mL
+

√
(3L+ 1)τmin log(4/δ)

2m
.

So, in order to ensure that this is at most ǫ, we require that

2

√
2d (log(mL) + 2 log(|A|))

mL
+

√
(3L+ 1)τmin log(4/δ)

2m
≤ ǫ

⇐= 2

√
8d (log(mL) + 2 log(|A|))

mL
+

(3L+ 1)τmin log(4/δ)

2m
≤ ǫ

⇐= 2

√
8d (log(mL) + 2 log(|A|)) /l + (3L+ 3)τmin log(4/δ)

m
≤ ǫ

⇐= m ≥ 4

ǫ2

(
8d

L
(log(m) + log(L) + 2 log(|A|)) + (3L+ 3)τmin log(4/δ)

)
,

which, by the below lemma (whose proof can be found in Shalev-Shwartz and Ben-David [2014]), is implied
by

m ≥ 128d

ǫ2L
log

(
64d

ǫ2L

)
+

8

ǫ2

(
8d

L
(log(L) + 2 log(|A|)) + (3L+ 3)τmin log(4/δ)

)
.

Lemma A.0.7. Let a ≥ 1, b > 0. Then x ≥ 4a log(2a) + 2b =⇒ x ≥ a log(x) + b.

Replacing the ǫ above with ǫ/2 gives the desired sample complexity upper bound:

Lemma A.0.8. Let A denote an ERM learning algorithm. Then for any distribution over the data, if A receives

m = O

(
d

ǫ2

(
log

(
d

ǫL

)
+

d

L
(log(L) + log(|A|)) + Lτmin log(1/δ)

))
,

then A returns a hypothesis in H which has error at most ǫ greater than the true error minimizer in H with
probability at least 1− δ.

Finally, we return to the definition of τmin:

Definition A.0.4. Let X1, . . . , XN be a Markov chain on Polish state space Ω1×· · ·×ΩN . Let L(Xi+t|Xi =
x) be the conditional distribution of Xi+t given Xi = x. Define

d(t) = max
1≤i≤N−t

sup
x,y∈Ωi

dTV (L(Xi+t|Xi = x),L(Xi+t|Xi = y)) and τ (ǫ) = min{t ∈ N : d(t) ≤ ǫ}.

Furthermore, define

τmin = inf
0≤ǫ<1

τ (ǫ) ·
(
2− ǫ

1− ǫ

)2

.

Notice that, in our case, looking at the proof of Lemma A.0.4, t(ǫ) ≤ L, ∀0 ≤ ǫ ≤ 2L (since the entire process
’restarts’ with a new draw of θ), and so we have that τmin ≤ 8L, thus giving us the desired theorem on sample
complexity:

Theorem A.1. Let the concept class H have Natarajan dimension d. There exists a learning algorithm A such
that for any distribution over the data, there exists m with

m = O

(
d

ǫ2

(
log

(
d

ǫL

)
+

d

L
(log(L) + log(|A|)) + L2 log(1/δ)

))
,

such that if A receives at least m L-long trajectories in the batch, then A returns a hypothesis in H which has
classification error at most ǫ greater than the true error minimizer of H with probability at least 1− δ.

A.2 Hard Family of CMDPs

A.2.1 An Ω( |H|
ǫ2

) Lower Bound

We consider the following K-armed contextual bandit problem. The hypothesis class will be a set of functions
f : {0, . . . , L − 1} → [K]. The ith context vectors will simply be i for i = 0, . . . , L − 1; that is, the only
information the context gives is the round number. f∗(i) denotes the optimal arm for round i. For the first
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round, the optimal arm gives Bern( 1
2
+ 3

2
ǫ) reward and all other arms give Bern(1/2) rewards. For all other

contexts, all arms give Bern(1/2) rewards. With this structure, we further restrict the hypothesis class so that
for any f 6= f ′ ∈ H, f(i) = f ′(i),∀θ ∈ Θ, i = 1, . . . , L− 1; that is, all hypotheses agree on all but the very
first round. On the first round, the set {f(0) : f ∈ H} = A. Therefore, we simply take |H| = |A|. Notice that
for each round, the final L−1 values seen provide no information. Thus, only the first context is important, and
the problem reduces to the standard K-arm bandit problem of Krishnamurthy et al. [2016], and thus we get the
lower bound Ω

(
K
ǫ2

)
, as desired. Thus, we have shown that we can remove the factor of 1

L
from the immediate

application of the result of Krishnamurthy et al. [2016].

A.2.2 Linear Growth in |Θ| with Small Hypothesis Class

The standard construction of Chen and Jiang [2019] as well as Krishnamurthy et al. [2016] consider the prob-
lem for single MDPs and POMDPs, respectively, and note that it is information-theoretically equivalent to the
best-arm identification identification problem, with number of arms equal to the size of the model class. Un-
fortunately, in our setting, this is not the case, however we are still able to perform an information-theoretic
analysis which is very similar to that of Krishnamurthy et al. [2016] as well as Auer et al. [2003].

First, we consider the following family of K-arm bandit problems. Let SK denote the set of permutations on
[K], and let Γ denote a maximal subset of SK such that any two permutations in Γ disagree on all inputs. It is
clear that |Γ| ≤ K, and that equality can be achieved as follows: using the standard group theoretic notation,
we simply let Γ = 〈(1 2 · · · K)〉; that is, the subgroup of SK generated by the permutation taking i 7→ i + 1
for i = 1, . . . , K − 1, and taking K 7→ 1. It is clear that |Γ| = K and that

∀σ 6= ρ ∈ Γ, σ(i) 6= ρ(i),∀i ∈ [K].

For σ ∈ Γ, let Mσ denote a family of K bandit problems, each indexed by θ ∈ [K]; specifically, Mθ
σ is

a K-arm bandit with optimal arm σ(θ), giving reward from Bern
(
1
2
+ 3

2
ǫ
)

and all other arms giving reward
from Bern(1/2). The hypothesis class of bandit families is thus

H = {Mσ|σ ∈ Γ}.
When the target family is Mσ, at each stage, a value of θ is drawn i.i.d from Unif([K]), and the agent is

allowed to interact with the bandit Mθ
σ for L iterations. We would like to lower bound m, the number of

draws of θ required for any algorithm to choose an ǫ-optimal permutation (where, in this case, the value of
the permutation σ is evaluated the same sense as in the standard CMDP setting: by taking Eθ[R(σ(θ))]) with
confidence δ. Notice that, in this setting, the only ǫ-optimal permutation is the optimal one: suppose that σ∗

is the optimal permutation, and σ is some other permutation in Γ. Then since σ and σ∗ disagree on all values
in [K], we will have that the value of σ will be 3

2
ǫ > ǫ less than σ∗, since, for each value of θ, σ selects a

suboptimal arm, thus implying that σ∗ is indeed the only ǫ-optimal permutation.

To achieve a lower bound, we represent a deterministic algorithm as sequence of mappings ft : ({0, 1}×Θ)t →
Γ for 0 ≤ t ≤ mL, where we will interpret ft(r

t) as the permutation the algorithm believes is optimal after
seeing the reward sequence rt ∈ ({0, 1} × Θ)t (our reward sequences are ’labelled’ by the value of θ which
they correspond to; that is, the reward sequence is a t-long sequence of ordered pairs, where the ith pair is the
pair containing the reward at time i and the value of θ at time i). In particular, this belief satisfies the property
that for (k−1)L+1 ≤ t ≤ kL,

(
ft(r

t)
)
(θk) is the action taken by the algorithm after seeing reward sequence

rt (where here the m values of θ drawn are θ1, . . . , θm). The return of the algorithm after seeing the reward
sequence rmL is thus the permutation fmL(r

mL).

Following the notation of Krishnamurthy et al. [2016] we will then let Pσ∗,f denote the distribution over all
mL rewards when σ∗ is the optimal permutation and the algorithm and actions selected are done so according
to f . We let P0,f denote the same distribution as above, except in the setting when all permutations give the
same family of bandits whose rewards are always drawn from Bern(1/2).

Now, we have the following

|Pσ∗,f (fmL = σ∗)− P0,f (fmL = σ∗)| ≤ |Pσ∗,f − P0,f |TV ≤
√

1

2
KL(P0,f ||Pσ∗,f ),

where the last inequality is Pinsker’s. From the definition of KL divergence, we then have that

KL(P0,f ||Pσ∗,f ) =
∑

rmL∈{0,1}mL

P0,f (r
mL) log

(
P0,f (r

mL)

Pσ∗,f (rmL)

)
,

which, by the chain rule for KL divergence is

mL∑

t=1

∑

rt∈{0,1}t

P0,f (r
t) log

(
P0,f (r

t|rt−1)

Pσ∗,f (rt|rt−1)

)
,
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which, by noticing that if, at time t, any suboptimal action is selected, the log ratio will be zero, letting

Λt−1 = {rt−1 ∈ {0, 1}t−1 :
(
ft−1(r

t−1)
)
(θ

⌊ t−2
L

⌋+1
) = σ∗(θ

⌊ t−2
L

⌋+1
)},

the above is simply

mL∑

t=1

∑

rt−1∈Λt−1

P0,f (r
t−1)


 ∑

x∈{0,1}

P0,f (x) log

(
P0,f (r

t|at is optimal)

Pσ∗,f (rt|at is optimal)

)


=
mL∑

t=1

∑

rt−1∈Λt−1

P0,f (r
t−1)

(
1

2
log

(
1/2

1/2− 3
2
ǫ

)
+

1

2
log

(
1/2

1/2 + 3
2
ǫ

))

=

(
−1

2
log
(
1− 9ǫ2

)) mL∑

t=1

∑

rt−1∈Λt−1

P0,f (r
t−1)

=

(
−1

2
log
(
1− 9ǫ2

)) mL∑

t=1

P0,f [
(
ft−1(r

t−1)
)
(θ

⌊ t−2
L

⌋+1
) = σ∗(θ

⌊ t−2
L

⌋+1
)],

where in the above we have slightly abused notation, and any reference to Λt−1 or ft−1(r
t−1) for t = 1 refers

to the initial action that the algorithm takes. Thus, again with the notation of Krishnamurthy et al. [2016],
letting Nσ∗ denote the random variable equal to the number of times the algorithm chose the arm given by σ∗

in the bandit family where all arms are always equal, we have that

Pσ∗,f (fmL = σ∗)− P0,f (fmL = σ∗) ≤ 1

2

√
−E0,f [Nσ∗ ] log (1− 9ǫ2).

Taking the expectation over all possible optimal permutations then gives that

1

|Γ|
∑

σ∗∈Γ

Pσ∗,f (fmL = σ∗) ≤ 1

|Γ|
∑

σ∗∈Γ

P0,f (fmL = σ∗) +
1

2|Γ|
∑

σ∗∈Γ

√
−E0,f [Nσ∗ ] log (1− 9ǫ2),

which, by Jensen’s inequality is at most

1

|Γ|
∑

σ∗∈Γ

P0,f (fmL = σ∗) +
1

2

√
− log (1− 9ǫ2)

|Γ|
∑

σ∗∈Γ

E0,f [Nσ∗ ].

Now, notice that we can write

∑

σ∗∈Γ

Nσ∗ ≤
mL∑

t=1

|{σ ∈ Γ :
(
ft−1(r

t−1)
)
(θ

⌊ t−2
L

⌋+1
) = σ(θ

⌊ t−2
L

⌋+1
)}|,

which, based on how we chose Γ, is at most mL. So, the above is at most

1

|Γ| +
1

2

√
− log (1− 9ǫ2)mL

|Γ| .

Noticing that − log(1− x) ≤ 2x when x ≤ 1/2, if 9ǫ2K2 ≤ 1
2

, then the above is at most

1

|Γ| +
1

2

√
18ǫ2mL

|Γ| .

Thus, if we take

m <
|Γ|

162ǫ2L
=

K

162ǫ2L
,

the above will be at most 2/3 since certainly |Γ| ≥ 2, thus indicating that if m is less than the above, we cannot
achieve suboptimality of at most ǫ for any δ < 2/3.

The construction for achieving the Ω
(

|A|L

Lǫ2

)
is then achieved in a similar way in Krishnamurthy et al. [2016].

This can be done by describing the MDP for the context θ as a tree with special edge given by σ∗(θ). The

hypothesis class is then 〈(1 2 · · · |A|L−1)〉 ⊂ S|A|L−1 , and Θ = [|A|L−1]. Thus, our lower bound grows at

the rate Ω
(

|Θ|

Lǫ2

)
while having a hypothesis class which has size |Θ|.
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A.3 FQI Analysis

First we give pseudocode describing FQI for CMDPs:

Algorithm 1 CMDP-FQI

Input: Dataset D = {(θi, s
θi
l , aθil , rθil , s

θi′
l )}i=m,l=L−1

i=1,l=0

Initialize Q : S ×A×Θ× {0, . . . , L} → R with Q(s, a, θ, l) = 0, ∀s, a, θ, l
for l = 1, . . . , L do
Dl ← ∅
for (θi, s

θi
l , aθil , rθil , s

θi′
l ) ∈ D do

input← (sθil , aθil , θi, l)

target← rθil +maxa∈AQ(s
θi′
l , a, θi, l − 1)

Dl ← Dl ∪ {(input, target)}
end for
Ql(·, ·, ·, l) = REGRESS(Dl)

end for
return Q

In the above, the program REGRESS(Dl) returns the Q function in F which, for the lth timestep, minimizes the
empirical ℓ2 norm of the dataset. We use the notation of subscripting the Q function by l to indicate that the
l + 1th Q function need not be the exact Bellman backup of the lth.

Now, our setup and derivation follows the same structure as Chen and Jiang [2019]. First, just as in
Chen and Jiang [2019], we define a semi-norm on real-valued functions with state-action inputs and also write
FQI in terms of the backups Tl.

Definition A.1.1. Define a semi-norm || · ||p,ν×PΘ
on functions f : S ×A×Θ → R by

||f ||p,ν×PΘ
=
(
Eθ∼PΘ,(s,a)∼ν(θ)[f(s, a, θ)

1/p]
)p

Now, we can write the FQI above in terms of backups. For l = 0, . . . , L − 1, we say that f(·, ·, ·, l + 1) =

T̂ F
l f(·, ·, ·, l), where, for f ′ ∈ F ,

T̂ F
l f ′ = argminf∈FLl(f ; f

′),

and

Ll(f ; f
′) =

1

|D|
∑

(θ,sθ ,aθ
l
,rθ,s

θ′ )∈D

(f(sθ, aθ, θ, l + 1) − rθ − Vf ′(sθ′ , θ, l))2.

We now state and prove the lemmas needed for the sample complexity upper bound as in Chen and Jiang [2019].

Lemma A.1.1. Let µ be the data distribution and ν an admissible distribution. Then

|| · ||2,ν×PΘ
≤

√
C|| · ||2,µ×PΘ

,

where ν × PΘ is the distribution over (θ, s, a) triples with θ ∼ PΘ, and (s, a) ∼ ν(θ), and µ × Θ is the
distribution over (θ, s, a) triples with θ ∼ PΘ, and (s, a) ∼ µ.

Proof.

||f ||2,ν×PΘ
=

√∑

θ∈Θ

PΘ(θ)
∑

(s,a)∈S×A

(ν(θ))(s, a)f(s, a)2

≤
√

C
∑

θ∈Θ

PΘ(θ)
∑

(s,a)∈S×A

µ(s, a)f(s, a)2 =
√
C||f ||2,µ×PΘ

We now rederive a standard infinite-horizon lemma from Kakade and Langford [2002] for our finite-horizon
setting.
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Lemma A.1.2. Let π∗ denote an optimal possibly time-dependent deterministic policy and let π̂ be some time-
dependent deterministic policy. Letting Mπ

l (s, θ) denote the marginal distribution of the lth state, given θ and
the initial state s by following policy π, then

V L
π∗(s; θ)− V L

π̂ (s; θ) =
L−1∑

l=0

Esl∼Mπ̂
l
(s,θ)[V

L−l
π∗ (sl; θ)−Q∗(sl, π̂, θ, L− l)].

Proof.

V π̂
L (s; θ) =

L−1∑

l=0

Esl∼Mπ̂
l
(s,θ)[R(sl, π̂(sl, θ, l)]

=

L−1∑

l=0

Esl∼Mπ̂
l
(s,θ)[R(sl, π̂(sl, θ, l)) + V L−l

π∗ (sl; θ)− V L−l
π∗ (sl; θ)]

=

L−2∑

l=0

Esl∼Mπ̂
l
(s,θ),sl+1∼Mπ̂

l+1
(s,θ)[R(sl, π̂(sl, θ, l)) + V L−l−1

π∗ (sl+1; θ)− V L−l
π∗ (sl; θ)]

+V L
π∗(s0; θ) + EsL−1∼Mπ̂

L−1
(s,θ)[R(sL−1, π̂(sL−1, θ, L− 1))− V 1

π∗(sL−1; θ)]

=⇒ V π̂
L (s; θ)− V L

π∗(s0; θ) =
L−1∑

l=0

Esl∼Mπ̂
l
(s,θ)[Q

∗(sl, π̂, θ, L− l)− V L−l
π∗ (sl; θ)],

as desired.

With this, we now show how to control the difference in value of two policies in terms of the semi-norm of the
difference of their Q-functions.

Lemma A.1.3. Let f : S × A × Θ × {0, . . . , L} and let π̂ = πf denote the policy, which at time-step t is
greedy with respect to f(·, ·, θ, t) for all t. Then

vLπ∗−vLπ̂ ≤
L−1∑

l=0

||Q∗(·, ·, ·, L−l)−f(·, ·, ·, L−l)||2,Mπ̂
l
×π∗×PΘ

+||Q∗(·, ·, ·, L−l)−f(·, ·, ·, L−l)||2,Mπ̂
l
×π̂×PΘ

,

where the notation Mπ
l × π′ × PΘ denote the distribution over state action context triples in which θ ∼ PΘ,

then lth state, s, is drawn from Mπ
l (θ) (i.e. the marginal distribution conditioned just on θ) and, a = π′(s, l).

Proof. From the above, we have that

vLπ∗ − vLπ̂ =

L−1∑

l=0

Eθ∼PΘ,s∼Ps0
,sl∼Mπ̂

l
(s,θ)[V

L−l
π∗ (sl; θ)−Q∗(sl, π̂, θ, L− l)]

≤
L−1∑

l=0

Eθ∼PΘ,s∼Ps0
,sl∼Mπ̂

l
(s,θ)[V

L−l
π∗ (sl; θ)− f(s, π∗, θ, L− l) + f(s, π̂, θ, L− l)−Q∗(sl, π̂, θ, L− l)]

≤
L−1∑

l=0

||Q∗(·, ·, ·, L− l)− f(·, ·, ·, L− l)||1,Mπ̂
l
×π∗×PΘ

+ ||Q∗(·, ·, ·, L− l)− f(·, ·, ·, L− l)||1,Mπ̂
l
×π̂×PΘ

≤
L−1∑

l=0

||Q∗(·, ·, ·, L− l)− f(·, ·, ·, L− l)||2,Mπ̂
l
×π∗×PΘ

+ ||Q∗(·, ·, ·, L− l)− f(·, ·, ·, L− l)||2,Mπ̂
l
×π̂×PΘ

,

as desired.

Lemma A.1.4. Let f, f ′ : S × A × Θ × {0, . . . , L} → R and πf,f ′(s, θ, l) =
argmaxa∈A max{f(s, a, θ, l), f ′(s, a, θ, l)}. Then, for all admissible distributions ν and all l ∈ {0, . . . , L},

||V l
f (·; ·)− V l

f ′(·; ·)||2,P (ν)×PΘ
≤ ||f(·, ·, ·, l) − f ′(·, ·, ·, l)||2,P (ν)×πf,f′ (·,·,l)×PΘ

,

where P (ν) × PΘ denotes the distribution over context-state pairs (s′, θ) given that θ ∼ PΘ, (s, a) ∼ ν(θ),
and s′ ∼ T (·|s, a, θ), and P (ν) × πf,f ′(·, ·, l) × PΘ denotes the distribution over triples (s′, a, θ) where
(s′, θ) ∼ P (ν)×PΘ and a = πf,f ′(s, θ, l).
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Proof. We have that

||V l
f (·; ·)− V l

f ′(·; ·)||22,P (ν)×PΘ

=
∑

θ∈Θ

PΘ(θ)
∑

(s,a)∈S×A

(ν(θ))(s, a)
∑

s′∈S

T (s′|s, a, θ)
(
max
a∈A

f(s′, a, θ, l)−max
a∈A

f ′(s′, a, θ, l)

)2

≤
∑

θ∈Θ

PΘ

∑

(s,a)∈S×A

(ν(θ))(s, a)
∑

s′∈S

T (s′|s, a, θ)(f(s′, πf,f ′(s′, θ, l), θ, l)− f ′(s′, πf,f ′(s′, θ, l), θ, l))2

= ||f(·, ·, ·, l)− f ′(·, ·, ·, l)||22,P (ν)×πf,f′ (·,·,l)×PΘ
,

as desired.

We now upper bound ||f −Q∗||2,ν×PΘ
.

Lemma A.1.5. For any data distribution µ over S × A and admissible distribution ν, policy (which is po-
tentially time-dependent), π, and fl+1, fl : S × A × Θ × {0, . . . , L − 1} → R gotten from FQI, then we
have

||fl+1(·, ·, ·, l + 1)−Q∗(·, ·, ·, l + 1)||2,ν×PΘ

≤
√
C||fl+1(·, ·, ·, l+ 1)− (Tl(·))fl(·, ·, ·, l)||2,µ×PΘ

+ ||fl(·, ·, ·, l)−Q∗(·, ·, ·, l)||2,P (ν)×πfl,Q
∗ (·,·,l)×PΘ

,

for all l.

Proof. We have

||fl+1(·, ·, ·, l + 1)−Q∗(·, ·, ·, l + 1)||2,ν×PΘ

= ||fl+1(·, ·, ·, l + 1) − (Tl(·))fl(·, ·, ·, l) + (Tl(·))fl(·, ·, ·, l)−Q∗(·, ·, ·, l + 1)||2,ν×PΘ

≤ ||fl+1(·, ·, ·, l + 1)− (Tl(·))fl(·, ·, ·, l)||2,ν×PΘ
+ ||(Tl(·))fl(·, ·, ·, l)− (Tl(·))Q∗(·, ·, ·, l)||2,ν×PΘ

.

Now, notice that

||(Tl(·))fl(·, ·, ·, l)− (Tl(·))Q∗(·, ·, ·, l)||22,ν×PΘ

= Eθ∼PΘ,(s,a)∼ν(θ)[((Tl(θ))fl(s, a, θ, l)− (Tl(θ))Q
∗(s, a, θ, l))

2
]

= Eθ∼PΘ,(s,a)∼ν(θ)[
(
Es′∼T (·|s,a,θ)[V

l
fl
(s′; θ)− V l

π∗(s′; θ)]
)2

]

≤ Eθ∼PΘ,(s,a)∼ν(θ),s′∼T (·|s,a,θ)[
(
V l
fl
(s′; θ)− V l

π∗(s′; θ)
)2

] = ||V l
fl
(·; ·)− V l

π∗(·; ·)||22,P (ν)×PΘ
.

Thus, the above is at most

||fl+1(·, ·, ·, l + 1)− (Tl(·))fl(·, ·, ·, l)||2,ν×PΘ
+ ||V l

fl
(·; ·) − V l

π∗(·; ·)||2,P (ν)×PΘ

≤
√
C||fl+1(·, ·, ·, l + 1)− (Tl(·))fl(·, ·, ·, l)||2,µ×PΘ

+ ||Vfl(·, ·, l)− V l
π∗(·; ·)||2,P (ν)×PΘ

,

which, by the previous lemma, is at most

√
C||fl+1(·, ·, ·, l + 1)− (Tl(·))fl(·, ·, ·, l)||2,µ×PΘ

+ ||fl(·, ·, ·, l)−Q∗(·, ·, ·, l)||2,P (ν)×πfl,Q
∗ (·,·,l)×PΘ

,

as desired.

We now assume access to a function class G which approximates Bellman backups of F . In particular, we
define the error of approximation as follows:

Definition A.1.2. Define ǫF,G to be the smallest real number such that if we let

g∗f (l) = argming∈G ||g(·, ·, ·, l + 1) − (Tl(·))f(·, ·, ·, l)||2,µ×PΘ
,

then

||(g∗f (l))(·, ·, ·, l + 1) − (Tl(·))f(·, ·, ·, l)||22,µ×PΘ
≤ ǫF,G , ∀l.

Lemma A.1.6. Let the dataset D be generated as described in the text. Then, for any l ∈ {0, . . . , L} and
f ∈ F , we have that, with probability at least 1− δ,

ED[Ll(T̂ G
lf ; f) −Ll(g

∗
f (l); f)] ≤

56L2 ln
(

L|F||G|
δ

)

3m
+

√√√√32L2 ln
(

L|F||G|
δ

)

m
ǫF,G
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Proof. Fix l, and just as in Chen and Jiang [2019], define

X(g, f, g∗f (l)) = (g(s, a, θ, l + 1)− r − Vf (s
′, θ, l))2 − ((g∗f (l))(s, a, θ, l + 1)− r − Vf (s

′, θ, l))2.

Letting Xi,l denote the evaluation of X on (θi, s
θi
l , aθi

l , rθil , s
θi′
l ) it is clear that

1

mL

m∑

i=1

L−1∑

l=0

Xi,l(g, f, g
∗
f (l)) = Ll(g; f) − Ll(g

∗
f (l); f).

Now, we have that
Var[X(g, f, g∗f (l))] ≤ E[X(g, f, g∗f (l))

2]

= E[
(
(g(s, a, θ, l + 1)− r − Vf (s

′, θ, l))2 − ((g∗f (l))(s, a, θ, l + 1) − r − Vf (s
′, θ, l))2

)2
]

= E[(g(s, a, θ, l+1)−(g∗f (l))(s, a, θ, l+1))2(g(s, a, θ, l+1)+(g∗f (l))(s, a, θ, l+1)−2r−2Vf (s
′, θ, l))2].

Now, since all rewards are in [0, 1],

g(s, a, θ, l + 1) + (g∗f (l))(s, a, θ, l + 1)− 2r − 2Vf (s
′, θ, l) ≤ 2l

and so the above is at most

4l2E[(g(s, a, θ, l + 1) − (g∗f (l))(s, a, θ, l + 1))2] = 4l2||g(·, ·, ·, l + 1)− (g∗f (l))(·, ·, ·, l + 1)||22,µ×PΘ

≤ 8l2
(
||g(·, ·, ·, l + 1) − (Tl(·))f(·, ·, ·, l)||22,µ×PΘ

+ ||(Tl(·))f(·, ·, ·, l) − (g∗f (l))(·, ·, ·, l + 1)||22,µ×PΘ

)

= 8l2
(
||g(·, ·, ·, l + 1)− (Tl(·))f(·, ·, ·, l)||22,µ×PΘ

− ||(Tl(·))f(·, ·, ·, l)− (g∗f (l))(·, ·, ·, l + 1)||22,µ×PΘ

+2||(Tl(·))f(·, ·, ·, l)− (g∗f (l))(·, ·, ·, l + 1)||22,µ×PΘ

)

= 8l2
(
E[X(g, f, g∗f (l))] + 2||(Tl(·))f(·, ·, ·, l)− (g∗f (l))(·, ·, ·, l + 1)||22,µ×PΘ

)

≤ 8l2
(
E[X(g, f, g∗f (l))] + 2ǫF,G

)
.

Now, notice that the random variables X1,l, X2,l, . . . , Xm,l are i.i.d for fixed l. Thus, as in Chen and Jiang
[2019], we will use one-sided Bernstein’s inequality along with a union-bound over f ∈ F , g ∈ G and finally
over l = 1, . . . , L. In particular, as Chen and Jiang [2019] note, union-bounding over the first two sets says
that, with probability at least 1− δ, every f ∈ F , g ∈ G, and fixed l satisfy

E[X(g, f, g∗f (l))]−
m∑

i=1

Xi,l(g, f, g
∗
f (l)) ≤

√√√√2Var[X(g, f, g∗f (l))] ln
(

|F||G|
δ

)

m
+

4L2 ln
(

|F||G|
δ

)

3m

≤

√√√√16l2
(
E[X(g, f, g∗f (l))] + 2ǫF,G

)
ln
(

|F||G|
δ

)

m
+

4L2 ln
(

|F||G|
δ

)

3m
.

Now, notice that

1

m

m∑

i=1

Xi,l(T̂ G
l f, f, g∗f (l)) ≤

1

m

m∑

i=1

Xi,l(g
∗
f (l), f, g

∗
f (l)) = 0,

and so we really have that, with probability at least 1− δ, every f ∈ F satisfies

E[X(T̂ G
l f, f, g∗f (l))] ≤

√√√√16l2
(
E[X(T̂ G

l f, f, g∗f (l))] + 2ǫF,G

)
ln
(

|F||G|
δ

)

m
+

4L2 ln
(

|F||G|
δ

)

3m
,

which, by algebraic manipulations (see Lemma 16 of Chen and Jiang [2019]) implies

E[X(T̂ G
l f, f, g∗f (l))] ≤

56L2 ln
(

|F||G|
δ

)

3m
+

√√√√32L2 ln
(

|F||G|
δ

)

m
ǫF,G ,

for the fixed l. Having union-bounded with respect to l will yield the desired upper bound of

56L2 ln
(

L|F||G|
δ

)

3m
+

√√√√32L2 ln
(

L|F||G|
δ

)

m
ǫF,G .

Finally, we derive a sample-complexity bound:
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Theorem A.2. We can bound the error of the hypothesis returned by FQI, with probability at least 1− δ as

vLπ∗ − vLπf
≤ L(L+ 1)

√√√√√√√C




56L2 ln
(

L|F|2

δ

)

3m
+

√√√√32L2 ln
(

L|F|2

δ

)

m
ǫF,F + ǫF,F


.

Proof. From Lemma A.1.5 we have

||fl+1(·, ·, ·, l + 1)−Q∗(·, ·, ·, l + 1)||2,ν×PΘ

≤
√
C||fl+1(·, ·, ·, l+ 1)− (Tl(·))fl(·, ·, ·, l)||2,µ×PΘ

+ ||fl(·, ·, ·, l)−Q∗(·, ·, ·, l)||2,P (ν)×πfl,Q
∗ (·,·,l)×PΘ

,

for all l. We bound the first term:

||fl+1(·, ·, ·, l + 1) − (Tl(·))fl(·, ·, ·, l)||22,µ×PΘ
= ED[Ll(fl+1; fl)]− ED[Ll((Tl(·))fl; fl)]

= ED[Ll(fl+1; fl)− Ll(g
∗
f (l); f)] + ED[Ll(g

∗
f (l); f)− Ll((Tl(·))fl; fl)],

which, by the previous lemma and taking G = F is, with probability at least 1− δ, at most

56L2 ln
(

L|F|2

δ

)

3m
+

√√√√32L2 ln
(

L|F|2

δ

)

m
ǫF,F + ǫF,F ,

so, by repeating the above recursion, we have that

||fl+1(·, ·, ·, l + 1)−Q∗(·, ·, ·, l + 1)||2,ν×PΘ

≤ (L+ 1)

√√√√√√√C




56L2 ln
(

L|F|2

δ

)

3m
+

√√√√32L2 ln
(

L|F|2

δ

)

m
ǫF,F + ǫF,F


,

for all l, with probability at least 1− δ, which, by Lemma A.1.3 implies

vLπ∗ − vLπf
≤ L(L+ 1)

√√√√√√√C




56L2 ln
(

L|F|2

δ

)

3m
+

√√√√32L2 ln
(

L|F|2

δ

)

m
ǫF,F + ǫF,F


,

with probability at least 1− δ.

The corollary regarding model-based learning immediately follows by constructing F from H.
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