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Abstract

While Bayesian neural networks have many
appealing characteristics, current priors do
not easily allow users to specify basic proper-
ties such as expected lengthscale or amplitude
variance. In this work, we introduce Poisson
Process Radial Basis Function Networks, a
novel prior that is able to encode amplitude
stationarity and input-dependent lengthscale.
We prove that our novel formulation allows for
a decoupled specification of these properties,
and that the estimated regression function
is consistent as the number of observations
tends to infinity. We demonstrate its behavior
on synthetic and real examples.

1 Introduction

Neural networks (NNs) are flexible universal function
approximators that have been applied with success
in many domains (LeCun et al., 2015). When data
are limited, Bayesian neural networks (BNNs) capture
function space uncertainty in a principled way (Hin-
ton and Neal, 1995) by placing priors over network
parameters. Unfortunately, priors in parameter space
often lead to unexpected behavior in function space;
standard BNN priors do not even allow us to encode
basic properties such as stationarity, lengthscale, or
signal variance (Lee, 2004).

This is in contrast to Gaussian processes (GPs), which
can easily encode these properties via the covariance
function. Still there are many situations in which we
may prefer to use BNNs rather than GPs: BNNs may
be computationally more scalable, especially at test
time, and having an explicit parametric expression
for posterior samples is convenient when additional

computation is needed on the function, such as Thomp-
son sampling (Thompson, 1933) or predictive entropy
search (Hernández-Lobato et al., 2014).

Therefore, a natural question arises: can we design
BNN priors that encode stationarity properties like
a GP while retaining the benefits of BNNs? Recent
works have started toward the path of creating BNNs
with certain functional properties. Some approaches
use sample-based methods to evaluate the mis-match
between the distribution over functions and a reference
distribution with desired properties (Flam-Shepherd
et al., 2017; Sun et al., 2019). Another approach ex-
plores different BNN architectures to recover equiv-
alent GP kernel combinations in the infinite width
limit (Pearce et al., 2019). In contrast, we directly
incorporate functional properties via an alternative
parametrization and well-designed prior over the net-
work weights, without sample-based optimizations nor
infinite width-limit assumptions.

In this work, we introduce Poisson-process Radial Basis
function Networks (PoRB-NETs), a Bayesian formula-
tion which places a Poisson process prior (Kingman,
1992) over the center parameters in a single-layer Radial
Basis Function Network (RBFN) (Lippmann, 1989).
The proposed formulation enables direct specification
of stationary amplitude variance and (non)-stationary
lengthscale. When the input-dependence of the length-
scale is unknown, we derive how it can be inferred. An
important technical contribution is that PoRB-NETs
ensure that amplitude variance and lengthscale are de-
coupled, that is, each can be specified independently of
the other (which does not occur in a naive application of
a Poisson process to determine neural network centers).
As with GPs, and unlike networks that force a specific
property (Anil et al., 2018), these prior properties will
also adjust given data.

Specifically, we make the following contributions: (i)
we introduce a novel, intuitive prior formulation for
RBFNs that encodes a priori distributional knowledge
in function space, decoupling notions of lengthscale and
signal variance in the same way as a GP; (ii) we prove
important theoretical properties such as consistency or
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Poisson Process Radial Basis Function Networks

stationarity; (iii) we provide an inference algorithm to
learn input-dependent lengthscale for a decoupled prior;
and (iv) we empirically demonstrate the potential of
our approach on synthetic and real examples.

2 Related Work

Early weight-space priors for BNNs. Most clas-
sic Bayesian formulations of NNs use priors for regu-
larization and model selection while minimizing the
amount of undesired functional prior (Lee, 2004; Müller
and Insua, 1998) (because of the lack of interpretability
in the parameters). MacKay (1992) proposes a hier-
archical prior1 combined with empirical Bayes. Lee
(2003) proposes an improper prior for neural networks,
which avoids the injection of artifact prior biases at
the cost of higher sensitivity to overfitting. Robinson
(2001) proposes priors to alleviate overparametrization
of NN models. Instead, we focus on obtaining certain
functional properties through prior specification.

Function-space priors for BNNs. Works such as
(Flam-Shepherd et al., 2017; Sun et al., 2019) match
BNN priors to specific GP priors or functional priors via
sampled-based approximations which rely on sampling
function values at a collection of input points x. These
approaches do not provide guarantees outside of the
sampled region, and even in the sampled region, their
enforcement of properties will be approximate. Neural
processes (Garnelo et al., 2018) use meta-learning to
identify functional properties that may be present in
new functions; they rely on having many prior examples
and do not allow the user to specify basic properties
directly. In contrast, our approach encodes functional
properties directly through prior design, without rely-
ing on function samples.

Bayesian formulations of RBFN models. Clos-
est to our work are Bayesian formulations of RBFNs.
Barber and Schottky (1998) and Yang (2005) consider
Bayesian RBFNs for a fixed number of hidden units; the
former propose Gaussian approximations to the poste-
rior distribution which, for fixed basis function widths,
is analytic in the parameters. In contrast, our work
infers the number of hidden units from data. Holmes
and Mallick (1998) and Andrieu et al. (2001) propose
full Bayesian formulations based on Poisson processes
(and a reversible jump Markov chain Monte Carlo in-
ference scheme). Their focus is on learning the number
of hidden nodes, but they neither prove functional or

1Hierarchical priors are convenient when there is a lack
of interpretability in the parameters. As the addition of
upper levels to the prior reduces the influence of the par-
ticular choice made at the top level, the resulting prior at
the bottom level (the original parameters) will be more
diffuse (Lee, 2004)

inferential properties of these models nor allow for the
easy incorporation of functional properties.

3 Background

Bayesian neural networks (BNNs). We consider
regressors of the form y = fw,b(x) + ε, where ε is
a noise variable and w and b refers to the weights
and biases of a neural network, respectively. In the
Bayesian setting, we assume some prior over the weights
and biases w, b ∼ p(w, b). One common choice is to
posit i.i.d. normal priors over each network parameter
w ∼ N

(
0, σ2

wI
)
and b ∼ N

(
0, σ2

b I
)
: we will refer to

such model as standard BNN (Neal, 1996).

Radial basis function networks (RBFNs). Ra-
dial Basis Function Networks (RBFNs) are classical
shallow neural networks that approximate arbitrary
nonlinear functions through a linear combination of
radial kernels (Powell, 1987; Györfi et al., 2002). They
are universal function approximators (Park and Sand-
berg, 1991) and are widely used across a wide vari-
ety of disciplines including numerical analysis, biol-
ogy, finance, and classification in spatio-temporal mod-
els (Dash et al., 2016). For input x ∈ RD, the output
of a single-hidden-layer RBFN of width K is given by:

f(x |θ) = b+
K∑
k=1

wk exp(−s2
k(x− ck)T (x− ck)), (1)

where s2
k ∈ R and ck ∈ RD are the scale and center

parameters, respectively, wk ∈ R are the hidden-to-
output weights, and b ∈ R is the bias parameter. Each
k-th hidden unit can be interpreted as a local receptor
centered at ck, with radius of influence sk, and relative
importance wk Györfi et al. (2002).

Poisson process. A Poisson process (Kingman,
1992) on RD is defined by a positive real-valued in-
tensity function λ(c). For any set C ⊂ RD, the number
of points in C follows a Poisson distribution with pa-
rameter

∫
C λ(c)dc. The process is called inhomogenous

if λ(c) is not a constant function. We use a Poisson
process as a prior on the center parameters of a radial
basis function network.

Gaussian Cox process. A Bayesian model consist-
ing of a Poisson process likelihood and a Gaussian
process prior g(c) on the intensity function λ(c) is
called a Gaussian Cox Process (Møller et al., 1998).
Adams et al. (2009) present an extension to this model,
called the Sigmoidal Gaussian Cox Process, that passes
the Gaussian process through a scaled sigmoid func-
tion. We will use this process to learn input-dependent
wiggliness (lengthscale) of the function by adapting the
number of hidden units in the RBFN network.
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4 Poisson-process radial basis
function networks (PoRB-NET)

In this section, we introduce Poisson-process Radial
Basis function Networks (PoRB-NETs). This model
achieves two essential desiderata for a NN prior. First,
it enables the user to encode the fundamental basic
properties of smoothness (i.e., lengthscale), amplitude
(i.e., signal variance), and (non)-stationarity. Second,
PoRB-NETs adapt the complexity of the network based
on the inputs. For example, if the data suggests that
the function needs to be less smooth in a certain input
region, then that data will override the prior. Im-
portantly, PoRB-NET fulfills these desiderata while
retaining appealing computational properties of NN-
based models such as fast computation at test time
and explicit, parametric samples.

Generative model. As in a standard BNN, we as-
sume a Gaussian likelihood centered on the network
output and independent Gaussian priors on the weight
and bias parameters. Unique to the novel PoRB-NET
formulation is a Poisson process prior over the set of
center parameters and a deterministic dependence of
the scale parameters on the Poisson process intensity:

c |λ ∼ exp
(
−
∫
C
λ(c)dc

) K∏
k=1

λ(ck) (2)

s2
k |λ, c = s2

0λ
2(ck) (3)

wk ∼ N
(

0,
√
s2

0/πσ
2
wI

)
(4)

b ∼ N (0, σ̃2
b ) (5)

yn |xn,θ ∼ N (f(xn;θ), σ2
x), (6)

where f(xn;θ) is given by Eq. (1), θ denotes the set
of RBFN parameters including the centers, weights
and bias; λ : C → R+ is the (possibly) inhomogeneous
Poisson process intensity; and s2

0 is a hyperparameter
that defines the scale of the RBF basis function when
the intensity is one.

Different priors could be considered for the intensity
function λ. The simplest case is to assume a constant
intensity defined over a bounded region C, i.e., with an
abuse of notation λ(c) = λ and λ2 ∼ Gamma(αλ, βλ).
Under this specific formulation, we prove in Section
5 that the posterior regression function is consistent
as the number of observations tends to infinity and
we prove in Section 6 that the amplitude variance
is stationary as the size of the region C tends to in-
finity; such amplitude variance only depends on the
variance of the hidden-to-output weights and output
bias V[f(x)] ≈ σ2

b + σ2
w. We further show that the

intensity λ controls the lengthscale.

Hierarchical prior for unknown lengthscale. In
the case when the input-dependence of the lengthscale
is unknown, we further model the intensity function
λ(c) of the Poisson process by a sigmoidal Gaussian
Cox process Adams et al. (2009):

h ∼ GP(0, C(·, ·)) (7)
λ∗ ∼ Gamma(αλ, βλ) (8)

λ(c) = λ∗sigmoid(h(c)), (9)

where λ∗ is an upper bound on the intensity. In Sec-
tion 9, we discuss alternative link functions and why
the PoRB-NET formulation is a natural way to satisfy
our desiderata.

Contrast to BNNs with i.i.d. Gaussian weight-
space priors. In Sections 5 and 6, we prove that
the proposed formulation has the desired properties
described above. However, before doing so, we briefly
emphasize that the i.i.d. Gaussian weight-space prior
that is commonly used with BNNs does not enjoy these
properties. To see why, let us consider a standard
feed-forward NN layer with a D = 1 dimensional input
and an RBF activation function. We can rewrite the
hidden units as σ(wkx + bk) = σ(wk(x − (−bk/wk))).
This means that the corresponding center of the k-th
hidden unit is ck = −bk/wk. If bk and wk are assigned
independent Gaussian priors with zero mean, as is
standard in a BNN, then the center parameter has
a zero-mean Cauchy distribution.2 This is a critical
observation that motivates our work: A standard BNN
concentrates the center of hidden units near the origin,
resulting in nonstationary priors in function space.

Figure 1: PoRB-NET can capture amplitude sta-
tionarity. Standard BNN priors suffer from amplitude-
nonstationarity while PoRB-NETs fix this issue. We
show the posterior predictive for both models on a
simple 1-dimensional problem.

2If bk and wk have non-zero means, the ratio distribution
for the corresponding center parameter ck has undefined
mean and non-closed form median (Cedilnik et al., 2004).
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5 Consistency of PoRB-NET
predictions

In this section, we study consistency of predictions.
That is, as the number of observations goes to infinity,
the posterior predictive should concentrate around the
correct function. When dealing with priors that can
produce an unbounded number of parameters, consis-
tency is a basic but important property. To our knowl-
edge, we are the first to provide consistency proofs for
Poisson process networks (no consistency guarantees
were derived by Andrieu et al. (2001)).

Formally, let g0(x) be the true regression function,
and ĝn(x) the estimated regression function ĝn(x) =
Ef̂n [Y | X], where f̂n is the estimated density in
parameter-space based on n observations. The esti-
mator ĝn(x) is said to be consistent with respect to the
true regression function g0(x) if, as n tends to infinity:∫

(ĝn(x)− g0(x))2 dx
p−→ 0. (10)

Doob’s theorem shows that Bayesian models are con-
sistent as long as the prior places positive mass on
the true parameter Doob (1949); Miller (2018). For
finite dimensional parameter spaces, one can ensure
consistency by simply restricting the set of zero prior
probability to have small or zero measure. Unfortu-
nately, in infinite dimensional parameter spaces, this
set might be very large Freedman (1963); Wainwright
(2019). In our case where functions correspond to un-
countably infinite sets of parameters, it is impossible to
restrict this set of inconsistency to have measure zero.

Instead, in the following we aim to show a strong form
of consistency called Hellinger consistency. We follow
the approach of Lee (2000), who shows consistency for
regular BNNs with normal priors on the parameters.
Formally, let (x1, y1), . . . , (xn, yn) ∼ f0 be the observed
data drawn from the ground truth density f0, and let
us define the Hellinger distance between joint densities
f and f0 over (X,Y ) as:

DH(f, f0) =

√∫ ∫ (√
f(x, y)−

√
f0(x, y)

)2
dx dy.

The posterior is said to be consistent over Hellinger
neighborhoods if for all ε > 0,

p({f : DH(f, f0) ≤ ε}) p−→ 1.

Lee (2000) shows that Hellinger consistency of joint
density functions implies frequentist consistency as
described in Eq. (10).
Theorem 1. (Consistency of PoRB-NETs) A radial
basis function network with a homogeneous Poisson
process prior on the location of hidden units is Hellinger
consistent as the number of observations goes to infinity.

Proof. Leveraging the results from Lee (2000), we use
bracketing entropy from empirical process theory to
bound the posterior probability outside Hellinger heigh-
borhoods. We need to check that our model satisfies
two key conditions. Informally, the first condition is
that the prior probability placed on parameters larger
in absolute value than a bound Bn, where Bn is allowed
to grow with the data, is asymptotically bounded above
by an exponential term exp(−nr), for some r > 0. The
second condition is that the prior probability placed on
KL neighborhoods of the ground truth density function
f0 is asymptotically bounded below by an exponential
term exp(−nν), for some ν > 0. The full proof can be
found in the Appendix.

Note that consistency of predictions does not imply
concentration of the posterior in weight space (Izmailov
et al., 2019); this distinction happens because radial
basis function networks, like other deep neural models,
are not identifiable (Watanabe, 2007).

6 Amplitude, Lengthscale, and
Stationarity

We now return to the core desiderata: we wish to be
able to specify priors about the function’s lengthscale
and amplitude variance in a decoupled fashion. We
want the same ease in specification as with an RBF
kernel for a GP, where one can specify a lengthcale
and a scaling constant on the covariance independently.
We also want to specify whether these properties are
stationary.

To do so, we first derive the covariance of the proposed
PoRB-NET model. We consider the covariance func-
tion between two inputs x1 and x2, which we use to
illustrate the specific form of non-stationarity exhib-
ited by our model. The full derivations supporting this
section are available in the Appendix.

Neal (1996) showed that the covariance function for a
single-layer BNN with a fixed number of hidden units
ρ(x; θ1), . . . , ρ(x; θK) and independent N (0, σ2

w) and
N (0, σ2

b ) priors on the hidden-to-output weights and
output bias takes the following general form:

Cov(f(x1), f(x2)) = σ2
b + σ2

wKEθ [ρ(x1; θ)ρ(x2; θ)] .

In the same spirit, we derive that the covariance func-
tion for a BNN (including RBFN) with a distribution
over the number of hidden units takes an analogous
form, replacing the number of hidden units K with the
expected number of hidden units E[K]:

Cov(f(x1), f(x2)) = σ2
b + σ2

wE [K]Eθ [ρ(x1; θ)ρ(x2; θ)]︸ ︷︷ ︸
:=U(x1,x2)

.
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In the PoRB-NET model, θ = {s, c},3 ρ(x; θ) = φ(s(x−
c)) where φ(x) = exp(−x2), and E [K] =

∫
C λ(c) dc.

The key term is the function U(x1, x2), which depends
on the functional form of the hidden units and the prior
over its parameters θ. In the Appendix, we derive the
general expression of U(x1, x2) for a non-homogeneous
Poisson process, which has a closed-form expression in
the case of a homogeneous Poisson process. Below, we
describe how, in the case of a homogeneous Poisson
process prior, this form corresponds to an asymptoti-
cally stationary covariance when the bounded region C
increases to infinity. Finally, we prove that the form of
the generative model proposed in Section 4 separates
notions of amplitude and lengthscale for any arbitrary
choice of intensity function.

A homogeneous PP yields stationarity. In the
case of constant intensity λ(c) = λ defined over C =
[C0, C1], the expression of U(x1, x2) can be derived in
closed form:

U(x1, x2) = λ

Λ

√
π

s2 exp
{
−s2

(
x1 − x2

2

)2
}

[
Φ((C1 − xm)

√
2s2)− Φ((C0 − xm)

√
2s2λ)

]
, (11)

where Φ is the cumulative distribution function of a
standard Gaussian and xm = (x1 + x2)/2 is the mid-
point of the inputs. As the bounded region C increases,
the second term approaches one, and so the covariance
of a PoRB-NET approaches a squared exponential ker-
nel with inverse length-scale s2 and amplitude variance
σ2
wλ
√
π/s2:

Cov (f(x1), f(x2)) ≈

σ2
b + σ2

wλ

√
π

s2 exp
{
−s2

(
x1 − x2

2

)2
}
, (12)

which is stationary since it only depends on the squared
difference between x1 and x2. Notice that this result
does not rely on an infinite width limit of the net-
work, but only on the Poisson process region [C0, C1]
being relatively large compared to the midpoint xm.
In practice, [C0, C1] can be set larger than the range
of observed x values to achieve covariance stationar-
ity over the input domain. Figure 2 shows that over
the region [−5, 5] the analytical covariance from Equa-
tion (11) is fairly constant with only slight drops near
the boundaries. In contrast, the covariance function
of a radial basis function network without a Poisson
process prior is not even approximately stationary. For
a Gaussian prior on the centers ck ∼ N (0, σ2

c ) and a

3We drop subscript k for notation simplicity.

fixed scale s2 = 1/(2σ2
s), Williams (1997) shows that:

U(x1, x2) ∝ exp
(
− (x1 − x2)2

2(2σ2
s + σ4

s/σ
2
c )

)
︸ ︷︷ ︸

Stationary

exp
(
− x2

1 + x2
2

2(2σ2
c + σ2

s)

)
︸ ︷︷ ︸

Nonstationary

,

and Figure 2 shows that, unlike our approach, a stan-
dard prior is highly non-stationary.

Figure 2: PoRB-NET is able to express signal
variance stationarity whereas RBFN cannot.
The plotted lines correspond to Cov(x− h/2, x+ h/2)
for different gap values h. We set the weight variance
to be 1, s2 = 1, and the homogeneous PP to be defined
over C = [−5, 5] with 10 expected hidden units.

Decoupling of amplitude and lengthscale. For
the Poisson process intensity λ to solely play the role of
lengthscale, the amplitude variance should not depend
on λ. But for a fixed RBF scale parameter s2, a higher
intensity implies a higher number of basis functions,
which implies a higher amplitude variance as the basis
functions add up. Mathematically, the impact of the
intensity can be seen in Equation (11). If we instead
allow the scale parameters s2 to increase as a function
of the intensity, thus making the RBF basis functions
more narrow, we can possibly counteract the increase in
the number of basis functions. From the approximate
covariance in Equation (12), we can see that setting
s2 = λ2 will achieve this goal. In our generative model,
we set s2 = s2

0λ
2 by introducing the hyperparameter

s2
0, which is useful in practice for adjusting the scale
parameters independently of the network width.

By setting the RBF scale parameters as a function
of the intensity, the approximate covariance in Equa-
tion 12 becomes:

Cov (f(x1), f(x2)) ≈ σ2
b + σ̃2

w exp
{
−s2

0λ
2
(
x1 − x2

2

)2
}
,

(13)

where we set σ̃2
w =

√
π/s2

0 σ2
w for notational conve-

nience. Therefore, not only does the intensity no longer
impacts the amplitude variance σ̃2

w but it clearly plays
the role of an inverse lengthscale in the squared expo-
nential kernel.
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A non-homogeneous PP yields non-stationarity.
When the intensity is a non-constant function λ(c),
then the derivation yielding Equation (11) does not
hold (see corresponding expression in the Appendix).
However, we find that setting the scale parameter of
each hidden unit based on the intensity evaluated at
its center parameter yields approximate variance sta-
tionarity empirically, while allowing the intensity to
control an input dependent lengthscale. That is, we
set the scale of hidden unit k to s2

k = s2
0λ(ck)2.

7 Inference
Our objective is to infer the posterior distribution over
functions p(f |y,x), which is equivalent to inferring
the posterior distribution over the weights p(θ |y,x).
Given the posterior distribution, we model predictions
for new observations and their associated uncertainties
through the posterior predictive distribution:

p(y?|x?,D) =
∫
p(y?|x?,w)p(w|D)dw. (14)

The PoRB-NET prior defines a function over an un-
bounded region. In practice, because the radial basis
function has a finite region of effect, we only need to
perform posterior inference in regions near the data; in
regions far from the data, we may simply sample cen-
ters from the prior. The size of the region to consider
will depend on the widths of the radial basis functions.

Once this region is defined, we perform inference with a
Markov-Chain Monte Carlo (MCMC) algorithm. Each
iteration can be broken down into three steps. Step 1
updates all network parameters θ, i.e.

(
{wk, ck}Kk=1, b

)
,

conditional on the network width K and intensity func-
tion λ. We update all network parameters at once
with Hamiltonian Monte-Carlo (HMC) (Neal, 1996).
Step 2 updates the network width K conditional on the
network parameters and intensity function via birth
and death Metropolis-Hastings steps. Finally in Step 3,
we compute a point-estimate of the Poisson process
intensity by running an HMC subroutine and averaging
multiple samples of the posterior distribution.

Step 1: Update network parameters θ. The full
conditional distribution of the network parameters θ
given the width of the networkK and intensity function
λ can be written as:

p(θ |y,x,K, λ) ∝
(

N∏
n=1
N (yn; f(xn;θ)

)
N (b; 0, σ2

b )(
K∏
k=1
N (wk; 0, σ2

w) λ(ck)
)
. (15)

We resort to HMC, which requires tuning L leap-frog
steps of size ε, to propose updates from this full condi-

tional distribution. Notice that we do not have a para-
metric expression for the intensity λ, i.e., we cannot
directly evaluate λ(ck); instead, we approximate this
quantity by λ̂(ck) = Ep(h|y,x,θ) [λ?φ(h(ck))] in Step 3.

Step 2: Update network width K. We adapt
the network width via Metropolis-Hastings (MH) steps.
We randomly sample a deletion or an insertion of a
hidden unit (in practice, we do this multiple times per
iteration) with equal probability.

For a birth step, we sample the weight and scale pa-
rameters from their prior distributions and the center
parameter from a Gaussian process conditioned on all
of the center parameters, including auxiliary “thinned”
center parameters introduced in Step 3. In the case
of a fixed intensity function, we propose the center
parameter from λ(c)/

∫
λ(c) dc. For the death step, we

propose to delete a hidden unit at random by uniformly
selecting among the existing hidden units.

Therefore, we can write the hidden unit deletion and
insertion proposal densities as follows:

qdel(K → K − 1) =1
2

1
K

qins(K → K + 1) =1
2

1
µ(T )N (w′; 0, σ2

w)N (s′; 1, σ2
s)·

GP(h′ | hM+K , c
′, {ck}, {c̃m})

and acceptance probabilities are:

adel =
∏N
n=1N (yn; f(xn; {θi−1})∏N

n=1N (yn; f(xn; {θi})λ∗σ(h(c′))
K

µ(T )

ains =
∏N
n=1N (yn; f(xn; {θi+1})λ∗σ(h(c′))∏N

n=1N (yn; f(xn; {θi})
µ(T )
K + 1

where {θK−1} indicates the parameters for a network
with K − 1 hidden units and {θK+1} indicates the
parameters for a network with K + 1 hidden units.

Step 3: Update Poisson process intensity λ. As
stated earlier, the intensity λ has no parametric ex-
pression, and cannot be directly evaluated point-wise.
However, under the Sigmoid Gaussian Cox Process
prior, the intensity λ(c) = λ?φ(h(c)) only depends on
the random variable h. Thus, we can build a Monte
Carlo point-estimate λ̂ by averaging multiple samples
from the full conditional posterior of h. That is,

λ̂(c) ≈ 1
S

∑
λ?φ(h(s)(c)), (16)

where h(s) ∼ p(h|y,x,θ).4 We adopt an inference
procedure similar to (Adams and Stegle, 2008) based

4Note that λ? is just a hyper-parameter indicating an
upper bound for the intensity.
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Figure 3: PoRB-NET allows for easy specification of lengthscale and signal variance like a GP. We
show prior samples from PoRB-NET with homogeneous intensity, GP prior (Williams and Rasmussen, 2006)
B-RBFN (Andrieu et al., 2001), and standard BNN (Neal, 1996). First row: reference prior; second row: lower
lengthscale, same amplitude variance if possible; third row: higher amplitude variance, same lengthscale if possible.

on HMC, with the two crucial differences that the
centers are unobserved (not fixed) in our case, and that
the posterior of h given the centers is not independent
of the observations. We add M “thinned“ auxiliary
variables to make computation tractable. We then
proceed as follows: i) sample the number of thinned
events using death and birth steps, and sample the
location of such events using perturbative proposals;
ii) sample from the GP posterior p(h|y,x, c,θ).

8 Results
In this Section, we empirically demonstrate desirable
properties of PoRB-NET. In particular, PoRB-NET
allows for (a) easy specification of lengthscale and am-
plitude variance information (analogous to a GP), and
(b) learning of input-dependent lengthscale. We present
synthetic examples and results on three real-case sce-
narios. In the Appendix, we report additional empirical
results that demonstrate the ability of PoRB-NET to
adapt the network architecture based on the data, and
to control the uncertainty when extrapolating.

8.1 Synthetic examples

PoRB-NET allows for easy specification of sta-
tionary lengthscale and signal variance. Fig-
ure 3 shows function samples from different prior mod-

4 2 0 2 4

2

1

0

1

2

Posterior functions
train
test

4 2 0 2 4

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

2.50
Posterior intensity

posterior mean
truth
90% quantile

Figure 4: PoRB-NET is able to learn input-
dependent lengthscale information. The ground
truth synthetic example has been generated by sam-
pling from the PoRB-NET prior.

els; we decrease the lengthscale from left to right. We
plot 50 samples in red, and compute the average vari-
ance across the input region averaging out 10,000 func-
tion samples. Like a GP, the amplitude variance of
PoRB-NET (shown as dotted lines) is constant over
the input space and does not depend on the length-
scale. On the other hand, the amplitude variance of
B-RBFN (Andrieu et al., 2001), which effectively as-
sumes a homogeneous Poisson process prior on the
center parameters, varies over the input space and does
depend on the lengthscale. The last column shows that
for a standard BNN the amplitude variance and length-
scale are concentrated near the origin (within each
panel) and that the variance increases as we decrease
the lengthscale (from 1st to 2nd row).
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PoRB-NET can capture functions with input-
dependent lengthscale. Figure 4 illustrates the ca-
pacity of PoRB-NET to infer input-dependent length-
scale information. Here the true function is a sample
from the PoRB-NET model. The right panel shows
that we are able to infer the true intensity function from
the noisy (x,y) observations. The left panel shows the
inferred posterior predictive function.

8.2 Real data

In this section, we show results for PoRB-NET in three
different real-world datasets: motorcycle, mimic, and
CBOE volatility index. All these datasets correspond
to non-stationary timeseries (see the Appendix for more
information). Figure 5 compares the posterior predic-
tive densities of PoRB-NET against BNN trained with
HMC. While PoRB-NET and BNN are matched to
have the same number of expected prior upcrossings
of y=0 (as a proxy for the inverse lengthscale), the
distribution of upcrossings in the posterior is different.
This results in the undesired visibly large fluctuations
exhibited by the BNN for the motorcycle and mimic
datasets, yielding worse test log likelihood and test
root mean square error, as shown in Tables 1 and 2.
Note that HMC is a gold standard for posterior infer-
ence; the fact that the standard BNN lacks desireable
properties under HMC demonstrates that its failings
come from the model/prior, not the inference. In the
Appendix, we also include further baselines, root mean

square errors, held-out log likelihood values, as well
as the corresponding inferred intensity functions for
PoRB-NET. Interestingly, the learned intensity picks
whenever the function exhibit faster variations (see the
corresponding figure with the learned intensity function
in the Appendix).

motorcycle finance mimic
BNN (HMC) -0.58 ± 0.26 0.55 ± 0.67 -0.52 ± 0.29
PORBNET -0.03 ± 0.14 0.15 ± 1.02 0.04 ± 0.33

Table 1: Test Log Likelihood (LLH).

motorcycle finance mimic
BNN (HMC) 0.25 ± 0.02 0.09 ± 0.02 0.14 ± 0.06
PORBNET 0.22 ± 0.02 0.1 ± 0.03 0.18 ± 0.06

Table 2: Test Root Mean Square Error (RMSE)

9 Discussion
In this work, we introduced PoRB-NETs, which main-
tain desirable characteristics of working with neural
network models while providing the ability of specifying
basic properties such as lengthscale, amplitude vari-
ance, and stationarity in a decoupled manner. While
we provide a principled inference scheme, we empha-
size that our primary goal was to develop a model that
exhibited the appropriate properties; given this, future
work can now consider questions of scalable inference.

Figure 5: PoRB-NET is able to capture non-stationary patterns in real scenarios, adapting the
lengthscale locally as needed. Posterior predictive of PoRB-NET in three real datasets, in comparison to a
standard BNN trained with HMC. Priors of both models have been matched in the a priori number of upcrossings;
BNN posterior exhibits undesired large fluctuations. Blue points are train set and red points are test set.
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While we put priors on the weight space, an important
element of our work was reparameterizing the standard
BNN formulation to have the center-and-scale form
of Eq. (1). Since the centers lie in the same space as
the data, this parameterization makes it much more
natural to think about properties such as stationarity,
which depend on the data. Additionally, it makes
possible to put a Poisson process prior over the hidden
units, which facilitates the decoupling of lengthscale
and signal variance information. We focused on radial
basis activations because they have a limited region of
effect, unlike other popular activations such as Tanh
or ReLu. Exploring how to get desirable properties for
those activations seems challenging, and remains an
area for future exploration. That said, we emphasize
that RBFNs are commonly used in many practical
applications, as surveyed in Dash et al. (2016).

Finally, all of our work was developed in the context of
single-layer networks. From a theoretical perspective,
this is not an overly restrictive assumption, as single
layer networks are still universal function approxima-
tors Park and Sandberg (1991); moreover, if prior to
our work, we could not get desired properties from
single-layer networks, it seemed premature to consider
the multi-layer case. The multi-layer case is an interest-
ing direction for future work, and could perhaps draw
on work related to the theoretical properties of deep
GPs Damianou and Lawrence (2012).

10 Conclusion
This work presents a novel Bayesian prior for neural net-
works called PoRB-NET that allows for easy encoding
of essential basic properties such as lengthscale, signal
variance, and stationarity in a decoupled fashion. Given
the popularity of neural networks and the need for un-
certainty quantification in them, understanding prior
assumptions—which will govern how we will quantify
uncertainty—is essential. If prior assumptions are not
well understood and properly specified, the Bayesian
framework makes little sense: the posteriors we find
may not be ones that we expect or want. Our work
provides an important step toward specifying Bayesian
NN priors with desired basic functional properties.
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1 Appendix: Covariance

In this Section, we derive the covariance function of PoRB-NET. We consider one dimensional inputs for simplicity.
First, we show that our model has zero-mean prior. Note that b, {(wk, ck)}Kk=1, and K are all random variables,
and the scales s2

k are fixed as a function of the intensity, e.g., s2
k = s2

0λ(ck)2. Let φ denote an arbitrary activation
function, e.g., φ(x) = exp(−x).

E[f(x)] = E

[
b+

K∑
k=1

wkφ(sk(x− ck))
]

(17)

= E[b] + E

[
K∑
k=1

wkφ(sk(x− ck))
]

(18)

= E

[
E

[
K∑
k=1

whφ(sk(x− ck)) | K = K0

]]
(19)

=
∞∑

K0=0
Pr[K = K0]E

[
K∑
k=1

wkφ(sk(x− ck)) | K = K0

]
(20)

=
∞∑

K0=0
Pr[K = K0]

K0∑
k=1

E [wkφ(sk(x− ck)) | K = K0] (21)

=
∞∑

K0=0
Pr[K = K0]

K0∑
k=1

E [wkφ(sk(x− ck))] (22)

=
∞∑

K0=0
Pr[K = K0]K0E [wkφ(sk(x− ck))] (23)

= E [wkφ(sk(x− ck))]
∞∑

K0=0
Pr[K = K0]K0 (24)

= E [wk]︸ ︷︷ ︸
0

E [φ(sk(x− ck))]E[K0] (25)

= 0 (26)

In Equation (22), we drop the condition K = K0 since, conditional on the network width K being fixed, the
weights {wk} are independently normally distributed and the centers {ck} are independently distributed according
to the normalized intensity λ(c)/Λ where Λ =

∫
C λ(c)dc, so they do not depend on the actual value of the network

width.

Next, we consider the covariance:

Cov [f(x1), f(x2)] = E [f(x1)f(x2)]

= E

[(
b+

K∑
k=1

wkφ(sk(x1 − ck))
)(

b+
K∑
k=1

wkφ(sk(x2 − ck))
)]

(27)

= E

[
E

[(
b+

K∑
k=1

wkφ(sk(x1 − ck))
)(

b+
K∑
k=1

wkφ(sk(x2 − ck)z)
)
| K = K0

]]

= E

[
E

[
b2 +

K∑
k1=1

K∑
k2=1

wk1wk2φ(sk1(x1 − ck1))φ(sk2(x2 − ck2)) | K = K0

]]

= σ2
b + E

[
E

[
K∑
k=1

w2
kφ(sk(x1 − ck))φ(sk(x2 − ck)) | K = K0

]]

+ E

[
E

[
2

K∑
k1=1

K∑
k2=k1+1

wk1wk2φ(sk1(x1 − ck1))φ(sk2(x2 − ck2)) | K = K0

]]



Poisson Process Radial Basis Function Networks

= σ2
b + E

K0∑
k=1

E
[
w2
k

]︸ ︷︷ ︸
σ̃2
w

E [φ(sk(x1 − ck))φ(sk(x2 − ck)) | K = K0]


+ E

2
K∑

k1=1

K∑
k2=k1+1

E [wk1 ]︸ ︷︷ ︸
0

E [wk2 ]︸ ︷︷ ︸
0

E [φ(sk1(x1 − ck1))φ(sk2(x2 − ck2)) | K = K0]


= σ2

b + E

[
K0∑
k=1

σ̃2
wE [φ(sk(x1 − ck))φ(sk(x2 − ck)) | K = K0]

]
(28)

= σ2
b + E

[
K0∑
k=1

σ̃2
wE [φ(sk(x1 − ck))φ(sk(x2 − ck))]

]
(29)

= σ2
b + E

[
K0σ̃

2
wE [φ(s(x1 − c))φ(s(x2 − c))]

]
(30)

= σ2
b + σ̃2

wE [K0]E [φ(s(x1 − c))φ(s(x2 − c))] , (31)

where σ̃2
w =

√
s2

0/πσ
2
w is the prior variance for the weights. In Equation (29), as in Equation (22), we drop

the condition K = K0 but remember that the expectation is with respect to the weight and center parameters
conditional on a fixed network width. Also note that going from Equation (22) to Equation (30) relies on the
fact that the priors on the scales {sk} and centers {ck} are i.i.d priors; we drop the subindex k from now on for
notational simplicity.

To actually evaluate the covariance, we need to evaluate the term E [φ(s(x1 − c))φ(s(x2 − c))]. We next consider
two cases. Case 1 is a homogeneous Poisson process prior over c and Case 2 is an inhomogeneous Poisson process
prior over c. Note that in both cases, the Poisson process prior over c is unconditional on the network width.
Conditioned on the network width, as in the expectation that we are trying to evaluate, Case 1 is a uniform
distribution over C and Case 2 has PDF λ(c)/Λ.

Case 1: Homogeneous Poisson Process

First we consider the case where the intensity is fixed, i.e., λ(c) = λ. Then we have:

E [φ(s(x1 − c))φ(s(x2 − c))] (32)

=
∫
C
φ(s(x1 − c))φ(s(x2 − c))

λ

Λ dc (33)

=
∫
C

exp
{
−1

2(s(x1 − c))2
}

exp
{
−1

2(s(x1 − c))2
}
λ

Λ dc (34)

=
∫
C

exp
{
−1

2s
2[(x1 − c)2 + (x2 − c)2]

}
λ

Λ dc (35)

=
∫
C

exp
{
−s2

[(
x1 − x2

2

)2
+
(
x1 + x2

2 − c
)2
]}

λ

Λ dc (36)

=
∫
C

exp
{
−s2

(
x1 − x2

2

)2
}

exp
{
−s2

[(
x1 + x2

2 − c
)2
]}

λ

Λ dc (37)

=
∫
C

exp
{
−s2

0λ
2
(
x1 − x2

2

)2
}

exp
{
−s2

0λ
2

[(
x1 + x2

2 − c
)2
]}

λ

Λ dc (38)

= exp
{
−s2

0λ
2
(
x1 − x2

2

)2
}

︸ ︷︷ ︸
SE kernel

∫
C

exp
{
−s2

0λ
2

[(
x1 + x2

2 − c
)2
]}

λ

Λ dc︸ ︷︷ ︸
uniform mixture of Gaussians

(39)

In Equation (38), we plug in s2 = s2
0λ(c)2 = s2

0λ
2. In Equation (39), we point out that we can write this term as

the product of an square exponential kernel and a mixture of Gaussians. Considering only the uniform mixture of
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Gaussian terms, we have:

∫
C

exp
{
−s2

0λ
2

[(
x1 + x2

2 − c
)2
]}

λ

Λ dc = λ

Λ

∫
C

exp
{
−s2

0λ
2

[(
x1 + x2

2 − c
)2
]}

dc (40)

= λ

Λ

∫ C1

C0

exp
{
− 1

2ψ2

[
(xm − c)2

]}
dc (41)

= λ

Λψ
√

2π
∫ (C1−xm)ψ

(C0−xm)/ψ

1√
2π

exp
{
−1

2u
2
}
du (42)

= λ

Λ
1√

2s2
0λ

2

√
2π [Φ((C1 − xm)/ψ)− Φ((C1 − xm)/ψ)] (43)

= 1
Λ

√
π

s2
0

[
Φ((C1 − xm)

√
2s0λ)− Φ((C0 − xm)

√
2s0λ)

]
(44)

where Φ is the error function for a standard Gaussian, and C = [C0, C1] is the region where the Poisson Process
intensity is defined. In Equation (41) we define ψ2 := 1/(2s2

0λ
2), and xm := (x1 + x2)/2 as the midpoint. In

Equation (42) we use the change of variables u = (c − xm)/σ. Plugging Equation (44) in Equation (39), and
Equation (39) into Equation (31), we have:

Cov [f(x1), f(x2)] = σ2
b + σ2

w exp
{
−s2

0λ
2
(
x1 − x2

2

)2
}[

Φ((C1 − xm)
√

2s0λ)− Φ((C0 − xm)
√

2s0λ)
]
. (45)

This gives a closed form representation for the covariance (to the extent that the error function is closed form).
If we further assume that C0 and C1 are large in absolute value relative to the midpoint xm, in other words,
that the Poisson Process is defined over a larger region than the data, then the difference in error functions is
approximately one (i.e., the integral over the tails of the Gaussian goes to zero) and the covariance becomes:

Cov [f(x1), f(x2)] ≈ σ2
b + σ2

w exp
{
−s2

0λ
2
(
x1 − x2

2

)2
}
. (46)

Finally, notice that the variance depends only on the weight and bias variance parameters:

V [f(x)] ≈ σ2
b + σ2

w (47)

Case 2: Inhomogeneous Poisson Process

Now consider an inhomogenous Poisson process prior on the center parameters with an arbitrary intensity function
λ(c). We use the heuristic s2

k = s2
0λ(ck). Figure 6 shows different function samples for a single fixed intensity

sampled from the prior. On the left, the s2
k is constant for each unit while on the right s2

k = s2
0λ(ck). The top

row shows the true intensity, the middle row shows the amplitude/function variance, and the bottom row shows a
histogram of the number of function upcrossings of zero, which can be thought of as a measurement of lengthscale.
We see that setting the scales based on the intensity results in approximately constant function variance and
increased number of upcrossings.
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(a) Constant s2
k (b) s2

k = s2
0λ(ck)2, where for s2

0 = 2π.

Figure 6: Setting s2
k = s2

0λ(ck)2 results in approximately stationary amplitude variance.
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2 Appendix: Proof for consistency

We are interested in the posterior behavior of our model as the number of observations n→∞. Specifically, we
want to show that our estimated regression function ĝn(x) = E[Y | X = x] is asymptotically consistent for the
true regression function g0(x), i.e.: ∫

(ĝn(x)− g0(x))2dx
p−→ 0

To do this, we first show that the posterior probability assigned to all joint distribution functions f(X,Y ) in any
Hellinger neighborhood of the true joint distribution function f0(X,Y ) approaches one as n→∞. That is, if
Aε = {f | DH(f, f0) ≤ ε} defines a Hellinger neighborhood of the true distribution function, then ∀ε > 0:

p(Aε | (X1, Y1), . . . , (Xn, Yn)) p−→ 1

We assume that the marginal distribution of X is uniform on [0, 1] (i.e., f(X) = 1), so the joint distribution
f(X,Y ) and the conditional distribution f(Y | X) are the same, since f(X,Y ) = f(Y | X)f(X) = f(Y | X). The
estimated regression function is defined as ĝn(x) = Ef̂n [Y | X = x], where f̂n is given by the posterior predictive
density:

f̂n(X,Y ) =
∫
f(X,Y ) dP (f | (X1, Y1)), . . . , (Xn, Yn)).

After introducing a few definitions and notation, Section 2.1 discusses the necessary conditions on the prior
required for any radial basis function network to achieve consistency, with many results taken or adapted from
(Lee, 2000). Section 2.2 checks that these necessary conditions are met by PoRB-NET with a homogeneous
Poisson process prior on the number of hidden units. We first show asymptotic consistency when the number of
hidden units is allowed to grow with the data. This gives a sequence of models known as a sieve. We then extend
this to the case when the number of hidden units is inferred.

Definitions and notation

We begin by specifying our notation and definitions:

• D is the input dimension.

• K is the network width.

• I, I(w) and I(c) are the number of total parameters, weight parameters, and center parameters, respectively.
I = I(w) + I(c) + 1.

• I, I(w), I(c), and I(λ2) are the index set of total parameters, weight parameters, center parameters, and
intensity respectively (e.g., I = 1, 2, . . . , I). I(w) ⊂ I, I(c) ⊂ I, I(λ2) ⊂ I, I = |I|, I(w) = |I(w)|, I(c) = |I(c)|,
and 1 = |I(λ2)|.

• The subscript n always denotes the sample size dependence (applies to Kn, In, In, I(w)
n , I(w)

n , I(c)
n , I(c)

n , Cn).

• Let θi denote any parameter, ci denote a center parameter, and wi denote a weight parameter.

• Cn is a bound on the absolute value of the parameters. For the sieves approach in we assume Cn ≤ exp(nb−a),
where 0 < a < b < 1.

• Assume that the Poisson process intensity function λ(c) is only defined on a bounded region C.

• Let f(x, y) denote a joint density of covariates X and label Y and let g(x) = E[Y | X = x] denote a regression
function.

• Let f0(x, y) and g0(x) denote the true joint density and regression function, respectively.

• We assume x ∈ X = [0, 1]D and that the marginal density of x is uniform, i.e. f(X) = 1.

• Let DH(f0, f) denote the Hellinger distance and let Aε = {f : DH(f0, f) ≤ ε}.
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• Let DK(f0, f) denote the KL divergence and let Kγ denote a KL neighborhood of the true joint density:
Kγ = {f | DK(f0, f) ≤ γ}= {f : DK(f0, f) ≤ γ}.

• Let (x1, y1), . . . , (xn, yn) denote the n observations and πn denote a prior probability distribution over the
parameters of a single hidden layer PoRB-NET conditional on there being Kn nodes, where Kn increases
with n. Let In denote the number of parameters for an RBFN network with Kn nodes.

• Let F denote the space of all single-layer radial basis function networks RBFN(x;θ) 7→ y, let Fn ⊂ F be its
restriction to networks with parameters less than Cn > 0 in absolute value, where Cn also increases with n;
let Hn ⊂ F be its restriction to networks with Kn nodes; and let Gn = Fn ∩ Gn be the intersection of both
restrictions.

2.1 Consistency for RBFNs with arbitrary priors

2.1.1 Supporting results

The following theorems are used in proof of Lemma 2, which is adapted from (Lee, 2000). Theorem 2 upper
bounds the bracketing number N[]( ) by the covering number N( ). Define the Hellinger bracketing entropy by
H[]( ) := logN[]( ).
Theorem 2. (van der Vaart and Wellner, 1996) Let s, t ∈ Fn, i.e., s and t are realizations of the parameter
vector. Let ft(x, y) ∈ F∗ be a function of x and y with parameter vector equal to t. Suppose that:

|ft(x, y)− fs(x, y)| ≤ d∗(s, t)F (x, y) (48)

for some metric d∗, for some fixed function F , and for every s, t, and every (x, y). Then for any norm ‖·‖,

N[](2ε ‖F‖ ,F∗, ‖·‖) ≤ N(ε,Fn, d∗). (49)

Theorem 3. (Wong and Shen, 1995) Define the ratio of joint likelihoods between the inferred density and the
true density as

Rn(f) =
n∏
i=1

f(xi, yi)
f0(xi, yi)

. (50)

For any ε > 0 there exists constants a1, a2, a3, a4 such that if∫ √ε
ε2/28

√
H[](u/a3) du ≤ 2a4

√
nε2, (51)

then

P ∗

(
sup

f∈Acε∩Fn
Rn(f) ≥ exp(−a1nε

2)
)
≤ 4 exp(−a2nε

2). (52)

Lemma 1. (Adaptation of Lemma 1 in Lee (2000))5 Suppose that H[](u) ≤ log[(a′naCa′′n In/u)In ], where
In = (D + 1)Kn + 1, Kn ≤ na, a′, a′′ > 0, and Cn ≤ exp(nb−a) for 0 < a < b < 1. Then for any fixed constants
a′′′, ε > 0 and for all sufficiently large n, ∫ ε

0

√
H[](u) ≤ c

√
nε2. (53)

Proof. Let an = a′naCa
′′

n In, so H[](u) ≤ log[(an/u)In ] = In log(an/u). Taking the square root and integrating
each side, we have: ∫ ε

0

√
H[](u) du =

∫ ε

0

√
In log(an/u) du (54)

=
√
In/2

∫ ε

0

√
2 log(an/u) du (55)

5This lemma differs from (Lee, 2000) because they assume H[](u) ≤ log[(C2
nIn/u)In ] and In = (D + 2)Kn + 1.
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=
√
In/2

∫ ε

0
z du, (56)

where we define the substitution z :=
√

2 log(an/u). Then:

dv = 1
2(2 log(an/u))−1/2(2)(−an/u2)

an/u
dz = −z−1u−1 du (57)

=⇒ du = −zu dz = −anzu/an dz = −anz exp

−1
2 2 log(an/u)︸ ︷︷ ︸

z2

 dz = −anz exp(−z2/2) dz. (58)

Thus: ∫ ε

0

√
H[](u) du ≤ −

√
In/2

∫ zε

∞
anz

2 exp(−v2/2) dz (59)

= an
√
In/2

∫ ∞
zε

z2 exp(−v2/2) dz (60)

where we define zε =
√

2 log(an/ε). Next, integrate by parts (using u = z and dv = z exp(−z2/2) dz), giving:∫ ε

0

√
H[](u) du = an

√
In/2

[
−z exp(−z2/2)

∣∣∞
zε

+
∫ ∞
zε

exp(−z2/2) dz
]

(61)

= an
√
In/2

[
zε exp(−z2

ε /2) +
√

2π
∫ ∞
zε

1√
2π

exp(−z2/2) dz
]

(62)

≤ an
√
In/2

[
zε exp(−z2

ε /2) +
√

2πφ(zε)
zε

]
(Mill’s Ratio) (63)

= an
√
In/2zε

[
exp(−z2

ε /2) +
√

2π
1√
2π exp(−z2

ε /2)
z2
ε

]
(64)

= an
√
In/2zε exp(−z2

ε /2)
[
1 + 1

z2
ε

]
(65)

= an
√
In/2zε exp(−z2

ε /2)︸ ︷︷ ︸
ε/an

[
1 + 1

z2
ε

]
(66)

= ε
√
In/2zε

[
1 + 1

z2
ε

]
. (67)

Since an →∞ as n→∞, we have z2
ε = 2 log(an/ε)→∞ as well, so [1 + 1/z2

ε ] ≤ 2 for large n. Continuing:∫ ε

0

√
H[](u) du ≤ ε

√
In/2zε (68)

= ε
√
In/2

√
2 log(an/ε) (69)

= ε
√
In
√

log(an/ε) (70)

≤ ε
√
In

√
log(a′naCa′′n In/ε) (71)

≤ ε
√
In
√

log(a′) + a log(n) + a′′ log(Cn) + log(In)− log(ε) (72)

≤ ε
√

(D + 1)na + 1
√

log(a′) + a log(n) + a′′nb−a + log((D + 1)na + 1)− log(ε) (73)

where we plug in In = (D + 1)Kn + 1 ≤ (D + 1)na + 1 and Cn = exp(nb−a).

Since 0 < a < b < 1, there exists a γ such that a < γ < b and b − a < 1γ. This follows from the fact that
since 0 < a < b < 1, there must exist a δ > 0 such that a + δ < b and b + δ < 1. Now let γ = aδ to see that
b− a = b+ δ − (a+ δ) < 1− (a+ δ) = 1− γ. Multiplying by 1/

√
n =
√
n−γ
√
n−(1−γ) on each side:

1√
n

∫ ε

0

√
H[](u) du ≤ ε

√
n−γ

√
(D + 1)na + 1 (74)
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√
n−(1−γ)

√
log(a′/ε) + a log(n) + a′′nb−a + log((D + 1)na + 1) (75)

= ε
√

(D + 1)n−(γ−a) + n−γ (76)√
n−(1−γ) log(a′ε) + an−(1−γ) log(n) + a′′n−((1−γ)−(b−a)) + n−(1−γ) log((D + 1)na + 1)

(77)
→∞ as n→∞ (78)

since each of γ, 1− γ, γ − a, and (1− γ)− (b− a) are positive. Thus, for any a′′′, ε > 0

1√
n

∫ ε

0

√
H[](u) du ≤ a′′′ε2 (79)

Lemma 2. (Adaptation of Lemma 2 in (Lee, 2000) (same statement but particularized for RBFNs)) Define the
ratio of joint likelihoods between the inferred density and the true density as

Rn(f) =
n∏
i=1

f(xi, yi)
f0(xi, yi)

. (80)

Under the assumptions of Lemma 1,

sup
f∈Acε∩Fn

Rn(f) ≤ 4 exp(−a2nε
2) (81)

almost surely for sufficiently large n, where a2 is the constant from Theorem 3.

Proof. Much of this proof is reproduced exactly as in Lemma 2 in (Lee, 2000), with only a few adaptations that
we mention along the way. We first bound the Hellinger bracketing entropy using Theorem 2 and then use Lemma
1 to show the conditions of Theorem 3.

Since we are interested in computing the Hellinger bracketing entropy for neural networks, we need to use the
L2 norm on the square roots of the density function, f . Later, we compute the L∞ covering number of the
parameter space, so here d∗ = L∞. We would like to apply Theorem 2 particularized for the L2 norm, i.e.,
|
√
ft(x, y) −

√
fs(x, y)| ≤ d∗(s, y)F (x, y) for some F then N[](2ε ‖F‖2 ,F∗, ‖·‖2) ≤ N(ε,Fn, d∗). To show that

the condition holds true, apply the Fundamental Theorem of Integral Calculus. For particular vectors s and t, let
g(u) =

√
f(1−u)s+ut(x, y). Let vi = (1− u)si + uti and denote the space of θ by Θi.

|
√
ft(x, y)−

√
fs(x, y)| =

∫ 1

0

g

du
du (82)

=
∫ 1

0

I∑
i=1

∂g

∂θi

∂θi
∂u

du (83)

=
I∑
i=1

(ti − si)
∫ 1

0

∂g

∂θi
du (84)

≤
I∑
i=1

sup
i
|ti − si|

∫ 1

0
sup
θi∈Θi

∣∣∣∣ ∂g∂θi
∣∣∣∣ du (85)

= sup
i
|ti − si|

I∑
i=1

sup
θi∈Θi

∣∣∣∣ ∂g∂θi
∣∣∣∣ ∫ 1

0
du (86)

≤ sup
i
|ti − si|I sup

i

[
sup
θi∈Θi

∣∣∣∣ ∂g∂θi
∣∣∣∣] (87)

= ‖t− s‖∞ F (x, y) (88)
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where F (x, y) = I supi[supθi∈Θi |∂g/∂θi|]. Here ∂g/∂θi is the partial derivative of
√
f with respect to the ith

parameter. Recall that f(x, y) = f(y | x)f(x), where f(x) = 1 since X ∼ U [0, 1] and f(y | x) is normal with
mean determined by the neural network and variance 1.

So far, this proof follows Lemma 2 in (Lee, 2000) exactly. Now we make a slight modification for an RBFN model.
By Lemma 3, |∂g/∂θi| ≤ (8πe2)−1/42naC3

n = naC3
n/2, where a′ := 4(8πe2)−1/4. Then set F (x, y) = a′naC3

nI/2,
so ||F ||2 = a′naC3

nI/2. Applying Theorem 2 to bound the bracketing number by the covering number we have:

N[](u,F∗, || · ||2) = N[]

(
2
(

u

2||F ||2

)
||F ||2,F∗, || · ||2

)
(89)

≤ N
(

u

2||F ||2
,F∗, || · ||2

)
(90)

Notice that the covering number of Fn is clearly less than ((2Cn)/(2ε) + 1)I . So, for any η > 0, we have:

N (η,F∗, L∞) ≤
(

2Cn
2η + 1

)I
=
(
Cn + η

η

)I
≤
(
Cn + 1
η

)I
. (91)

Therefore,

N[](u,F∗, || · ||2) ≤
(
Cn + 1

u
2||F ||2

)I
(92)

=
(

2||F ||2(Cn + 1)
u

)I
(93)

=
(
a′naC3

nIn(Cn + 1)
u

)I
(94)

=
(
a′naC̃4

nIn
u

)I
(95)

where C̃n = Cn + 1. For notational convenience, we drop F∗ and || · ||2 going forward. Taking the logarithm:

H[](u) ≤ log[(a′naCa
′′

n In/u)I ]. (96)

The bound above holds for a fixed network size, but we can now let Kn grow such that Kn ≤ na for any 0 < a < 1.
Thus by Lemma 1, we have:

1√
n

∫ ε

0

√
H[](u) du ≤ a′′′ε2, (97)

which shows the conditions of Lemma 1. Therefore, we have that for any a′′′, ε > 0,∫ ε

0

√
H[](u) du ≤ a′′′

√
nε2, (98)

With an eye on applying Theorem 3, notice that
∫ ε
ε2/28

√
H[](u) du <

∫ ε
0
√
H[](u) du. Substituting

√
2ε for ε, we

get ∫ √ε
ε2/28

√
H[](u) du ≤ 2a′′′

√
nε2, (99)

letting a3 = 1 and a4 := 2a′′′, where a3 and a4 are the constants required by Theorem 3. This gives the necessary
conditions for Theorem 3, which implies that

P ∗

(
sup

f∈Acε∩Fn
Rn(f) ≥ exp(−a1nε

2)
)
≤ 4 exp(−a2nε

2). (100)

Now apply the first Borel-Cantelli Lemma to get the desired result.
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2.1.2 Main theorems

The following theorem is proved by Lee (2000) for single-layer feedforward networks with a logistic activation and
Gaussian priors. With a few modifications to the proof as described below, it can be applied to RBFNs. Here,
the number of units is allowed to grow with the number of observations but it is not inferred from the data. We
call this a sieves approach.
Theorem 4. (Consistency when width grows with data (sieves approach)) (Lee, 2000) Suppose the following
conditions hold:

(i) There exists an r > 0 and an N1 ∈ N such that ∀n ≥ N1, πn (Fcn) < exp(−nr).

(ii) For all γ > 0 and ν > 0, there exists an N2 ∈ N such that ∀n ≥ N2, πn (Kγ) ≥ exp(−nν).

Then ∀ε > 0, the posterior is asymptotically consistent for f0 over Hellinger neighborhoods, i.e.:

P (Aε | (x1, y1), . . . , (xn, yn)) p→ 1. (101)

Proof. Lee (2000) proves this result for single-layer feedforward networks with a logistic activation and Gaussian
priors (Theorem 1 in their paper). Their proof relies on their Lemmas 3 and 5. Their Lemma 5 needs no
adaptation for RBFNs but their Lemma 3 depends on their Lemma 2, which does need adaptation for RBFNs.
Above we proved their Lemma 2 for RBFNs, which we call Lemma 1. Thus their Lemma 3 holds, so their
Theorem 1 holds, which gives the results of this theorem.

Lee (2000) shows that Hellinger consistency gives asymptotic consistency.
Corollary 2.1. (Hellinger consistency gives asymptotic consistency for sieves prior) (Lee, 2000) Under the
conditions of Theorem 4, ĝn is asymptotically consistent for g0, i.e.:∫

(ĝn(x)− g0(x))2dx
p→ 0. (102)

The following is an extension of Theorem 4 to when there is a prior over the number of units. The proof in (Lee,
2000) assumes a feedforward network with a logistic activation and Gaussian priors, but these assumptions are
not used beyond their use in applying Theorem 4. Since we adapt Theorem 4 to our model, the proof of the
following Theorem 5 needs no additional adaptation.
Theorem 5. (Consistency for prior on width) (Lee, 2000) Suppose the following conditions hold:

(i) For each i = 1, 2, . . . there exists a real number ri > 0 and an integer Ni > 0 such that ∀n ≥ Ni,
πi (Fcn) < exp(−rin).

(ii) For all γ, ν > 0 there exists an integer I > 0 such that for any i > I there exists an integer Mi > 0 such
that for all n ≥Mi, πi(Kγ) ≥ exp(−νn).

(iii) Bn is a bound that grows with n such that for all r > 0 there exists a real number q > 1 and an integer
N > 0 such that for all n ≥ N ,

∑∞
i=Bn λi < exp(−rnq).

(iv) For all i, λi > 0.

Then ∀ε > 0, the posterior is asymptotically consistent for f0 over Hellinger neighborhoods, i.e.:

P (Aε | (x1, y1), . . . , (xn, yn)) p→ 1. (103)

Corollary 2.2. (Hellinger consistency gives asymptotic consistency for prior on width). Under the conditions of
Theorem 5, ĝn is asymptotically consistent for g0, i.e.:∫

(ĝn(x)− g0(x))2dx
p→ 0. (104)

Proof. The conditions of Theorem 5 imply the conditions of Theorem 4, so then Corollary 2.1 must hold.
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2.2 Consistency for PoRB-NET

2.2.1 Supporting results

Theorem 6. (RBFNs are universal function approximators) Park and Sandberg (1991) Define Sφ as the set of
all functions of the form:

RBFNφ(x; θ) =
K∑
k=1

wkφ (λ(x− ck)) , (105)

where λ > 0, wk ∈ R, ck ∈ RD and θ = {{wk}Kk=1, {ck}Kk=1, λ} is the collection of network parameters. If
φ : Rd → R is an integrable bounded function such that φ is continuous almost everywhere and

∫
Rd φ(z) dz 6= 0,

then the family Sφ is dense in Lp(Rd) for every p ∈ [1,∞).

In our case, φ(z) = exp(−z2), which clearly satisfies the conditions of Theorem 6. We will denote RBFN(x; θ)
the expression in Equation (105) particularized for the squared exponential φ function.
Lemma 3. (Bound on network gradients)

∂
√
f(x, y; θ)
∂θi

≤ (8πe2)−1/4 ∂RBFN(x; θ)
∂θ

= (8πe2)−1/42naC3
n (106)

Proof. Applying the chain rule we have:∣∣∣∣∣∂
√
f(x, y; θ)
∂θi

∣∣∣∣∣ = 1
2 (f(x, y; θ))−1/2 ∂f(x, y; θ)

∂θi
(107)

= 1
2(2π)−1/4 exp

(
−1

4(y − RBFN(x; θ))2
)
|y − RBFN(x; θ)|

∣∣∣∣∂RBFN(x; θi)
∂θi

∣∣∣∣ (108)

First we show that we can bound the middle terms by:

exp
(
−1

4(y − RBFN(x; θ))2
)
|y − RBFN(x; θ)| ≤ exp(−1/2)21/2 (109)

To see this, rewrite the left-hand-side of Equation 109 as s(z) := exp(−(1/4)z2)|z|, where z = y − RBFN(x; θ).
Taking the derivative we have:

∂s(z)
∂z

=
{
− 1

2z
2 exp(− 1

4z
2) + exp(− 1

4z
2) z ≥ 0

1
2z

2 exp(− 1
4z

2)− exp(− 1
4z

2) z < 0
(110)

=
{

exp(− 1
4z

2)(− 1
2z

2 + 1) z ≥ 0
exp(− 1

4z
2)( 1

2z
2 − 1) z < 0

(111)

Setting to zero, we must have that 1
2z

2 = 1 =⇒ z =
√

2. Thus, a(z) ≤ exp(−1/2)21/2, as in Equation 109.

Next, consider the derivatives of the radial basis function network:∣∣∣∣∂RBFN(x; θi)
∂b

∣∣∣∣ = 1 (112)

∣∣∣∣∂RBFN(x; θi)
∂wk

∣∣∣∣ = exp(−1
2λ

2(x− ck)2) ≤ 1 (113)

∣∣∣∣∂RBFN(x; θi)
∂wk

∣∣∣∣ = |wk| exp(−1
2λ

2(x− ck)2)λ2|x− c| (114)

≤ |wk|λ2(|ck|+ 1) (115)
≤ C2

n(Cn + 1) (116)
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≤ C3
n + C2

n (117)
≤ 2C3

n (118)

since C2
n = exp(2nb−a) < exp(3nb−a) = C3

n∣∣∣∣∂RBFN(x; θi)
∂wk

∣∣∣∣ = 1
2

∣∣∣∣∣
Kn∑
k=1

wk exp(−1
2λ

2(x− ck)2)(x− c)2

∣∣∣∣∣ (119)

= 1
2

Kn∑
k=1

∣∣∣∣wk exp(−1
2λ

2(x− ck)2)(x− c)2
∣∣∣∣ (120)

≤ 1
2

Kn∑
k=1
|wk|(|c|+ 1)2 (121)

≤ 1
2

na∑
k=1

Cn(Cn + 1)2 (122)

= 1
2n

aCn(Cn + 1)2 (123)

= 1
2n

aCn(C2
n + 2Cn + 1) (124)

= 1
2n

a(C3
n + 2C2

n + Cn) (125)

≤ 1
2n

a(C3
n + 2C3

n + C3
n) (126)

≤ 2naC3
n (127)

Plugging everything in to Equation 108 we have the desired inequality.

Lemma 4. (Bounding sum of exponentially bounded terms). For two sequences {an}∞n=1 and {bn}∞n=1 suppose
there exists real numbers ra > 0 and rb > 0 as well as integers Na > 0 and Nb > 0 such that an ≤ exp(−ran) for
all n ≥ Na and bn ≤ exp(−rbn) for all n ≥ Nb. Then there exists a real number r > 0 and an integer N > 0 such
that an + bn ≤ exp(−rn) for all n ≥ N .

Proof. Set r̃ = min{ra, rb} and Ñ = max{Na, Nb}. Then we have:

an ≤ exp(−ran), ∀n ≥ Ñ ≥ Na (128)
≤ exp(−r̃n, ) ∀n ≥ Ñ (129)

. Similarly, bn ≤ exp(−r̃n), ∀n ≥ Ñ . Thus we have an + bn ≤ 2 exp(−r̃n), ∀n ≥ Ñ .

Now set N = max{d log 2
r̃ e + 1, Ñ} and r = r̃ − log 2

N . Notice r > 0, since N ≥ d log 2
r e + 1 > log 2

r implies
r = r̃ − log 2

N > r̃ − log 2 r̃
log 2 = 0. It follows that 2 exp(−rn) ≤ exp(−rn), ∀n ≥ N , since:

2 exp(−r̃n) ≤ exp(−rn) (130)
⇐⇒ log 2− r̃n ≤ −rn (131)

⇐⇒ log 2− r̃n ≤ −
(
r̃ − log 2

N

)
n (132)

⇐⇒ log 2− r̃n ≤ −r̃n+ n log 2
N

(133)

⇐⇒ N ≤ n (134)

Lemma 5. (Useful equality) For all δ ≤ 1 and x ∈ [0, 1], if |c̃ − c| ≤ δ and |λ̃ − λ| ≤ δ, then there exists a
constant ξ such that |ξ| ≤ A(|c|, λ)δ and:

λ̃2(x− c̃)2 = λ2(x− c)2 + ξ, (135)
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where A(|c|, λ) = 2λ(|c|+ 1)(λ+ |c|+ 2) + (λ+ |c|+ 2)2

Proof. Since |c̃− c| ≤ δ and |λ̃− λ| ≤ δ there exists constants ξ1 and ξ2, where |ξ1| ≤ δ and |ξ2| ≤ δ, such that
c̃ = c+ ξ1 and λ̃ = λ+ ξ2

Plugging c̃ = c+ ξ and λ̃ = λ+ ξ2 into the left-hand-side of the desired inequality:

λ̃(x− c̃) = (λ+ ξ2)(x− c− ξ1) (136)
= λ(x− c) + (−λξ1) + ξ2(x− c)− ξ1ξ2︸ ︷︷ ︸

:=ξ3

(137)

Notice:

|ξ3| = |(−λξ1) + ξ2(x− c)− ξ1ξ2| (138)
≤ λ|ξ1|+ |ξ2||x− c|+ |ξ1||ξ2| (139)
≤ λδ + δ(|c|+ 1) + δ2 (140)
≤ (λ+ |c|+ 2)δ (141)

In Equation 140 we use |x− c| ≤ (|c|+ 1), which follows since we assume x ∈ [0, 1], as well as ξ1 ≤ δ and ξ2 ≤ δ.
In Equation 141 we use δ2 ≤ δ, which follows since we assume δ ≤ 1. Squaring the left-hand-side of the desired
inequality:

λ̃2(x− c̃)2 = (λ̃(x− c̃))2 (142)
= (λ(x− c) + ξ3)2 (143)
= λ2(x− c)2 + 2λ(x− c)ξ3 + ξ2

3︸ ︷︷ ︸
:=ξ4

(144)

Notice:

|ξ4| = |2λ(x− c)ξ3 + ξ2
3 | (145)

≤ 2λ|x− c||ξ3|+ |ξ2
3 | (146)

≤ 2λ(|c|+ 1)(λ+ |c|+ 2)δ + (λ+ |c|+ 2)2δ2 (147)
≤
(
2λ(|c|+ 1)(λ+ |c|+ 2) + (λ+ |c|+ 2)2)︸ ︷︷ ︸

:=A(|c|,λ)

δ (148)

In Equation 147 we use |ξ3| ≤ (λ+ |c|+ 2)δ and |x− c| ≤ (|c|+ 1) again and Equation 148 we use δ2 ≤ δ. This
proves the desired inequality for ξ := ξ4.

Lemma 6. (Proximity in parameter space leads to proximity in function space). Let g be an RBFN with K
nodes and parameters (θ1, . . . , θI) and let g̃n be an RBFN with K̃n nodes and parameters (θ̃1, . . . , θ̃Ĩ(n)), where
K̃n grows with n. Define θi = 0 for i > I, θ̃i = 0 for i > ĩ, and Mδ, for any δ > 0, as the set of all networks g̃
that are close in parameter space to g:

Mδ(g) := {g̃n | |θ̃i − θi|, i = 1, . . . } (149)

Then for any g̃ ∈Mδ and sufficiently large n,

sup
x∈X

(g̃(x)− g(x))2 ≤
(
3K̃n

)2
δ2 (150)

Proof.

sup
x∈X

(g̃(x)− g(x))2 (151)

= sup
x∈X

b̃+
K̃n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− b−
K∑
k=1

wk exp(−λ2(x− ck)2)

2

(152)
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= sup
x∈X

(b̃− b) +

 K̃n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)−
K∑
k=1

wk exp(−λ2(x− ck)2)

2

(153)

= sup
x∈X

(b̃− b) +

 K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

2

(154)

≤ sup
x∈X

|b̃− b|+
∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣
2

(155)

= sup
x∈X

|b̃− b|2 + 2|b̃− b|

∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣ (156)

+

∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣
2 (157)

≤ |b̃− b|2 + 2|b̃− b| sup
x∈X

∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣ (158)

+ sup
x∈X

∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣
2

(159)

= |b̃− b|2 + 2|b̃− b| sup
x∈X

∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣ (160)

+

sup
x∈X

∣∣∣∣∣∣
K̃∗n∑
k=1

w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)

∣∣∣∣∣∣
2

(161)

≤ |b̃− b|2 + 2|b̃− b| sup
x∈X

K̃∗n∑
k=1

∣∣w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)
∣∣ (162)

+

sup
x∈X

K̃∗n∑
k=1

∣∣w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)
∣∣2

(163)

≤ |b̃− b|2 + 2|b̃− b|
K̃∗n∑
k=1

sup
x∈X

∣∣w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)
∣∣ (164)

+

 K̃∗n∑
k=1

sup
x∈X

∣∣w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)
∣∣2

(165)

= |b̃− b|2 + 2|b̃− b|
K̃∗n∑
k=1

Γk +

 K̃∗n∑
k=1

Γk

2

(166)

≤ δ2 + 2δ
K̃∗n∑
k=1

Γk +

 K̃∗n∑
k=1

Γk

2

, (167)

where:
Γk := sup

x∈X

∣∣w̃k exp(−λ̃2(x− c̃k)2)− wk exp(−λ2(x− ck)2)
∣∣ (168)
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Let u(x)2 := λ2(x− ck)2 and ũ(x)2 = λ̃2(x− c̃k)2 and pick any x ∈ X . By Lemma 5 there exists a constant η
such that |η| ≤ A(|c|, λ)δ and

ũ(x)2 = u(x)2 + η. (169)
Now define ξ =

√
|η| and consider two cases.

• If ũ(x)2 ≥ u(x)2, then Equation 169 is equivalent to ũ(x)2 = u(x)2 + ξ2. Then Γk becomes:

Γk = sup
x∈X

∣∣w̃k exp(−ũ2(x))− wk exp(−u2(x))
∣∣ (170)

=
∣∣w̃k exp(−u2(x)− ξ2)− wk exp(−u2(x)2)

∣∣ (171)
= sup
x∈X

exp(−u(x)2)
∣∣w̃k exp(−ξ2)− wk

∣∣ (172)

=
∣∣w̃k exp(−ξ2)− wk

∣∣ sup
x∈X

exp(−u(x)2) (173)

≤
∣∣w̃k exp(−ξ2)− wk

∣∣ (174)

Since |w̃k − wk| ≤ δ, there exists τ , where |τ | ≤ δ, such that w̃k = wk + τ . Plugging this in:

Γk ≤
∣∣(wk + τ) exp(−ξ2)− wk

∣∣ (175)
≤
∣∣wk(exp(−ξ2)− 1) + τ

∣∣ (176)
≤ |wk|| exp(−ξ2)− 1|+ |τ | (177)
≤ |wk|ξ2 + δ, (178)

where we use the result that 1− ξ2 ≤ exp(−ξ2) in Equation 177.

• If ũ(x)2 < u(x)2, then Equation 169 is equivalent to u(x)2 = ũ(x)2 + ξ2. Then Γk becomes:

Γk = sup
x∈X

∣∣w̃k exp(−ũ2(x))− wk exp(−u2(x))
∣∣ (179)

= sup
x∈X

∣∣w̃k exp(−ũ2(x)− wk exp(−ũ2(x)− ξ2)
∣∣ (180)

= sup
x∈X

exp(−ũ2(x))
∣∣w̃k − wk exp(−ξ2)

∣∣ (181)

=
∣∣w̃k − wk exp(−ξ2)

∣∣ sup
x∈X

exp(−ũ2(x)) (182)

≤
∣∣w̃k − wk exp(−ξ2)

∣∣ (183)

Using the same τ as above:

Γk ≤
∣∣(wk + τ) exp(−ξ2)− wk

∣∣ (184)
≤
∣∣wk(1− exp(−ξ2)) + τ

∣∣ (185)
≤ |wk||1− exp(−ξ2)|+ |τ | (186)
= |wk|| exp(−ξ2)− 1|+ |τ | (187)
≤ |wk|ξ2 + δ. (188)

In either of the two cases, we have Γk ≤ |wk|ξ2 + δ. Proceeding:

Γk ≤ |wk|ξ2 + δ (189)
≤ |wk|A(|c|, λ)δ + δ (190)
= (|wk|A(|c|, λ) + 1)δ (191)

Now consider
K̃∗n∑
k=1

Γk ≤
K̃n∑
k=1

Γk (for large n) (192)
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≤ δ
K̃n∑
k=1

(|wk|A(|c|, λ) + 1) (193)

≤ δ

 K̃n∑
k=1
|wk|A(|c|, λ) + K̃n

 (194)

≤ δ
(
K̃n + K̃n

)
(195)

= 2δK̃n (for large n) (196)

Equation 195 follows because for k ≥ K, wk = 0 by definition, so
∑K̃n
k=1 |wk|A(|c|, λ) is a constant and thus less

than K̃n for large n.

Plugging Equation 196 into Equation 167:

sup
x∈X

(g̃(x)− g(x))2 ≤ δ2 + 2(2δK̃n) + (2δK̃n)2 (197)

=
(
1 + 2(2K̃n) + (2K̃n)2) δ2 (198)

=
(
1 + 2K̃n)

)2
δ2 (199)

≤ (3K̃n)2δ2 (200)

2.2.2 Main theorems for PoRB-NET

Recall the generative model for PoRB-NET in the case of a uniform intensity function with a Gamma prior on its
level. For simplicity and w.l.o.g, we consider the case where the hyperparameter s2

0 and the observation variance
are fixed to 1.

We first consider the case where the width of the network is allowed to grow with the data but is fixed in the prior.
We call the estimated regression function ĝn, with width Kn and prior πn, where n is the number of observations.
The following theorem gives consistency for this model.

Note that the following proof uses (Park and Sandberg, 1991) to show the existence of a neural network that
approximates any square integrable function. We assume that the center parameters of this network are contained
in the bounded region over which the Poisson process is defined, which can be made arbitrarily large.
Theorem 7. (PoRB-NET consistency with fixed width that grows with the number of observations). If there
exists a constant a ∈ (0, 1) such that Kn ≤ na, and Kn →∞ as n→∞, then for any square integrable ground
truth regression function g0, ĝn is asymptotically consistent for g as n→∞, i.e.∫

(ĝn(x)− g0(x))2dx
p→ 0. (201)

Proof.

Proof outline

• Show Condition (i) of Theorem 4 is met

– Write prior probability of large parameters as a sum of integrals over each parameter
– Bound each set of parameters:
∗ Bound weights (as in Lee (2000))
∗ Bound centers (trivial since parameter space bounded)
∗ Bound λ2 with Chernoff bound

– Bound sum using Lemma 4

• Show Condition (ii) of Theorem 4 is met.
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– Assume true regression function g0 is L2

– Use Theorem 6 to find an RBFN g that approximates g0

– Define Mδ as RBFNs close in parameter space to g
– Show Mδ ⊂ Kγ using Lemmas 5 and 6.
– Show πn (Mδ) ≥ exp(−rn):
∗ Show you can write as a product of integrals over parameters
∗ Bound each term separately:
· Bound weights as in Lee (2000)
· Bound centers and λ2

Condition (i) We want to show that there exists an r > 0 and an N1 ∈ N such that ∀n ≥ N1:

πn (Fcm) < exp(−nr).

Write prior probability of large parameters as a sum of integrals over each parameter. The prior
πn assigns zero probability to RBFNs with anything but Kn nodes, so there is no issue writing πn(Fn) and its
value is equivalent to πn(Gn), even though Gn ⊂ Fn.

Notice that πn (Gcn) requires evaluating a multiple integral over a subset of the product space of In parameters.
Notice Gn can be written as an intersection of sets:

Gn =
In⋂
i=1
{RBFN ∈ Hn | |θi| ≤ Cn}.

Therefore we have:

πn (Fcn) = πn (Gcn)

= πn

([
In⋂
i=1
{RBFN ∈ Hn | |θi| ≤ Cn}

]c)

= πn

(
In⋃
i=1
{RBFN ∈ Hn | |θi| ≤ Cn}c

)
(De Morgan)

= πn

(
In⋃
i=1
{RBFN ∈ Hn | |θi| > Cn}

)

≤
In∑
i=1

πn ({RBFN ∈ Hn | |θi| > Cn}) (Union bound). (202)

Next, independence in the prior will allow us to write each term in Equation 202 as an integral over a single
parameter. Define the following sets:

Ci(n) := Θi \ [−Cn, Cn]
Ri(n) := Θ1 × . . .×Θi−1 × Ci(n)×Θi+1 × . . .×ΘIn

where Θi is the parameter space corresponding to parameter θi (either R or R+). Notice that because Ri(n) is a
union of two rectangular sets (one where θi is less than −Cn and one where θi is greater than Cn), we can apply
Fubini’s theorem. Thus, each term in Equation 202 can be written as:

πn ({RBFN ∈ Hn | |θi| > Cn}) (203)

=
∫
. . .

∫
Ri(n)

πn(θ1, . . . , θIn)d(θ1, . . . , θIn) (204)
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=
∫
dθ1 . . .

∫
dθIn πn(θ1, . . . , θIn) (205)

=
∫
dλ2

∫
dw1 . . .

∫
dwIwn

∫
dc1 . . .

∫
dwIcn πn(λ2)

∏
j

πn(cj | λ2)
∏
j

πn(wj) (206)

=

∫ dλ2 πn(λ2)
∫
dc1 . . .

∫
dcIcn

∏
j

πn(cj | λ2)

∫ dw1 . . .

∫
dwIwn

∏
j

πn(wj)

 (207)

=

∫ dλ2 πn(λ2)
∏
j

∫
dcj πn(cj | λ2)

∏
j

∫
dwj πn(wj)

 (208)

=


∫
Cn dλ

2 πn(λ2) i = I(λ2)
n∫

Cn dw πn(w) i ∈ I(w)
n∫

R+ dλ
2 πn(λ2)

∫
Cn dci πn(ci | λ2) i ∈ I(c)

n

(209)

In Equation 204 we apply Fubini’s theorem, which allows us to write a multiple integral as an interated integral.
It is understood that the ith integral is over the restricted parameters space [−Cn, Cn] while the remaining
integrals are over the entire parameter space, meaning they integrate to 1. This allows us to write the result in
Equation 209.

Therefore, by Equations 202 and 209 we have:

πn (Fcn) ≤
∫
Cn
dλ2 πn(λ2)︸ ︷︷ ︸
λ2 term

+
∑
i∈I(w)

n

∫
Cn
dw πn(w)

︸ ︷︷ ︸
W term

+
∑
i∈I(c)

n

∫
R+

dλ2 πn(λ2)
∫
Cn
dci πn(ci | λ2)

︸ ︷︷ ︸
C term

(210)

Bound each term in the sum. We will deal with each of these terms separately.

• W term. With some minor difference for the dependence of the number of weight parameters on the network
width (DKn in our case compared to (D + 2)Kn + 1), equations 119-128 in (Lee, 2000) show for all n ≥ Nw
for some Nw: ∑

i∈I(w)
n

∫
Ci(n)

πn(wi) dwi ≤ exp(−nr)

• C term. Since the parameter bound Cn → ∞ as n → ∞ and since the prior over the center parameters
is defined over a bounded region, as n → ∞ the bounded region will be contained in [−Cn, Cn] and thus
disjoint from Ci(n) := Θi \ [−Cn, Cn]. Thus, for all n greater than some Nc,

∫
Ci(n) πn(ci) dci = 0 for all

center parameters.

• λ2 term. ∫
πn(λ2)dλ =

∫ ∞
Cn

βλ
αλ

Γ(αλ)λ
2(αλ−1) exp(−β2

λλ)dλ2 (211)

≤
(
βλCn
αλ

)α
λ

exp(αλ − βλCn) (Chernoff Bound) (212)

≤
(
βλe

αλ

)α
exp(αλnb−a) exp(−βλ exp(nb−a))

(
Cn ≤ nb−a

)
(213)

Taking the negative log we have:

− log
(∫

πn(λ2)dλ2
)
≥ −α log

(
βe

α

)
︸ ︷︷ ︸

:=A

+β exp(nb−a)− αnb−a (214)
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= A+ β

 ∞∑
j=0

(nb−a)j

j!

− αnb−a (215)

= A+ β

1 + nb−a + 1
2n

2(b−a) +
∞∑
j=3

(nb−a)j

j!

− αnb−a (216)

= (A+ β) + (β − α)nb−a + 1
2βn

2(b−a)︸ ︷︷ ︸
:=h(n)

+β
∞∑
j=3

(nb−a)j

j! (217)

= h(n) + β

∞∑
j=3

(nb−a)j

j! . (218)

Now pick k∗ ∈ {3, 4, . . . } such that (b− a)k∗ ≥ 1, so n(b−a)k∗ ≥ n, and pick any r ∈ (0, β/(k∗!)). Then, since
every term in the sum is positive, we have:

− log
(∫

πn(λ2)dλ2
)
≥ h(n) + β

n(b−a)k∗

k∗! (219)

≥ h(n) + β

k∗!n (220)

≥ h(n) + rn (221)
≥ rn (∀n ≥ Nλ), (222)

where the last inequality holds because β > 0 and (b− a) ∈ (0, 1) clearly implies there exists an Nλ > 0 such
that for all n ≥ Nλ, h(n) > 0. Negating and exponentiating each side we have:∫

πn(λ2)dλ2 ≤ exp(−rn) (∀n ≥ Nλ). (223)

Bound sum. For any n ≥ Nc, since the C term is zero in this case, we have:

πn (Fcn) ≤
∑
i∈I(w)

n

∫
Ci(n)

πn(wi) dwi +
∫
Ci(n)

πn(λ2) dλ2 (224)

≤ exp(−rn) (∀n ≥ N) (225)

where the last inequality follows from Lemma 4 applied to the sequences:

an :=
∑
i∈I(w)

n

∫
Ci(n)

πn(wi) dwi (226)

bn :=
∫
Ci(n)

πn(λ2) dλ2 (227)

which we already showed to be exponentially bounded above for large n.

Condition (ii) Let γ, ν > 0.

Assume true regression function. Assume g0 ∈ L2 is the true regression function

Find RBFN near ground truth function. Set ε =
√
γ/2. By Theorem 6 there exists an RBFN g such

that ‖g − g0‖2 ≤ ε. We assume the center parameters of g are contained in the bounded region C over which the
Poisson process is defined, which can be made arbitrarily large.
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Define Mδ. Set δ = ε/(3na) and let Mδ be defined as in Lemma 6. Then by Lemma 6, for any g̃ ∈Mδ we have:

sup
x∈X

(g̃(x)− g(x))2 ≤
(
3K̃nδ

)2 = ε2 (228)

Next we show that Mδ ⊂ Kγ for all γ > 0 and appropriately chosen δ. This means we only need to show
πn (Mδ) ≥ exp(−nν), since Mδ ⊂ Kγ implies πn (Kγ) ≥ πn (Mδ).

Show Mδ contained in Kγ. Next we show that for any g̃ ∈Mδ, DK(f0, f̃) ≤ γ i.e. Mδ ⊂ Kγ . The following
are exactly equations 129-132 and then 147-151 from Lee (2000).

DK(f0, f̃) =
∫ ∫

f0(x, y) log f0(x, y)
f̃(x, y)

dy dx (229)

= 1
2

∫ ∫ [
(y − g̃(x))2 − (y − g0(x))2] f0(y | x)f0(x) dy dx (230)

= 1
2

∫ ∫ [
−2yg̃(x) + g̃(x)2 + 2yg0(x)− g0(x)2] f0(y | x)f0(x) dy dx (231)

= 1
2

∫
(g̃(x)− g0(x))2f0(x) dx (232)

= 1
2

∫
(g̃(x)− g(x) + g(x)− g0(x))2f0(x) dx (233)

≤ 1
2

∫ sup
x∈X

(g̃(x)− g(x))2︸ ︷︷ ︸
Lemma 6

f0(x) dx+
∫

(g(x)− g0(x))2︸ ︷︷ ︸
Theorem 6

f0(x) dx (234)

+2 sup
x∈X
|g̃(x)− g(x)|︸ ︷︷ ︸
Lemma 6

∫
|g(x)− g0(x)|︸ ︷︷ ︸

Theorem 6

f0(x)dx

 (235)

<
1
2 [ε2 + ε2 + 2ε2] (236)

= 2ε2 = γ (237)

Show mass on Mδ is greater than exponential

πn (Mδ) =
∫ θ1+δ

θ1−δ
. . .

∫ θĨn+δ

θĨn−δ
πn(θ̃1, . . . , θ̃Ĩn) dθ̃1 . . . dθĨn

=
∫ θ1+δ

θ1−δ
. . .

∫ θĨn+δ

θĨn−δ
πn(λ̃2)

∏
i

πn(c̃i | λ̃2)
∏
i

πn(w) dθ̃1 . . . dθĨn

=
∫ λ2+δ

λ2−δ
πn(λ̃2)

Ĩ(c)
n∏
i=1

∫ ci+δ

ci−δ
πn(c̃i | λ̃2) dc̃i dλ̃2 ×

Ĩ(w)
n∏
i=1

∫ wi+δ

wi−δ
πn(w̃i) dw̃i

=
∫ λ2+δ

λ2−δ
πn(λ̃2)

Ĩ(c)
n∏
i=1

∫ ci+δ

ci−δ

1
µ(C)1[c̃i∈C] dc̃i dλ̃

2 ×
Ĩ(w)
n∏
i=1

∫ wi+δ

wi−δ
πn(w̃i) dw̃i

=
∫ λ2+δ

λ2−δ
πn(λ̃2) dλ̃2︸ ︷︷ ︸
λ2 term

×
Ĩ(c)
n∏
i=1

∫ ci+δ

ci−δ

1
µ(C)1[c̃i∈C] dc̃i︸ ︷︷ ︸

C term

×
Ĩ(w)
n∏
i=1

∫ wi+δ

wi−δ
πn(w̃i) dw̃i︸ ︷︷ ︸

W term



Beau Coker, Melanie F. Pradier, Finale Doshi-Velez

• W term. The following correspond to equations 138-145 from (Lee, 2000).

W term =
Ĩ(w)
m∏
i=1

∫ wi+δ

wi−δ
πn(w̃i) dw̃i (238)

=
Ĩ(w)
n∏
i=1

∫ wi+δ

wi−δ
(2πσ2

w)−1/2 exp
(
− 1

2σ2
w

w̃2
i

)
dw̃i (239)

≥
Ĩ(w)
n∏
i=1

2δ inf
θ̃i∈[θi−1,θi+1]

{
(2πσ2

w)−1/2 exp
(
− 1

2σ2
w

w̃2
i

)}
(240)

≥
Ĩ(w)
n∏
i=1

δ

√
2

πσ2
w

exp
(
− 1

2σ2
w

ζi

) (
ζi := max{(θi − 1)2, (θi + 1)2}

)
(241)

≥

(
δ

√
2

πσ2
w

)Ĩ(w)
n

exp
(
− 1

2σ2
w

ζĨ(w)
n

) (
ζ := max{ζ1, . . . , ζĨ(w)

n
}
)

(242)

= exp
(
−Ĩ(w)

n

[
δ−1

√
πσ2

w

2

])
exp

(
− 1

2σ2
w

ζĨ(w)
n

)
(243)

(244)

= exp
(
−Ĩ(w)

n

[
3na

ε

√
πσ2

w

2

]
− 1

2σ2
w

ζĨ(w)
n

)
(245)

= exp
(
−Ĩ(w)

n

[
a logn− log

√
9πσ2

w

2ε2 + 1
2σ2

w

ζ

])
(246)

= exp
(
−Ĩ(w)

n

[
2a logn+ 1

2σ2
w

ζ

])
(for large n) (247)

≥ exp
(
−Dna

[
2a logn+ 1

2σ2
w

ζ

]) (
Ĩ(w)
n ≤ Dna

)
(248)

≥ exp(−νn) (for large n) (249)

Let Nw denote the integer large enough so that Equations 247 and 249 hold for ν/3.

• C term.

Ĩ(c)
n∏
i=1

∫ ci+δ

ci−δ

1
µ(C)1[c̃i∈C] dc̃i ≥

Ĩ(c)
n∏
i=1

δ

µ(C) (250)

≥
(

δ

µ(C)

)Ĩ(c)
n

(251)

= exp
(
−Dna log

[
µ(C)
δ

])
(252)

= exp
(
−Dna log

[
3µ(C)na

ε

])
(253)

= exp
(
−Dna

[
a logn− log

(
3µ(C)
ε

)])
(254)

= exp (−Dna [2a logn]) (for large n) (255)
= exp (−2aDna logn) (256)
≥ exp(−νn) (for large n) (257)

Let Nc denote the integer large enough so that Equations 255 and 257 hold for ν/3.
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• λ2 term.∫ λ2+δ

λ2−δ
πn(λ̃2) dλ̃2 =

∫
[λ2−δ,λ2+δ]∩R+

βα

Γ(α) λ̃
2α−1

exp(−βλ̃2) dλ̃2 (258)

≥ δ

(
inf

λ̃2∈[λ2−δ,λ2+δ]∩R+

{
βα

Γ(α) λ̃
2α−1

exp(−βλ̃2)
})

(259)

≥ δ

(
inf

λ̃2∈[λ2−1,λ2+1]∩R+

{
βα

Γ(α) λ̃
2α−1

exp(−βλ̃2)
})

︸ ︷︷ ︸
:=A

(for large n) (260)

= δA (261)

= Aε

3na (262)

≥ exp(−νn) (for large n) (263)

In Equation 259 we note that the length of the interval [λ2 − δ, λ2 + δ] ∩ R+ is at least δ, since λ2 ∈ R+. In
Equation 260 we note that δ < 1 for large n, allowing us to define the quantity A that does not depend on n.
Let Nλ denote the integer large enough so that Equations 260 and 263 hold for ν/3.

Bound product Set N2 = max{Nw, Nc, Nλ}. Then for all n ≥ N2:

πn (Mδ) ≥ exp(−nν/3) exp(−nν/3) exp(−nν/3)
= exp(−nν)

This shows condition (ii). Thus, the conditions of Theorem 4 are met, so the model is Hellinger consistent. By
Corollary 2.1 this gives asymptotic consistency.

Now we consider the case where the number of hidden units K of the network is a parameter of the model. Since
the center parameters follow a Poisson process prior with intensity λ over the region C, then conditional on λ, K
follows a Poisson distribution with parameter µ(C)λ, where µ is the measure of C. We again denote the estimated
regression function by ĝn with the understanding that the number of hidden units not fixed.
Theorem 8. (PoRB-NET consistency for homogeneous intensity). For any square integrable ground truth
regression function g0, ĝn is asymptotically consistent for g as n→∞, i.e.∫

(ĝn(x)− g0(x))2dx
p→ 0. (264)

Proof. Since the number of hidden units follows a Poisson prior, the proof of this result is exactly as in Theorem 7
of Lee (2000). Their result relies on their Theorem 8, but we have adapted this result in Theorem 5 to our model
and the remainder of the proof requires no additional assumptions regarding the model. Asymptotic consistency
follows from Corollary 2.2.
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3 Appendix: Other Synthetic Results

The following synthetic examples illustrate desirable aspects of the proposed approach. In particular, PoRB-NET
allows to:

1. easily specify lengthscale and signal variance information

2. adapt the network architecture based on the data

3. encode different degrees of uncertainty in out-of-sample regions

3.1 PoRB-NETs can express stationary priors

For a BNN (top row) and PoRB-NET (bottom row), Figure 7 shows for 10k prior function samples the functions
themselves, a histogram of the upcrossings of the x-axis, and a plot of Cov(x− k/2, x+ k/2), for k = 0, 1, 2, which
is essentially a variogram (from left to right). Each network has N(0, 1) priors on all weight and bias parameters,
while the PoRB-NET has a N(1, 0) prior on the scale parameters and a uniform intensity over [−10, 10] for the
center parameters.

Prior function samples Upcrossings of 0 Variogram

Figure 7: Priors for BNN (top row) vs. PoRB-NET (bottom row)

Consequently, as shown in Figure 8, modeling stationary functions away from the origin with a regular BNN
(assuming the standard independent wk ∼ N (0, σ2

w) and bk ∼ N (0, σ2
b ) priors on the weights and biases) requires

making a tradeoff: Set the prior variance small, resulting in inability to capture the function and underestimated
uncertainty away from the origin (left panel), or set the prior variance larger, resulting in nonstationary uncertainty
(middle panel). Perhaps for some examples a “sweet spot” for this tradeoff exists, but a PoRB-NET is robust to
this choice because the prior can easily be made stationary (right panel). For the PoRB-NET, we use a fixed
uniform intensity defined over [−5, 5] and scaled so the prior expected network with is 12. Each BNN has 12
hidden units.
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(a) BNN with σ2
w = σ2

b = 1. (b) BNN with σ2
w = σ2

b ≈ 7.4. (c) PoRB-NET.

Figure 8: For stationary functions and small amounts of data, a BNN faces a tradeoff between underestimated
uncertainty away from the origin (left panel) versus overestimated uncertainty near the origin (right panel). A
PoRB-NET can capture stationary functions (right panel).

(a) True LS low, Model LS low
Test log likelihood: 11.84

(b) True LS low, Model LS high
Test log likelihood: 10.97

(c) True LS high, Model LS low
Test log likelihood: 8.27

(d) True LS high, Model LS high
Test log likelihood: 10.51

Figure 9: Left-to-right: increased lengthscale (LS) for the PoRB-NET model. Top-to-bottom: increased lengthscale
for the true function (drawn from a PoRB-NET prior). Notice that matching to the true intensity results in
higher test log likelihood

.

3.2 PoRB-NETs can adjust architecture based on data

The posterior function samples in the left panel and middle panels, respectively, of Figure 10 show that a BNN
with only 3 nodes has insufficient capacity to model this noisy sine wave, while a PoRB-NET, although initialized
to and having a prior expectation of 3 nodes, is able to increase its capacity to between 5 and 7 nodes in response
to the data. To isolate the impact of adaptive architecture rather than different prior specification, the intensity
function of the PoRB-NET is 5 times larger inside [−1, 1] than elsewhere in [−5, 5], which yields a qualitatively
similar prior distribution in function space to the BNN by concentrating the hidden unit centers near the origin.
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(a) BNN: Posterior function samples. (b) PoRB-NET: Posterior function
samples.

(c) PoRB-NET: Posterior distribu-
tion of network width.

Figure 10: A BNN with only 3 nodes has insufficient capacity to model this data, while a PoRB-NET with 3
nodes in prior expectation is able to adjust its capacity in response to the data, settling on between 5 and 7 nodes.

There are two perspectives on the advantages of an adaptive architecture. (i) If the data is more complex than
expected in the prior, a PoRB-NET is somewhat robust to this choice, while a BNN will fail miserably. (ii) If the
data is less complex than expected in the prior (suppose 12 nodes are expected for the example in Figure 10), by
intentionally choosing a prior that well underspecifies the expected capacity (3 nodes), the posterior will shrink
towards a smaller architecture that can still model the data (5-7 nodes), while a BNN will stick to the larger
architecture (12 nodes), leading to unnecessary computation and potential overfitting.

3.3 PoRB-NETs can adjust the uncertainty in gaps in the training data

By increasing the intensity in a gap in the training data, the lengthscale is reduced. Figure 11 shows this for
different piecewise constant intensity functions that are increased in the middle gap in the data.

2x intensity in gap 3x intensity in gap 4x intensity in gap

Figure 11: By adusting the Poisson process intensity a gap in the data (note that green points are test observations),
the out of sample uncertainty can be adjusted. Higher intensity results in a smaller length scale.
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4 Appendix: Other Results on Real Datasets

4.1 Inferred intensities

Figure 12 shows the inferred intensities for the three real datasets discussed in the paper. Figure 13 is reproduced
from main text for ease of comparison with Figure 12. The inferred intensities – which represent an inverse
lengthscale – are larger near the most quickly-changing regions of the data. For example, in the motorcycle the
function varies most in the middle. In the mimic dataset, the intensity is higher between the two spikes in the
data. The lengthscale parameter of the GP in the inferred intensity is the parameter that adjusts the degree of
smoothing between the spikes. For the finance dataset, the inferred intensity is higher near the regions of higher
volatility, towards the beginning and end of the time series.

Figure 12: Inferred intensities for the PoRB-NET for the three real datasets.

Figure 13: PoRB-NET is able to capture non-stationary patterns in real scenarios. Posterior predictive
of PoRB-NET in three real datasets, in comparison to a GP with input-dependent length-scale (L-GP) Heinonen
et al. (2015), and Dropout Gal and Ghahramani (2015).

We plot the posterior predictive densities for our model, and two other baselines: a GP with input-dependent
length-scale (L-GP) Heinonen et al. (2015), and Dropout Gal and Ghahramani (2015). PoRB-NET is able to
capture complex non-stationary patterns in the data and yield uncertainties that mimic the behavior of L-GP.
Interestingly, the learned intensity picks whenever the function exhibit faster variations (see the corresponding
figure with the learned intensity function in the Appendix).
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5 Details on Experimental Setup

• Motorcycle dataset: Motorcycle accident data of Silverman (1985) tracks the acceleration force on the head
of a motorcycle rider in the first moments after impact.

• CBE volatility index: downloaded from: https://fred.stlouisfed.org/series/VIXCLS

5.1 Baselines

• L-GP: we use the code in Matlab from the authors that is publicly available at https://github.com/
markusheinonen/adaptivegp.

• Dropout: we use the code in Tensorflow from the authors that is publicly available at https://github.
com/yaringal/DropoutUncertaintyExps. We keep all default hyperparameters; we assume 1 single layer
with 50 hidden units. Dropout rates were cross-validated using a grid search [0.0005, 0.001, 0.005, 0.01].

5.2 Simulation Setup

In all the experiments, we use a random train-test split of 75-15. All datasets are normalized in a preprocessing
step such that x values fall in the range [0, 1], and y values have zero mean and in the range [−1, 1].

We evaluate by computing the marginal test log likelihood as:

Ep(x?,y?) [log p(y?|x?,D)] = Ep(x?,y?)

[
log
∫
p(y?|x?,w)p(w|D)dw

]
(265)

https://fred.stlouisfed.org/series/VIXCLS
https://github.com/markusheinonen/adaptivegp
https://github.com/markusheinonen/adaptivegp
https://github.com/yaringal/DropoutUncertaintyExps
https://github.com/yaringal/DropoutUncertaintyExps
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