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Abstract
For responsible decision making in safety-critical
settings, machine learning models must effec-
tively detect and process edge-case data. Al-
though existing works show that predictive un-
certainty is useful for these tasks, it is not evident
from literature which uncertainty-aware models
are best suited for a given dataset. Thus, we com-
pare six uncertainty-aware deep learning models
on a set of edge-case tasks: robustness to adver-
sarial attacks as well as out-of-distribution and
adversarial detection. We find that the geometry
of the data sub-manifold is an important factor in
determining the success of various models. Our
finding suggests an interesting direction in the
study of uncertainty-aware deep learning models.

1. Introduction
Responsible development and deployment of machine learn-
ing models in high-stakes real-life applications often require
these models to have guarantees of desirable behaviors on
edge-cases. In literature, the ability to handle edge-cases is
often formalized as model’s awareness of out-of distribution
(OoD) and adversarial data, and its adversarial robustness.
Although many recent works have developed models with
those desired properties (Kendall & Gal, 2017; Filos et al.,
2019; Sheikholeslami et al., 2019), it is not clear from litera-
ture which subset of existing uncertainty-aware deep models
is generally well suited for a given dataset.

In this work, we evaluate the usefulness of a set of com-
monly used Bayesian and non-Bayesian uncertainty-aware
deep models for (1) adversarial robustness, and (2) detection
of adversarial and OoD data. Furthermore, we study to what
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extent commonly used metrics of uncertainty (e.g. predic-
tive entropy) can be used as proxies for model performance
on these tasks. Our key finding is that the effectiveness
of uncertainty-aware models, as well as the usefulness of
uncertainty metrics, varies depending on the geometry of
the data. Specifically, we find that: (1) models that succeed
on our tasks when the data sub-manifold is low dimensional
(compared to the input space) may fail when the data mani-
fold has co-dimension zero, and vice versa; (2) the ability
of different uncertainty metrics to capture various aspects
of the model’s predictive uncertainty also depends on the
dimension of the data sub-manifold. To our knowledge, we
are the first to study how the geometry of data sub-manifolds
effects the usefulness of uncertainty-aware deep models and
uncertainty metrics.

2. Related Work
Past work shows that uncertainty-aware deep learning mod-
els can be used to detect out-of-distribution data (Malinin
& Gales, 2018; Liu et al., 2020; Lakshminarayanan et al.,
2017). Furthermore, existing works show that these mod-
els are more robust to adversarial attacks (Bradshaw et al.,
2017; Strauss et al., 2017; Carbone et al., 2020; Ritter et al.,
2018; Feinman et al., 2017) and that methods for detecting
OoD data can also be utilized for detecting adversarial data
(Smith & Gal, 2018; Sheikholeslami et al., 2019; Carlini &
Wagner, 2017). However, there is very little work on how
to select amongst available uncertainty-aware deep models
for a given general dataset. While previous works compare
various types of models, such comparisons often focus on
bench-marking model performance on a range of specific
datasets (Xia et al., 2021; Arnez et al., 2020; Koh et al.,
2021). However, such approaches do not always character-
ize the differences in model performance in terms of the
intrinsic properties of the datasets themselves, making it
potentially difficult to generalize insights to new settings. In
contrast, we evaluate differences in model performance in
relation to the inherent geometry of data sub-manifolds.

At the same time, model predictive uncertainty is often sum-
marized by a choice of uncertainty metric (e.g. predictive
entropy) that acts as a proxy for the intended task perfor-
mance (e.g. adversarial robustness, detection of adversarial
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(a) Adversarial Accuracy (b) Epistemic Uncertainty (half moons) (c) Epistemic Uncertainty (MNIST)

Figure 1. Model performance by dataset. (a) Certain models show clear increase in robustness to adversarial attacks in the MNIST setting
over half moons. (b) For half moons data, ability to detect OoD points via uncertainty is poor for all models except single-pass. (c) In
contrast, all models produce high uncertainty in for Fashion MNIST setting, relative to uncertainty on MNIST

and OoD data). For example, high uncertainty as measured
by entropy can be used to flag edge-cases for human review
(Filos et al., 2019). However, there are many uncertainty
metrics one can consider but few works that compare them
as proxies for our intended task performance. In this paper,
we compare several commonly used uncertainty metrics in
their ability to indicate model performance on adversarial
robustness as well as detection of adversarial and OoD data.
Here too, we relate the differences in the usefulness of un-
certainty metrics to the geometry of the data sub-manifolds.

3. Background
Adversarial Data Let xn ∈ RD be a input vector and F
be a classification model with predicted class label yn ∈ N .
Of the many types of adversarial attacks, we consider adding
a small perturbation δ ∈ RD to the input xn, which fools
the model (i.e. F(xn + δ) 6= yn) but does not fool a human.
A model is robust to adversaries if it is able to correctly
classify inputs modified by adversarial perturbations.

For our experiments, we consider a black-box attack that can
only query the target model predictions but not the model
parameters, which is a common practical constraint. Specif-
ically, we take inspiration from previous work in black-box
attacks (Papernot et al., 2016a;b) and train a deterministic
proxy model that approximates the target model’s decision
boundary. We then execute an L2-PGD attack on the trained
proxy to generate adversarial examples (Appendix D).

Out-of-Distribution Data Ideally, during test time, ma-
chine learning models will encounter data drawn from the
same data generative process as the training data. However,
in certain situations, such as the presence of anomalous ex-
amples or covariate shift, the new incoming data may not
resemble the training data. We refer to such data as out-of-
distribution (OoD) samples and the task of distinguishing
among in-distribution and OoD data as OoD detection.

4. Experiment Setup
Datasets We consider three datasets: (1) the half moons
dataset for binary classification, (2) MNIST for multi-

class image classification, (3) a binary classification dataset
wherein data clusters primarily lie on a 1-dimensional line
within 2-dimensional space to mimic the natural image man-
ifold. (1) and (2) are commonly used benchmark datasets,
(3) is a pedagogical dataset designed to demonstrate a low
dimensional data sub-manifold structure.

For datasets (1) and (2), adversarial attacks are generated
per model by adding adversarial perturbation to the inputs
determined via a gradient-based attack to the proxy. For
dataset (3), separate on and off-manifold adversaries are
generated by perturbing the inputs by δ ∼ N (±ε, 0.5),
where ε is a strength parameter (Appendix D).

For datasets (1) and (3), OoD clusters are hand placed in
several distant positions in the feature space. For dataset (2),
we use Fashion MNIST as OoD examples.

Models We consider a set of commonly used uncertainty-
aware deep models. We study two Bayesian approaches:
Bayesian Neural Networks (BNNs), in which we place a
prior on the neural network weights and infer the posterior
via Hamiltonian Monte Carlo; and Stochastic Weighted
Average Gaussian (SWAG) (Maddox et al., 2019), which
approximates the posterior of BNNs by parametrizing a
Gaussian distribution around the iterates of averaged SGD
solutions. We also study two frequentist approaches: Deep
Ensembles, which aggregates a collection of independently
trained neural networks (we note that although several meth-
ods exist for producing variance in ensembles (Wenzel
et al., 2020; D’Angelo & Fortuin, 2021), we only consider
variance through random initialization of model weights
(Lakshminarayanan et al., 2017)); and Monte Carlo (MC)
Dropout (Gal & Ghahramani, 2015), which provides a dis-
tribution over predictions via a sequence of dropout-enabled
forward passes through a pre-trained network. Last, we
employ two single-pass, deterministic models: Determin-
istic Uncertainty Quantification (DUQ) (van Amersfoort
et al., 2020) and Spectral-Normalized Neural Gaussian
Process (SNGP) (Liu et al., 2020). Both models encode
predictive uncertainty via forms of distance-awareness (van
Amersfoort et al., 2020; Liu et al., 2020).
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Uncertainty Metrics We measure two types of uncer-
tainty for all models: epistemic uncertainty, quantifying
the uncertainty of the model due to insufficiency of observa-
tions, and aleatoric uncertainty, quantifying the uncertainty
due to the inherent stochasticity in the data generating pro-
cess.

For ensemble-based models, we quantify aleatoric entropy
as the average entropy of the probability vectors output by
each component of the ensemble. We quantify epistemic
entropy under two frameworks with each distilling the de-
gree to which the ensemble components disagree. First,
we measure the entropy of the average predicted probabil-
ity across models (Kendall & Gal, 2017). We note that
this method may not always correctly identify instances in
which the components disagree. To address this, we propose
an alternative method for measuring epistemic uncertainty
wherein we calculate Kullback-Leibler divergence for all
combinations of ensemble predictions and average to pro-
duce a single value per datum (KL uncertainty).

Each single-pass model requires its own method for uncer-
tainty quantification. For DUQ, we use the distance from the
assigned class centroid as epistemic uncertainty (van Amers-
foort et al., 2020) and entropy of the output correlations,
transformed to valid probabilities, as aleatoric uncertainty.
For SNGP, we draw samples from the predictive distribu-
tion, N (logit(xn), var(xn)), in order to form an ensemble
of predictions for each data point. These predictions are
used to compute aleatoric and epistemic uncertainties in the
same manner as the other ensemble models.

Figure 2. Uncertainties on half moons data for DUQ (top) and MC
Dropout (bottom). For DUQ, uncertainty is divided into aleatoric
entropy (left) and epistemic (right). MC Dropout uncertainty is
divided into aleatoric entropy (left), epistemic entropy (middle),
and epistemic KL-divergence (right). Out-of-distribution points
are designated by red clusters.

5. Results & Analyses
No single uncertainty-aware model performs best
across all tasks. On the half moons dataset, all models
show a relatively consistent robustness to adversarial attacks.

However, the single-pass models, i.e. DUQ and SNGP, are
much more sensitive to out-of-distribution data (Table 1,
Figure 1), as both models produce highly-curved decision
boundaries and project uncertainty into all areas of the fea-
ture space outside the data-rich region (Appendix E). All
other models produce uncertainty that increases outside of
the data-region, but cling to a simpler decision boundary.
Thus, the single-pass models are more sensitive to OoD data
regardless of the data positions in feature space.

However, this pattern does not hold on natural image
datasets (MNIST). First, some models demonstrate substan-
tial adversarial robustness where others are more vulnerable.
Next, all models now show high levels of uncertainty on
OoD data. Unlike the half moons example, the discrepancy
in performance does not follow any clear delineation along
model classes (Figure 1).

So what can explain the discrepancy between the trends in
model performance on the two datasets? In the following,
we characterize these discrepancies in terms of the intrinsic
data geometries.

Model performance differences depend on the geome-
try of the data sub-manifolds. There is a consensus in
literature that natural images lie on or near low-dimensional
manifolds relative to the high-dimensional pixel space (Ru-
derman, 1994; Pope et al., 2021). In contrast, the data
manifold of half moons is full-dimensional, as data vari-
ance is significant in all input dimensions. To investigate
the relationship between geometry of the data manifold and
performance on detection and robustness tasks, we consider
a simple dataset composed of clusters that lie on a simple,
1D linear manifold within a 2D space.

First, Figure 3 provides insight into the remediated discrep-
ancy in sensitivity to OoD data. In this toy setting, deep
ensembles – and to a lesser degree SWAG, BNN, and MC
Dropout – now generate diverse decision boundaries by ex-
ploiting the freedom in higher dimensions and thus encode
uncertainty omnidirectionally in off-manifold space (Ap-
pendix F). This behavior mimics that of single-pass models
(i.e. DUQ and SNGP) on both half moons and toy manifold
experiments. In contrast to some previous works (Abe et al.,
2022), this observation highlights how ensemble diversity
is critical for accurate and useful uncertainty.

Next, when given off-manifold adversaries of increas-
ing strength, we see differences in robustness similar to
MNIST. Notably, all models show similar vulnerability to
on-manifold adversarial perturbations (Figure 6). Taking
deep ensembles and DUQ as examples, we see that deep
ensembles generate varied decision boundaries due to the
flexibility in off-manifold space, meaning that adversarial
attacks may cross one decision boundary, but will remain
correctly assigned by others. As such, the boundaries of
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Figure 3. Decision boundaries and epistemic uncertainties for Deep Ensemble (left) and DUQ (right) in toy manifold. Deep ensembles
produce a variety of decision boundaries that extend into off manifold space. DUQ by definition draws a single decision boundary and the
model confidence tightly hugs the data.

ensembles tend to be adversarially robust, a feature DUQ
naturally lacks due to its single, deterministic boundary.

Results of this experiment highlight another way that the ge-
ometry of the data sub-manifold affects model performance:
geometry of the loss surface. The clustered data on the 1-D
manifold allows many probable decision boundaries and, as
such, is a highly non-convex loss surface. As a result, model
performance for SWAG, BNN, and MC Dropout can vary
greatly by random restart (Figure 4).1 With a smoother loss
surface, we expect and observe more stable behavior (as in
the case of MNIST experiments).

Effectiveness of uncertainty metrics as a proxy of the
model’s ability to handle edge-cases depends on data
sub-manifold geometry. Just as there are numerous deep
models that produce predictive uncertainty, there are many
metrics for quantifying the predictive uncertainty of these
models. We find that the degree to which each metric can be
used to gauge model performance depends on the geometry
of the data sub-manifold.

In Figure 2, we can see the uncertainty in the feature space
under three metrics: mean predictive entropy (aleatoric),
entropy of predictive mean (epistemic), and KL uncertainty
between model predictions (epistemic). In both half moons
and the toy manifold, as expected, we see that aleatoric
entropy prioritizes the areas immediately between clusters,
since misclassification due to noise is most likely where
the clusters overlap, and KL focuses on regions away from
the data, as incongruence among model predictions is most
likely where training data is scarce. Epistemic entropy,
however, spans both of these regions as it also increases in
areas with low density of training data, but is left-bounded
by aleatoric entropy.

These patterns have important implications in terms of ad-
versarial and OoD awareness. For ensemble-based models
on full dimensional data, aleatoric entropy is more sensitive

1Each of these models train a single network and in distinct
manners explore the area surrounding the given local minimum
identified by training. This feature results in variable behavior for
highly modal loss spaces.

to adversaries, since adversaries in this case lie close to the
decision boundary. KL is sensitive to OoD data. This is
because KL measures pairwise disagreement between the
ensemble of predictions and, in this case, OoD data lie in
regions where there are fewer data observations and that ad-
mits diverse decision boundaries. Finally, epistemic entropy
serves as a catch-all for both since it quantifies both uncer-
tainty over the predicted label as well as disagreements in
the ensemble. However, these patterns change when the data
sub-manifold is low-dimensional. In this setting, KL and
epistemic entropy are generally more effective for detecting
adversaries and OoD, since when the data sub-manifold is
low-dimensional both adversarial examples and OoD are
likely to fall off-manifold; aleatoric entropy will quantify un-
certainty for on-manifold data, since it is measuring where
the classes overlap.

6. Conclusion & Discussion
In this work, we evaluate a set of deep uncertainty quantifi-
cation models on their robustness to and ability to detect
adversarial and out-of-distribution examples. We also study
the extent to which commonly used uncertainty metrics are
good proxies for model performance on these tasks. We
show that the success of uncertainty-aware models and un-
certainty metrics depends on the data geometry. Specifically,
we observe that performance discrepancies can be traced to
the presence of a low-dimensional data manifold.

Insights from these findings have important implications for
the application of uncertainty-aware deep learning methods.
Namely, for datasets that are not reducible to a manifold,
such as half moons, methods in the vein of DUQ and SNGP
are well-suited for OoD and adversarial detection. If using
any other tested models, KL-based measurements are bet-
ter suited for OoD detection, while aleatoric entropy will
allow for specific detection of adversaries. However, should
the data lie on a low-dimensional manifold, as is the case
for natural images, model choice will have a strong impact
on adversarial robustness, but the ability to detect OoD or
adversarial data via uncertainty is generally assured. Addi-
tionally, aleatoric entropy in this case is more appropriate
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for on-manifold data detection (e.g. OoD images), while
the KL-based metric is better at detecting data that projects
off-manifold (e.g. adversarial images).

The choices of model and uncertainty metric interact with
data geometry and task-related desiderata in complex and
potentially non-intuitive ways. As such, this work empha-
sizes the importance of a careful analysis of those factors
when deploying uncertainty-aware deep learning models.
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A. Model Architectures
All models share basic architecture. For half moons and toy
manifold experiments, all models except MC Dropout use a
feed-forward neural network with two hidden layers with 20
nodes per layer and ReLU activation. MC Dropout uses 128
nodes per layer. For MNIST we use a simple convolutional
network with three layers with 64, 128, and 128 filters
respectively and a 3×3 kernel. Each layer is passed through
batch-normalization layer followed by ReLU activation and
max-pooling with a 2×2 kernel. SNGP employs an additive
residual connection after the batch-normalization layers.
MC Dropout uses filter-wise dropout before each pooling
layer.

B. Hyperparameter Tuning
Where possible, models and the ideal hyperparameters were
taking directly from the referenced papers. This was true
for deep ensembles and DUQ taken from the DUQ paper
(van Amersfoort et al., 2020). Otherwise, models were
tuned using a grid search over model-specific parameters,
following the tuning procedures specific to that model if they
exist, e.g. the spec-norm value in SNGP. The halfmoons
case is straight-forward to achieve good accuracy on and
requires only standard parameters for each model. Below
we briefly summarize the final model parameters in the
MNIST and 1D Toy Manifold cases.

B.1. MNIST

BCNN RMSprop optimizer with learning rate of 0.0001
and batch size of 64. We compute the distribution for each
parameter in this model with kernel divergence set to a KL
divergence function.

DE SGD optimizer with momentum of 0.9, weight decay
of 0.00001, learning rate 0.00001, and batch size 32. 30
models are trained at 5 epochs each.

MC Dropout Adam optimizer, batch size of 256, learning
rate of 0.0001, filter-wise dropout rate of 10%. T = 100
forward passes were then averaged to get the final softmaxed
probability vector.

SWAG SGD optimizer with momentum of 0.9, weight de-
cay of 0.00001, learning rate 0.00001, and batch size 32.
Model exploration proceeds for 30 epochs at constant learn-
ing rate 0.1 and low-rank matrix includes the last 10 epochs.
30 samples are taken from the parameterized Gaussian.

DUQ SGD optimizer with learning rate 0.0001, momentum
of 0.9, and weight decay 0.00001.

SNGP SGD with a momentum of 0.9 and learning rate
of 0.01, batch size of 64, spec norm iteration of 1,
spec norm bound of 1.

B.2. 1D Toy Manifold

BNN For the BNN we use HMC with 1 chain, 1000 warm-
up steps while sampling 50 models each time. The sampler
is tuned to start with an adaptable step size of 10−6 and the
acceptance probability is set as 0.95. The max tree depth of
the sampler is set to 5.

DE SGD optimizer with learning rate 0.001. 20 models are
trained at 500 epochs each.

MC Dropout Adam optimizer with a learning rate of
0.0001, clipnorm of 0.5, batch size of 32, dropout rate of
20%, 650 epochs regularized with early stopping on the loss
with a patience of 50.

The uncertainties and decision boundaries produced for MC
Dropout showed to be susceptible to random restarts. Fig-
ure 4 demonstrates the decision boundaries and epistemic
uncertainties for two MC Dropout models trained on the toy
manifold data using the above procedure, only differing by
setting different random seeds.

SWAG SGD optimizer with learning rate 0.001. Model is
pre-trained for 600 epochs with exploration for 30 epochs at
learning rate 0.033 and low-rank matrix recording the last 5
epochs.

DUQ Adam optimizer with learning rate 0.0001, batch size
32, and trained for 500 epochs.

SNGP Adam with a learning rate of 0.0001, batch size of 32,
spec norm iteration of 1, spec norm bound of 0.9, dropout
rate of 10%, 750 epochs regularized with early stopping on
the loss with a patience of 50.

C. Uncertainty Metrics
Let M be the number of component models in an ensemble
and C be the number of classes.
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Figure 4. Epistemic Uncertainties for two different random restarts
of MC Dropout on the Toy Manifold Data. All procedures are held
the same except for the tensorflow random seed, which is set to
12345 on the left and 99999 on the right.

The aleatoric entropy is computed as:

Ha(xn) = − 1

M

M∑
m

C∑
c

p(yc|xn,Wm) log(p(yc|xn,Wm))

The epistemic entropy is computed as:

He(xn) = −
C∑
c

p̄c log(p̄c)

where,

p̄c =
1

M

M∑
m

p(yc|xn,Wm)

The epistemic KL uncertainty is computed as:

KLe(xn) =
1

P

P∑
m′,m′′

KL (p(y|xn,Wm′), p(y|xn,Wm′′))

where P is the M !
(M−2)! combinations of models. We do not

restrict to unique combinations due to the asymmetry of
KL-divergence.

For aleatoric entropy in DUQ we have M = 1 and

p(y|xn,W ) = softmax(log(fW (xn))))

D. Adversarial Robustness
To generate adversarial examples in both the halfmoons
and MNIST cases, we design a proxy model (fp) trained
to approximate the target model’s (ft) decision boundary.
Specifically, we have a trained target model that produces
predictions ŷt that are optimized by minimizing the loss
with respect to the true labels, min L(ŷt, ytrue). The target
model learns by matching the target model’s predictions, i.e.
min L(ŷp, ŷt). With the trained proxy we then perform an
iterative, L2 projected gradient descent (L2-PGD) attack.2

2Implementation adapted from https://adversarial-ml-
tutorial.org/adversarial examples

Specifically, we learn a perturbation δ over a number of
iterations where in each iteration we update δ such that,

δt+1 = P(δt + α∇δL(fp(x+ δt), ŷt))

where α is the learning rate, P is the projection onto the
L2-ball, and δ is bounded by a maximum perturbation ε.

Iterative PGD attacks have three hyperparameters: maxi-
mum allowable perturbation (ε), step size (α), and number
of gradient steps. In order to mimic real-world application
of a proxy model based attack, we tuned the parameters
in order to keep the degree to which the proxy model was
fooled consistent. As a final check, we track the average
L2 norm of the perturbations. For measuring adversarial
robustness using SNGP we utilize the mean-field approx-
imation to the posterior predictive (Liu et al., 2020; Nado
et al., 2021), even though we take samples for uncertainty
approximation. Empirically the difference in accuracy was
not significant.

To generate on/off-manifold adversaries for the toy manifold
data we add a perturbation, δ, to the samples where δ ∼
N (ε, 0.5). ε serves as a strength parameter for our ”attack.”
Additionally we randomly select with probability 0.5, for
each data point, whether the perturbation will be applied
in the positive or negative direction. To create on-manifold
adversaries we add the perturbation to the x-coordinate, and
to create off-manifold adversaries we add the perturbation
to the y-coordinate. We show accuracy as a function of ε for
each model for on/off-manifold adversaries in Figure 6.

Table 1. Adversarial Robustness and Hyperparameters (half
moons)

MODEL PROXY ACC. ADV. ACC. ε α ITER.

BNN 32.14% 39.87% 0.6 0.01 40
DE 39.67% 39.58% 0.6 0.01 40
MC DROP. 32.80% 36.90% 0.6 0.008 40
SWAG 35.67% 39.58% 0.6 0.01 40
DUQ 38.33% 30.56% 0.6 0.01 40
SNGP 30.09% 36.20% 0.6 0.01 40

Table 2. Adversarial Robustness and Hyperparameters (MNIST)

MODEL PROXY ACC. ADV. ACC. ε α ITER. L2

BNN 5.89% 90.20% 25 0.10 50 2.70
DE 3.50% 85.92% 25 0.10 50 10.92
MC DROP. 6.77% 90.39% 25 0.06 50 3.30
SWAG 8.47% 37.76% 25 0.12 50 12.41
DUQ 2.16% 43.53% 25 0.10 50 8.74
SNGP 3.45% 85.48% 25 0.07 50 4.18

In Figure 5 we show a visualization of a proxy model and
generated adversaries on a deep ensemble. Similar visual-

https://adversarial-ml-tutorial.org/adversarial_examples/
https://adversarial-ml-tutorial.org/adversarial_examples/
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izations can be generated for the other models, but we omit
them for brevity.

Figure 5. Illustration of a black-box attack on deep ensembles us-
ing a standard Neural Network as a proxy model. Top left: The
many decision boundaries in the deep ensemble (black) with the
proxy model’s approximating boundary (red). Top right: Deep
Ensemble epistemic uncertainty with the generated adversaries
plotted. Brightly colored points indicate that this adversary belong-
ing to its color was incorrectly classified as the other.

Figure 6. Adversarial accuracy (robustness) in the toy manifold
setting. Adversaries are generated by perturbing data on- or off-
manifold for increasing values of epsilon. Off-manifold pertur-
bations (left) elicit discrepancies in robustness similar to MNIST,
though results vary for models that fluctuate by random restart. All
models show consistent behavior for on-manifold perturbations
(right).

E. Halfmoons Uncertainties
We show here the aleatoric, epistemic, and KL uncertainties
for each model. DUQ has no notion of KL uncertainty
since its epistemic uncertainty is defined explicitly without
an ensemble of predictions. In SNGP we use the mean-
field approximation for producing the softmax probabilities
that feed into the aleatoric uncertainty, but we use samples
from the GP posterior to create an ensemble of predictions
to calculate epistemic and KL uncertainties. We take 10
samples as was specified in the original paper (Liu et al.,

2020).

(a) BNN Aleatoric (b) BNN Epistemic (c) BNN KL

(a) DE Aleatoric (b) DE Epistemic (c) DE KL

(a) MC Dropout Aleatoric (b) MC Dropout Epistemic (c) MC Dropout KL

(a) SWAG Aleatoric (b) SWAG Epistemic (c) SWAG KL

(a) SNGP Aleatoric (b) SNGP Epistemic (c) SNGP KL

(a) DUQ Aleatoric (b) DUQ Epistemic

F. Toy Manifold Uncertainties
We show here the aleatoric, epistemic, and KL uncertainties
for each model. DUQ has no notion of KL uncertainty
since its epistemic uncertainty is defined explicitly without
an ensemble of predictions. In SNGP we use the mean-
field approximation for producing the softmax probabilities
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that feed into the aleatoric uncertainty, but we use samples
from the GP posterior to create an ensemble of predictions
to calculate epistemic and KL uncertainties. We take 10
samples as was specified in the original paper (Liu et al.,
2020).

(a) BNN Aleatoric (b) BNN Epistemic (c) BNN KL

(a) DE Aleatoric (b) DE Epistemic (c) DE KL

(a) MC Dropout Aleatoric (b) MC Dropout Epistemic (c) MC Dropout KL

(a) SWAG Aleatoric (b) SWAG Epistemic (c) SWAG KL

(a) SNGP Aleatoric (b) SNGP Epistemic (c) SNGP KL

(a) DUQ Aleatoric (b) DUQ Epistemic


