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Abstract

Bayesian neural networks (BNNs) are flexi-
ble function priors well-suited to situations
in which data are scarce and uncertainty
must be quantified. Yet, common weight
priors are able to encode little functional
knowledge and can behave in undesirable
ways. We present a novel prior over ra-
dial basis function networks (RBFNs) that
allows for independent specification of func-
tional amplitude variance and lengthscale
(i.e., smoothness), where the inverse length-
scale corresponds to the concentration of
radial basis functions. When the length-
scale is uniform over the input space, we
prove consistency and approximate variance
stationarity. This is in contrast to common
BNN priors, which are highly nonstationary.
When the input dependence of the length-
scale is unknown, we show how it can be
inferred. We compare this model’s behavior
to standard BNNs and Gaussian processes
using synthetic and real examples.

1 INTRODUCTION

Neural networks (NNs) are flexible universal func-
tion approximators that have been applied with suc-
cess in many domains. Bayesian neural networks
(BNNs) capture function space uncertainty in a prin-
cipled manner by placing priors over network param-
eters (Hinton and Neal, 1995). Unfortunately, priors
in parameter space often lead to unexpected behavior
in function space, making it di�cult to incorporate
meaningful information about function space proper-
ties (Lee, 2004). Two such properties of importance
are amplitude variance and lengthscale, including
how they might vary over the input space.
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While Gaussian processes (GPs) are function priors
that can easily encode these properties via the covari-
ance function, there are many situations in which we
would prefer BNNs to GPs: BNNs may be computa-
tionally more scalable, especially at test time, and
they have an explicit parametric expression for pos-
terior samples, which is convenient when additional
computation is needed on the function (e.g., finding
a minima) (Hernández-Lobato et al., 2014).

Therefore, a natural question arises: can we design
BNN priors that encode function space properties as
in GPs while retaining the benefits of BNNs? Some
approaches use sample-based methods to evaluate
the discrepancy between the function space distribu-
tion and a reference distribution with desired prop-
erties (Flam-Shepherd et al., 2017; Sun et al., 2019).
Pearce et al. (2019) explores di�erent BNN architec-
tures to recover equivalent GP kernel combinations
in the infinite width limit. While promising, these
approaches require challenging optimizations or rely
on infinite width assumptions.

As a first step towards more expressivity for BNNs,
this work focuses on a particular type of NN called
a radial basis function network (RBFN). RBFNs are
widely used across scientific disciplines (Dash et al.,
2016) and have received renewed interest recently,
both from a theoretical (Que and Belkin, 2016) and
inferential perspective (Zadeh et al., 2018; Asadi
et al., 2020). Importantly, each hidden unit has a
center parameter corresponding to a localized activa-
tion function, which enables controlling where (over
the input space) the hidden units contribute to the
complexity of the function.

In this work, we introduce Poisson Process Radial Ba-
sis Function Networks (PoRB-Nets), an interpretable
family of RBFNs that employ a Poisson process (PP)
prior over the center parameters in an RBFN. The
proposed formulation enables direct specification of



functional amplitude variance and lengthscale, the
latter of which can vary over the input space. We
show that these properties are decoupled; that is,
each can be specified independently of the other. In-
tuitively, PoRB-Nets work by trading o� between
the concentration and scale of the radial basis func-
tions. Consider that a higher concentration of basis
functions allows for a smaller lengthscale but also
a larger variance, since the basis functions add up.
By making the scale of the basis functions depend
inversely on their concentration, PoRB-Nets undo
the impact on the variance.

PoRB-Nets have the additional benefit that the
choice of the lengthscale determines the network ar-
chitecture (width of the layer), since the expected
number of hidden units is equal to the integral of
the PP intensity over the input space. Hidden units
are added or deleted from the network during infer-
ence to adjust the overall lengthscale to the data,
and when the input dependence of the lengthscale is
unknown, we show how it can be inferred using a sig-
moidal Gaussian Cox process as a prior (Adams et al.,
2009). As with GPs, and unlike networks that force
a specific property (Anil et al., 2018), these proper-
ties can adjust given data. We focus on single-layer
RBFNs since our interest is in theoretical properties
and examining the true posterior.

Specifically, we make the following contributions:
(i) we introduce a novel, intuitive prior formulation
for RBFNs that encodes distributional knowledge in
function space, decoupling notions of lengthscale and
amplitude variance in the same way as a GP with
a radial basis function (RBF) kernel; (ii) we prove
important theoretical properties of consistency and
amplitude stationarity; (iii) we provide an inference
algorithm to learn an input dependent lengthscale
and (iv) we empirically demonstrate the potential of
PoRB-Nets on synthetic and real examples. The code
is available at https://github.com/dtak/porbnet.

2 RELATED WORK

Early weight space priors for BNNs. Most
classical NN priors aim for regularization and model
selection while minimizing the amount of undesired
inductive biases (Lee, 2004). MacKay (1992) pro-
poses a hierarchical prior1 combined with empirical
Bayes. Lee (2003) proposes an improper prior for

1
Hierarchical priors are convenient when there is lim-

ited parameter interpretability. The addition of upper

levels to the prior reduces the influence of the choice

made at the top level, making the prior at the bottom

level (the original parameters) more di�use (Lee, 2004).

NNs, which avoids the injection of prior biases at
the cost of higher sensitivity to overfitting. Robinson
(2001) proposes priors to alleviate overparametriza-
tion of NN models. We build on classical weight
space priors but with the goal of obtaining specific
properties in function space.

Function space priors for BNNs. Some works
(Flam-Shepherd et al., 2017; Sun et al., 2019) match
BNN priors to specific function space priors (e.g.,
GPs) but rely on sampling function values at a col-
lection of input points. These approaches do not
provide guarantees outside of the sampled region,
and even in that region, their enforcement of prop-
erties is approximate. Neural processes (Garnelo
et al., 2018) use meta-learning to identify functional
properties that may be present in new functions, but
they rely on having many prior examples and do not
allow the user to specify basic properties directly. In
contrast, we encode functional properties via prior
design, without relying on function samples.

Bayesian formulations of RBFN models.

Closest to our work are Bayesian formulations of
RBFNs. Barber and Schottky (1998) consider a
fixed number of hidden units, fixed scale, and use
a Gaussian approximation to the posterior distribu-
tion, which is available in closed form in this case.
Holmes and Mallick (1998) and Andrieu et al. (2001)
propose fully Bayesian formulations that employ ho-
mogeneous Poisson process priors on the center pa-
rameters, but their focus is on inferring the number of
hidden units and their formulation does not decouple
amplitude variance and lengthscale.

3 BACKGROUND

Bayesian neural networks (BNNs). Let y =
f(x |w, b) + ‘, where ‘ is a noise variable and w and
b refer to the weights and biases of a neural network
f respectively. In the Bayesian setting, we assume
a prior w, b ≥ p(w, b). One common choice is i.i.d.
normal distributions over each parameter. For better
comparison to PoRB-Nets we focus on BNNs with
Gaussian „(z) = exp(≠z2) activations. We will refer
to such a model as a standard BNN (Neal, 1996).

Radial basis function networks (RBFNs).

RBFNs are classical shallow neural networks that
approximate arbitrary nonlinear functions through a
linear combination of radial kernels (Powell, 1987).
They are universal function approximators (Park
and Sandberg, 1991) and are widely used across dis-
ciplines such as numerical analysis, biology, finance,
and classification in spatio-temporal models (Dash

https://github.com/dtak/porbnet


et al., 2016). For an input x œ RD, the output of a
single-hidden-layer RBFN of width K is given by:

f(x |✓) = b +
Kÿ

k=1
wk exp

3
≠1

2s2
k
Îx ≠ ckÎ2

4
, (1)

where s2
k

œ R and ck œ RD are the scale and center
parameters, respectively, wk œ R are the hidden-to-
output weights, and b œ R is the bias parameter.
Each k-th hidden unit can be interpreted as a local
receptor centered at ck, with radius of influence sk

and relative importance wk (Powell, 1987).

Poisson process. A Poisson process (PP) on RD

is a stochastic process characterized by a positive
real-valued intensity function ⁄(c). For any set C µ
RD, the number of points in C follows a Poisson
distribution with parameter

s
C ⁄(c)dc. The process

is inhomogeneous if ⁄(c) is non-constant. We use a
PP as a prior on the center parameters of an RBFN.

Gaussian Cox process. A Bayesian model con-
sisting of a Poisson process likelihood and a log Gaus-
sian process prior g(c) on the intensity function ⁄(c)
is called a log Gaussian Cox Process (Møller et al.,
1998). Adams et al. (2009) present an extension,
called the sigmoidal Gaussian Cox process, which
passes the Gaussian process through a scaled sigmoid
function. To infer an input dependent lengthscale
of an RBFN, we use this process as a model for
the intensity function of the PP prior on the center
parameters of the RBFN.

4 MODEL

In this section we introduce Poisson Process Ra-
dial Basis Function Networks (PoRB-Nets), which
achieve two essential desiderata for a functional prior.
First, they enable the user to encode the funda-
mental basic properties of lengthscale (i.e., smooth-
ness), amplitude variance (i.e., signal variance), and
(non)stationarity. Second, PoRB-Nets adapt the com-
plexity of the network based on the inputs. For exam-
ple, if the data suggests that the function needs to be
less smooth in a certain input region, then that data
can override the prior. Importantly, PoRB-Nets fulfill
these desiderata while retaining appealing properties
of NN-based models, as discussed in Section 1.

Generative model. As in a standard BNN, we
assume a Gaussian likelihood centered on the net-
work output, and independent Gaussian priors on
the weight and bias parameters. Unique to the novel
PoRB-Net formulation is a Poisson process prior

over the set of center parameters and a deterministic
dependence of the scale parameters on the Poisson
process intensity. The generative model is given by:

{ck}K

k=1 | ⁄ ≥ exp
3

≠
⁄

C
⁄(c)dc

4 KŸ

k=1
⁄(ck) (2)

s2
k

| ⁄, ck = s2
0⁄2(ck) (3)

wk ≥ N
!
0, ‡2

w

"
(4)

b ≥ N
!
0, ‡2

b

"
(5)

yn | xn,✓ ≥ N
!
f(xn;✓), ‡2"

, (6)

where f(xn;✓) is given by Eq. (1); ⁄ : C æ R+ is the
(possibly non-constant) Poisson process intensity; ✓
is the set of RBFN parameters, including the centers,
weights, bias, and intensity; and s2

0 is a hyperparam-
eter that defines the scale of the radial basis function
when the intensity is one. In practice, s2

0 allows the
user to control the baseline number of hidden units.
For example, if computational constraints limit the
number of hidden units that can be used, decreasing
s2

0 allows the user to model a smaller lengthscale
without adding more units.

Di�erent priors could be considered for the intensity
function ⁄. One simple case is to assume a uniform
intensity ⁄(c) = ⁄ with ⁄2 ≥ Gamma(–⁄, —⁄). Under
this specific formulation, Section 5 proves that the
amplitude variance is stationary as the size of the re-
gion C tends to infinity, and Section 6 proves that the
posterior regression function is consistent as the num-
ber of observations tends to infinity; such amplitude
variance only depends on the variance of the hidden-
to-output weights and output bias V[f(x)] ¥ ‡2

b
+‡̃2

w
,

where ‡̃2
w

is just ‡2
w

scaled by s0. We further show
that the intensity ⁄ controls the lengthscale.

Hierarchical prior for unknown input depen-

dence of the lengthscale. In the case when the
input-dependence of the lengthscale is unknown, we
further model the intensity function ⁄(c) of the
Poisson process by a sigmoidal Gaussian Cox pro-
cess (Adams et al., 2009):

g ≥ GP(0, �(·, ·)) (7)
⁄(c) = ⁄ú‡(g(c)), (8)

where ⁄ú is an upper bound parameter on the inten-
sity function and ‡(z) = (1 + e≠z)≠1 is the sigmoid
function. In the forward pass of the network, we use
the posterior mean of g to evaluate ⁄(c).

Contrast to BNNs with Gaussian priors. In
Sections 5 and 6, we prove that the proposed for-
mulation has the desired properties described above.



However, before doing so, we briefly emphasize that
the i.i.d. Gaussian weight space prior commonly used
with BNNs does not enjoy these properties. To see
why, let us consider a standard feed-forward NN layer
with 1-dimensional input and a Gaussian „(z) =
exp(≠z2) activation function. We can rewrite the
hidden units as „(wkx + bk) = „(wk(x ≠ (≠bk/wk))).
This means that the corresponding center of the k-th
hidden unit is ck = ≠bk/wk and the scale is sk = wk.
If bk and wk have i.i.d. Gaussian priors with zero
mean, as in standard BNNs, then the center parame-
ter has a Cauchy distribution centered around zero.
This is an important observation that motivates our
work: A standard BNN concentrates the center of
hidden units near the origin, resulting in nonstation-
ary priors in function space.
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Figure 1: PoRB-Net captures amplitude sta-

tionarity while a standard BNN does not. Pos-
terior predictive distributions given 4 observations.

5 VARIANCE AND
LENGTHSCALE

We now return to the core desiderata: to specify a
prior that separately controls a function’s lengthscale
and amplitude variance, as one could do using a GP
with an RBF kernel. To do so, we first derive the
covariance of the proposed PoRB-Net model. The
full derivations supporting this section are available
in Appendix A.

Neal (1996) showed that the covariance function for a
single-layer BNN with a fixed number of hidden units
fl(x; ◊1), . . . , fl(x; ◊K) and independent N (0, ‡2

w
) and

N (0, ‡2
b
) priors on the hidden-to-output weights and

output bias takes the following general form:

Cov(f(x1), f(x2)) = ‡2
b

+ ‡2
w

KE◊ [fl(x1; ◊)fl(x2; ◊)] .

We show that the covariance function for a BNN
with a distribution over the number of hidden units
takes an analogous form, replacing the fixed number
of hidden units K with its expectation:

Cov(f(x1), f(x2)) = ‡2
b

+ ‡2
w
E [K]E◊ [fl(x1; ◊)fl(x2; ◊) | K]¸ ˚˙ ˝

:=U(x1,x2)

.

In the PoRB-Net model, ◊ = {⁄(·), ck}, fl(x; ◊k) =
„(⁄(ck)s0Îx ≠ ckÎ) where „(z) = exp(≠ 1

2 z2), and
E [K] =

s
C ⁄(c) dc. By deriving the form of U(x1, x2)

for the case of a homogeneous Poisson process, we
next show that the covariance becomes increasingly
stationary as the region C increases in size. We then
illustrate how the covariance is decoupled from the
lengthscale.

A homogeneous PP yields stationarity. In the
case of constant intensity ⁄(c) = ⁄ defined over C =
[C0, C1], the expression of U(x1, x2) can be derived
in closed form:

U(x1, x2) = 1
µ(C)

Ú
fi

s2 exp
I

≠s2
3

x1 ≠ x2
2

42J

Ë
�((C1 ≠ xm)

Ô
2s2) ≠ �((C0 ≠ xm)

Ô
2s2⁄)

È
, (9)

where s2 = s2
0⁄2, � is the cumulative distribution

function of a standard Gaussian, and xm = (x1 +
x2)/2 is the midpoint of the inputs. As the bounded
region C increases, the second term approaches one,
and so the covariance of a PoRB-Net approaches a
squared exponential kernel with inverse lengthscale
s2

0⁄2 and amplitude variance ‡̃2
w

:=


fi/s2
0 (defined

for convenience):

Cov (f(x1), f(x2)) ¥

‡2
b

+ ‡̃2
w

exp
I

≠s2
0⁄2

3
x1 ≠ x2

2

42J
, (10)

which is stationary since it only depends on the
squared di�erence between x1 and x2. Notice that
this result does not rely on an infinite width limit
of the network, but only on the Poisson process
region [C0, C1] being relatively large compared to
the midpoint xm. In practice, [C0, C1] can be set
larger than the range of observed x values to achieve
covariance stationarity over the input domain. Fig-
ure 2 shows that over the region [≠5, 5] the ana-
lytical covariance from Equation (9) is fairly con-
stant with only slight drops near the boundaries.
In Appendix A we also derive the covariance when
⁄2 ≥ Gamma(–⁄, —⁄), which results in a qualitatively
similar shape. In contrast, the covariance function of
an RBFN with a Gaussian prior on the center param-
eters is not approximately stationary. Specifically,
for ck ≥ N (0, ‡2

c
) and a fixed scale s2 = 1/(2‡2

s
),

Williams (1997) shows that U(x1, x2) takes the fol-
lowing form, which Figure 2 shows is highly non-
stationary:

U(x1, x2) Ã exp
3

≠ (x1 ≠ x2)2

2(2‡2
s

+ ‡4
s
/‡2

c
)

4

¸ ˚˙ ˝
Stationary

exp
3

≠ x2
1 + x2

2
2(2‡2

c
+ ‡2

s
)

4

¸ ˚˙ ˝
Nonstationary

.
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Figure 2: PoRB-Net captures amplitude sta-

tionarity while an RBFN with a Gaussian

prior on the centers does not. The lines are
Cov(x ≠ t/2, x + t/2) for di�erent t. We set all of
‡2

w
= s2

0 = s2 = ⁄ = 1 and C = [≠5, 5].

Decoupling of variance and lengthscale.

From Equation 9, notice the variance is V[f(x)] ¥
‡2

b
+ ‡̃2

w
, which has no dependence on the inten-

sity ⁄, freeing it to act as an inverse lengthscale.
This is a point of di�erentiation of PoRB-Nets. If
the scale were fixed or independent of the intensity,
as is the case in previous priors over RBFNs (e.g.,
Holmes and Mallick (1998)), the variance would be
V[f(x)] ¥ ‡2

b
+⁄‡̃2

w
. Intuitively this happens because

a higher intensity implies a higher number of basis
functions, which implies a higher amplitude variance
as the basis functions add up. If we instead allow
the scale parameters s2 to increase as a function of
the intensity, thus making the radial basis functions
more narrow, we can counteract the impact of their
concentration on the amplitude.

To support the hypothesis that the intensity ⁄ con-
trols the lengthscale, we examine the average number
of upcrossings of y = 0 of sample functions. For a
GP with an RBF kernel, the expected number of
upcrossings u over the unit interval is inversely re-
lated to the lengthscale l via u = (2fil)≠1. Figure 3
shows a histogram of the upcrossings from functions
drawn from a PoRB-Net with a stepwise intensity
⁄(c) (greater above x = 0). Notice the lengthscale
is clearly smaller above x = 0 but the amplitude
variance V[f(x)] is approximately constant for all x.

An inhomogeneous PP yields non-

stationarity. When the intensity is a non-constant
function ⁄(c), then Equation (9) does not hold.
However, we find that setting the scale parameter
of each hidden unit to s2

k
= s2

0⁄(ck)2, where ⁄(ck)
is the intensity evaluated at the center parameter
ck, allows for an input dependent lengthscale that is
approximately decoupled from the variance.
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Figure 3: PoRB-Nets decouple lengthscale (as

measured by the upcrossings) and variance.

6 CONSISTENCY
In this section, we study consistency of predictions.
That is, as the number of observations goes to infinity,
whether the posterior predictive concentrates around
the true function. When dealing with priors that
can produce an unbounded number of parameters,
consistency is a basic but important property. To our
knowledge, we are the first to provide consistency
for RBFNs with a Poisson distributed number of
hidden units (no consistency guarantees were derived
by Andrieu et al. (2001)).

Define r0(x) to be the true regression function and
r̂n(x) = E

f̂n
[Y | X] to be the estimated regression

function, where p̂n is the estimated density in param-
eter space based on n observations. The estimator
r̂n(x) is said to be consistent with respect to the true
regression function r0(x) if, as n tends to infinity:⁄

(r̂n(x) ≠ r0(x))2 dx
p≠æ 0. (11)

Doob’s theorem shows that Bayesian models are con-
sistent as long as the prior places positive mass on
the true parameter (Miller, 2018). For finite dimen-
sional parameter spaces, one can ensure consistency
by simply restricting the set of zero prior probability
to have arbitrarily small or zero measure. Unfor-
tunately, in infinite dimensional parameter spaces,
this set might be very large (Freedman, 1963). In
our case where functions correspond to uncountably
infinite sets of parameters, we cannot restrict this set
of inconsistency to have measure zero.

Instead, we aim to show a strong form of consistency
called Hellinger consistency. We closely follow the
approach of Lee (2000), who shows consistency for
standard BNNs with normal priors on the parame-
ters. Formally, let (x1, y1), . . . , (xn, yn) ≥ p0 be the
observed data drawn from the ground truth density
p0 and define the Hellinger distance between joint
densities p and p0 over (X, Y ) as:

DH(p, p0) =

Û⁄⁄ 1
p(x, y) ≠


p0(x, y)

22
dx dy.



The posterior is said to be consistent over Hellinger
neighborhoods if for all ‘ > 0,

p({f : DH(p, p0) Æ ‘}) p≠æ 1.

Lee (2000) shows that Hellinger consistency of joint
density functions implies frequentist consistency as
described in Equation (11). The following theorem
describes an analogous result for PoRB-Nets with
homogeneous intensities.
Theorem 1. (Consistency of PoRB-Nets) A radial
basis function network with a homogeneous Pois-
son process prior on the location of hidden units
is Hellinger consistent as the number of observations
goes to infinity.

Proof. Leveraging the results and proof techniques
from Lee (2000), we use bracketing entropy from
empirical process theory to bound the posterior prob-
ability outside Hellinger neighborhoods. We need to
check that this model satisfies two key conditions.
Informally, the first condition is that the prior prob-
ability placed on parameters larger in absolute value
than a bound Bn, where Bn is allowed to grow with
the data, is asymptotically bounded above by an
exponential term exp(≠nt), for some t > 0. The
second condition is that the prior probability placed
on KL neighborhoods of the ground truth density
function p0 is asymptotically bounded below by an
exponential term exp(≠n‹), for some ‹ > 0. The
proof is in the Appendix B.

Note that consistency of predictions does not imply
concentration of the posterior in weight space, since
radial basis function networks, like other deep neural
models, are not identifiable.

7 INFERENCE
We infer the posterior p(✓ | D) over the network
parameters ✓ with Markov-Chain Monte Carlo
(MCMC) and model predictions for new observations
and their associated uncertainties with the posterior
predictive distribution:

p(yı|xı, D) =
⁄

p(yı|xı,✓)p(✓|D)d✓.

The inference algorithm can be broken down into
three steps. Step 1 updates the network weight,
center, and bias parameters

!
{wk, ck}K

k=1, b
"

condi-
tional on the network width K and intensity func-
tion with Hamiltonian Monte-Carlo (HMC) (Neal,
1996). Step 2 updates the network width K con-
ditional on the network parameters and intensity

function with birth and death Metropolis-Hastings
(MH) steps. Finally, Step 3 updates the Poisson
process intensity conditional on the other network
parameters and network width. In the case of a ho-
mogeneous intensity with a Gamma prior, we use an
MH step. In the case of a inhomogeneous intensity
defined by Equations 7 and 8 we follow the inference
procedure of Adams et al. (2009) for a sigmoidal
Gaussian Cox process, treating the current center pa-
rameters {ck} as the observed events. This involves
introducing three auxiliary variables: a collection
of “thinned” center parameters {c̃m}, the number of
thinned center parameters M , and the latent GP eval-
uated at the thinned center parameters {g̃m}. Step
3 requires updating each of these auxiliary variables,
along with the latent GP values {gk} evaluated at
the current center parameters {ck}. For convenience
we define gM+K as vector concatenating {g̃m}M

m=1
and {gk}K

k=1 and cM+K as the vector concatenating
{c̃m}M

m=1 and {ck}K

k=1. We also define L(✓) as the
likelihood of the data given all network parameters.
We next describe these steps in more detail assuming
a sigmoidal Gaussian Cox process prior on an inho-
mogeneous intensity ⁄(c), but the full details of the
inference procedure are available in the Appendix C.

Step 1: Update network weights, bias, and

centers. The full conditional distribution of the
weights, bias, and centers can be written as:

p({wk}, b, {ck} | K, {cm}, {g̃m}, {g̃k})

Ã L(✓) exp
;

≠ 1
2‡2

b

b2
<

exp
I

≠ 1
2‡2

w

Kÿ

k=1
w2

k

J

|�|≠1/2 exp
;

≠1
2g

T

M+K
�≠1

gM+K

<
,

where � is the kernel matrix of the GP underlying
the intensity evaluated at all of the center parameters.
We use HMC, which requires tuning L leap-frog steps
of size ‘, to propose updates from this distribution.

Step 2: Update network width K. We adapt
the network width with birth or death Metropolis-
Hastings (MH) steps chosen with equal probability.
For a birth step, we propose a weight wÕ and a center
cÕ from their prior distributions, and we propose a
GP function value gÕ (representing g(cÕ)) from the
GP conditioned on the current function values gM+K

observed at cM+K . For the death step, we propose
to delete the kÕth hidden unit by uniformly select-
ing among the existing hidden units. Therefore, we
can write the hidden unit birth and death proposal



densities as follows:

q(K æ K + 1) Ã N (wÕ; 0, ‡2
w

)
p(gÕ | cÕ, cM+K , gM+K)/µ(C)

q(K æ K ≠ 1) = 1/K

Note that since the GP has a zero mean function,
we propose cÕ uniformly over µ(C), but for any fixed
intensity we propose from the density ⁄(c)/�. The
acceptance rates work out to:

abirth = L(✓Õ)
L(✓)

⁄ú‡(gÕ)µ(C)
K + 1

adeath = L(✓Õ)
L(✓)

K

⁄ú‡(gkÕ)µ(C) .

Step 3: Update Poisson process intensity ⁄.

We adopt an inference procedure similar to (Adams
et al., 2009) with two crucial di�erences: the “events”
{ck} (center parameters in our case) are unobserved
and the full conditional of the function values gM+K

includes the likelihood L(✓) of the data D, since
the forward pass of the network uses the posterior
mean of g to evaluate the intensity ⁄(c) = ⁄ú‡(g(c)).
We proceed as follows: i) update the number M of
thinned centers using birth and death steps, analo-
gous to updating the number of actual centers K; ii)
update the thinned center parameters {cm}M

m=1 us-
ing MH steps with perturbative proposals; iii) update
the GP function values gM+K using HMC.

8 RESULTS

Next we empirically demonstrate desirable properties
of PoRB-Net. In particular, PoRB-Net allows for
(a) easy specification of lengthscale and amplitude
variance information (analogous to a GP), and (b)
learning of an input-dependent lengthscale. We re-
port additional empirical results on synthetic and
real datasets in Appendix D.

PoRB-Net allows for easy specification of sta-

tionary lengthscale and signal variance. Fig-
ure 5 shows prior function samples from di�erent
models (columns) with di�erent prior settings (rows).
Compared to the top row, the second row has a
smaller overall lengthscale and the bottom row has a
higher overall variance. We plot 50 function samples
(red lines) and the estimated variance based on 10,000
function samples (black, dotted line). Like a GP, the
amplitude variance of PoRB-Net is constant over the
input space and does not depend on the lengthscale.
On the other hand, the model of Andrieu et al. (2001)
(B-RBFN), which e�ectively assumes a homogeneous

Poisson process prior on the center parameters but
does not rescale the basis functions based on the
intensity, has a variance that changes over the input
space and does depend on the lengthscale. For a
standard BNN (last column), the amplitude variance
and lengthscale are concentrated near the origin and
the variance increases as we decrease the lengthscale
(from 1st to 2nd row).

PoRB-Net can recover a known, input depen-

dent lengthscale. Figure 4 illustrates the capacity
of PoRB-Net to infer an input-dependent lengthscale.
Here the true function is a GP with a sinusoidal
lengthscale (see kernel in the Appendix D). The right
panel shows the center parameter intensity, inferred
from noisy (x, y) observations, corresponds to the
inverse of the true lengthscale.

0.0 0.2 0.4 0.6 0.8 1.0

x

−0.5

0.0

0.5

1.0

)unFtion

train
test

0.0 0.2 0.4 0.6 0.8 1.0

x

0

20

40

60

80

100
Intensity

inIerred λ(c)
true l−1

sin (x)

Figure 4: PoRB-Net is able to learn input-

dependent lengthscale information. The
ground truth synthetic example has been generated
from a nonstationary GP with a sinusoidal length-
scale function lsin(x).

PoRB-Nets exhibit competitive performance

on synthetic and real datasets. We compare
the performance of PoRB-Nets, GPs, and single-layer
BNNs with Gaussian activations, with the first two
sets of models trained with and without inferring
the input dependence of the lengthscale. For the
GP models, to use a constant lengthscale we use a
regular GP with an RBF kernel; to infer an input
dependent lengthscale we use the nonstationary GP
model of Heinonen et al. (2016), which we denote by
LGP.

At a high level, we see qualitative similarity between
PoRB-Nets and GPs that infer the lengthscale, and
PoRB-Nets and GPs that do not infer the lengthscale,
but the BNNs look di�erent from the rest. This is
due to the nonstationarity of the prior, which has
higher variability near the origin. All models except
the GP are inferred using HMC (including the LGP).

We use four synthetic datasets — all drawn from GPs
with known lengthscale functions l(x) — and six real,
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Figure 5: PoRB-Net allows for easy specification of lengthscale and amplitude like a GP. We
show prior samples from PoRB-Net with a homogeneous intensity, a GP with RBF kernel, B-RBFN (Andrieu
et al., 2001), and a BNN (Neal, 1996) with a Gaussian activation. Compared to the first row, the second row
has lower lengthscale and similar amplitude, while the third row has higher amplitude and similar lengthscale.

nonstationary time series datasets – four from mimic
(Johnson et al., 2016), the CBOE volatility index over
one year starting in October 2018 (“finance”), and the
motorcycle dataset (Silverman, 1985). The datasets
drawn using a sinusoidal lengthscale lsin(x) and an
increasing lengthscale (from left to right) linc(x) can
be seen in Figures 4 and 6, respectively. lconst(x)
is a constant lengthscale, on which the GP with a
stationary, RBF kernel not surprisingly performs best
(with PoRB-Net coming in second).

To highlight di�erences in model behavior rather
than prior specification, we first identify the variance
and lengthscale parameters that optimize the log
marginal likelihood of the GP. We then match the
overall variance and lengthscale (as measured by the
number of upcrossings mentioned in Section 5) of the
BNN and PoRB-Net to the GP by a grid search over
the model parameters. Note that the BNN will still
have a di�erent input dependence of variance and
upcrossings over the input space (both concentrated
near the origin). Since adjusting the lengthscale
of PoRB-Net adjusts the prior expected number of
hidden units, and during inference they can further
adapt to the data, we train BNNs with 25, 50, and
100 units, roughly corresponding to the range of units
used by PoRB-Net.

There are two main takeaways from these results:

• Examining the posterior predictives in Figure 6
qualitatively, both PoRB-Net and the LGP
adapt the local lengthscale to the smoothness of
the data, though the e�ect is more pronounced
in the LGP. In contrast, the BNN underesti-
mates uncertainty near x ¥ .2 in the synthetic
dataset (top row) and overestimates uncertainty
near x ¥ .8 in the real dataset (bottom row).

• The test log likelihoods in Table 1 show PoRB-
Net exhibits strong performance across the
datasets. In contrast, the performance of the
BNN varies greatly by the number of hidden
units. PoRB-Nets remove this choice by averag-
ing over di�erent numbers of units, fully taking
advantage of the Bayesian paradigm.

Test RMSEs, posterior predictives, and inferred in-
tensities for all datasets are available in the Appendix
D. Note that HMC is a gold standard for posterior
inference; the fact that the standard BNN lacks de-
sirable properties under HMC demonstrates that its
failings come from the model and not the inference.
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Table 1: Test Log Likelihoods. For the BNN, we
show the best(worst) performance among models of
size 25, 50, and 100 units.

PoRB-
Net†

PoRB-
Net GP LGP BNN

sin* 0.77 0.82 0.73 0.81 0.79 (0.74)
inc* -0.40 0.00 -0.23 0.18 -0.15 (-0.28)

inc2* 0.66 0.75 0.54 0.18 0.68 (0.63)
const* 0.28 0.33 0.41 0.24 0.01 (-0.30)

mimic1 0.89 0.95 0.83 0.90 1.05 (0.91)
mimic2 0.53 0.60 0.56 0.54 0.47 (0.39)
mimic3 -0.63 -0.57 -0.67 -0.58 -0.59 (-0.65)
mimic4 -1.72 -1.53 -1.85 -1.44 -0.59 (-1.38)
finance -1.41 -0.52 -1.97 0.03 -0.73 (-2.63)
motor. 0.18 0.16 0.17 0.14 0.16 (0.12)

*synthetic dataset †infers homogeneous intensity

9 CONCLUSION

This work presents a novel Bayesian prior for neu-
ral networks called PoRB-Net that allows for easy
encoding and inference of two basic functional proper-
ties: amplitude variance and lengthscale. We provide
a principled inference scheme and future work can
address how it can be scaled.

Under standard BNN formulations, we show that it
is impossible to get such properties. The essential
pieces to achieve these properties were: i) a center-
scale parametrization (instead of classical weight-
bias), ii) an automatic adaptation of the number of
hidden units, and iii) a rescaling of the radial basis
functions based on their concentration.

We focused on Gaussian activations because they
have a limited region of e�ect, unlike other popu-
lar activations like tanh or ReLU. Exploring how to
get desirable properties for those activations seems
challenging, and remains an area for future explo-
ration. That said, we emphasize that RBFNs are
commonly used in many practical applications, as
surveyed in (Dash et al., 2016).

Finally, all of our work was developed in the context
of single-layer networks. From a theoretical perspec-
tive this is not an overly restrictive assumption, as
single layer networks are still universal function ap-
proximators (Park and Sandberg, 1991). However,
deep RBFNs, where only the last layer has a radial
basis function parameterization, have received re-
newed interest (Zadeh et al., 2018), so exploring deep
PoRB-Nets is an interesting area of future work.

Given the popularity of NNs and the need for uncer-
tainty quantification in them, understanding prior
assumptions—which will govern how we will quantify
uncertainty—is essential. If prior assumptions are
not well understood and not properly specified, the
Bayesian framework makes little sense: the posteriors
that we find may not be ones that we expect or want.
Though we focus on RBFNs, our work provides an
important step toward specifying NN priors with
desired basic functional properties.
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A COVARIANCE DERIVATION

In this section we derive the covariance function of a PoRB-Net for one dimensional inputs. First we show
our model has a prior mean of zero. Note that b, {(wk, ck)}K

k=1, and K are all random variables the scales s
2
k

are fixed as a function of the intensity: s
2
k

= s
2
0⁄(ck)2.

E[f(x)] = E
C

b +
Kÿ

k=1
wk„(sk(x ≠ ck))

D
(1)

= E[b] + E
C

Kÿ

k=1
wk„(sk(x ≠ ck))

D
(2)

= E
C
E

C
Kÿ

k=1
wh„(sk(x ≠ ck)) | K = K0

DD
(3)

=
Œÿ

K0=0
Pr[K = K0]E

C
Kÿ

k=1
wk„(sk(x ≠ ck)) | K = K0

D
(4)

=
Œÿ

K0=0
Pr[K = K0]

K0ÿ

k=1
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Pr[K = K0]K0 (8)

= E [wk]¸ ˚˙ ˝
0

E [„(sk(x ≠ ck))]E[K0] (9)

= 0 (10)

In Equation (6) we drop the condition K = K0 since conditional on the network width K being fixed, the
weights wk are independently normally distributed and the centers are independently distributed according
to the normalized intensity ⁄(c)/�, so they do not depend on the actual value of the network width.

Next we consider the covariance:

Cov [f(x1), f(x2)] = E [f(x1)f(x2)]

= E
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w

is the prior variance for the weights. To actually evaluate the covariance we need
to evaluate the U(x1, x2) = E [„(s(x1 ≠ c))„(s(x2 ≠ c))] term. We next consider two cases. Case 1 is a
homogeneous Poisson process prior over c and Case 3 is an inhomogeneous Poisson process prior over c. Note
that in both cases. Note that in both cases, the Poisson process prior over c is unconditional on the network
width. Conditioned on the network width, as in the expectation we are trying to evaluate, Case 1 is a uniform
distribution over C and Case 3 has PDF ⁄(c)/�.

A.1 CASE 1: HOMOGENEOUS POISSON PROCESS

First we consider the case where the intensity is fixed, i.e., ⁄(c) = ⁄, meaning the center parameters are
uniformly distributed over C. Then we have:
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In Equation (20) we plug in s
2 = s

2
0⁄(c)2 = s

2
0⁄

2. In equation (21) we point out we can write this term as
the product of an SE kernel and a mixture of Gaussians. Considering only the uniform mixture of Gaussian
term we have:
⁄

C
exp

I
≠s

2
0⁄

2

C3
x1 + x2

2 ≠ c

42DJ
1

µ(C) dc = 1
µ(C)

⁄

C
exp

I
≠s

2
0⁄

2

C3
x1 + x2

2 ≠ c

42DJ
dc (22)



= 1
µ(C)

⁄
C1

C0

exp
;

≠
1

2Â2

Ë
(xm ≠ c)2

È<
dc (23)

= 1
µ(C)Â

Ô

2fi

⁄ (C1≠xm)Â

(C0≠xm)/Â

1
Ô

2fi
exp

;
≠

1
2u

2
<

du (24)

= 1
µ(C)

1
2s

2
0⁄2

Ô

2fi [�((C1 ≠ xm)/Â) ≠ �((C1 ≠ xm)/Â)]

(25)

= 1
µ(C)

Ú
fi

s
2
0⁄2

Ë
�((C1 ≠ xm)

Ô

2s0⁄) ≠ �((C0 ≠ xm)
Ô

2s0⁄)
È

(26)

where � is the cumulative distribution function (CDF) of a standard Gaussian. In Equation (23) we define
Â

2 := 1/(2s
2
0⁄

2) and xm := (x1 + x2)/2 as the midpoint. In Equation (24) we use the change of variables
u = (c ≠ xm)/‡. Noting that E[K] = ⁄ ú µC and plugging Equation (26) in Equation (21) and Equation (21)
into Equation (13) we have:

Cov [f(x1), f(x2)] = ‡
2
b

+ ‡
2
w

exp
I

≠s
2
0⁄

2
3

x1 ≠ x2
2

42J Ë
�((C1 ≠ xm)

Ô

2s0⁄) ≠ �((C0 ≠ xm)
Ô

2s0⁄)
È

(27)

This gives a closed form representation for the covariance (to the extent that the standard Gaussian CDF Phi

is closed form). If we further assume C1 and C0, where C = [C0, C1] is where the Poisson process intensity
is defined, are large in absolute value relative to the midpoint xm. In other words, the Poisson Process is
defined over a larger region than the data. Then the di�erence in error functions is approximately 1 (i.e., the
integral over the tails of the Gaussian goes to zero) and the covariance becomes:

Cov [f(x1), f(x2)] ¥ ‡
2
b

+ ‡
2
w

exp
I

≠s
2
0⁄

2
3

x1 ≠ x2
2

42J
(28)

Finally, notice that the variance depends only on the weight and bias variance parameters:

V [f(x)] ¥ ‡
2
b

+ ‡
2
w

(29)

A.2 CASE 2: HOMOGENEOUS POISSON PROCESS WITH GAMMA PRIOR

U(x1, x2) (30)

=
⁄⁄

„(s(x1 ≠ c))„(s(x2 ≠ c))p(c | ⁄)p(⁄) d⁄ dc (31)

=
⁄⁄

„(s(x1 ≠ c))„(s(x2 ≠ c))p(c | ⁄)p(⁄) d⁄ dc (32)

=
⁄⁄

exp
;

≠
1
2(s2

0⁄
2(x1 ≠ c))2

<
exp

;
≠

1
2(s2

0⁄
2(x2 ≠ c))2

<
1

µ(C)
—

–

�(–)⁄
2(–≠1)

e
≠—⁄

2
d⁄ dc (33)

= 1
µ(C)

—
–

�(–)

⁄⁄
⁄

2(–≠1) exp

Y
___]

___[
≠⁄

2

Q

ccca
1
2s

2
0(x1 ≠ c)2 + 1

2s
2
0(x ≠ c) + —

¸ ˚˙ ˝
:=—̃(c)

R

dddb

Z
___̂

___\
d⁄ dc (34)

= 1
µ(C)

—
–

�(–)

⁄⁄
⁄

2(–≠1) exp
)

≠⁄
2
—̃(c)

*
d⁄ dc (35)

= —
–

µ(C)

⁄
—̃

≠–(c) dc (36)



In Equation 36 we recognize the form of the Gamma probability density function to solve the inner integral.
We now rewrite —̃(c) as:

—̃(c) := 1
2s

2
0(x1 ≠ c)2 + 1

2s
2
0(x ≠ c) + — (37)

= s
2
0

3
c

2
≠ 2c

3
x1 + x2

2¸ ˚˙ ˝
:=xm

44
+ 1

2
!
x

2
1 + x

2
2
"

+ — (38)

= s
2
0(c ≠ xm)2

¸ ˚˙ ˝
:=u2

+ s
2
0

3
x1 ≠ x2

2

42
+ —

¸ ˚˙ ˝
:=r2

(39)

= u
2 + r

2 (40)

where we define xm := (x1 + x2)/2 as the midpoint of x1 and x2, and u = s
2
0(c ≠ xm)2, and r

2 :=
s

2
0 ((x1 ≠ x2)/2)2 + — to simplify the notation. Using this expression for —̃(c), the integral in Equation 36

becomes:
⁄

—̃(c)≠–
dc =

⁄
u1

u0

(u2 + r
2)≠–

du (41)

= ur
≠2–

2F1

3
1
2 , –; 3

2 ; ≠
u

2

r2

4----
U1

U0

(42)

where U0 = s
2
0(C0 ≠ xm), U1 = s

2
0(C1 ≠ xm) and the hypergeometric function 2F1 is defined by:

2F1(a, b; c; z) =
Œÿ

n=0

(a)n(b)n

(c)n

z
n

n! (43)

where:

(q)n =
I

1 n = 0
q(q + 1) · · · (q + n ≠ 1) n > 0

(44)

Plugging the expression for
s

b(c) dc back into Equation 36 we have:

V (x1, x2) = 1
µ(C)

3
—

r2

4≠–

S

U 2F1
1

1
2 , –; 3

2 ; ≠
s

2
0(C0≠x)2

r2

2

(x ≠ C0) +
2F1

1
1
2 , –; 3

2 ; ≠
s

2
0(C1≠x)2

r2

2

(C1 ≠ x)

T

V (45)

Before plugging the expression for V (x1, x2) into Equation 13, notice we can write the expected number of
units E[K] as the product of the expected intensity E[⁄] and the volume of the Poisson process region µ(C):

E[K] = E [E[K | ⁄] | ⁄] = E[⁄µ(C) | ⁄] = µ(C)E[⁄] (46)

Therefore, the covariance is:

Cov [f(x1), f(x2)] = ‡
2
b

+ ‡̃
2
w
E[⁄]

3
—

r2

4≠–

S

U 2F1
1

1
2 , –; 3

2 ; ≠
s

2
0(C0≠x)2

r2

2

(x ≠ C0) +
2F1

1
1
2 , –; 3

2 ; ≠
s

2
0(C1≠x)2

r2

2

(C1 ≠ x)

T

V (47)

where r
2 = s

2
0 ((x1 ≠ x2)/2)2 + —. Notice the variance simplifies to:

Var [f(x)] = ‡
2
b

+ ‡̃
2
w
E[⁄]

S

U 2F1
1

1
2 , –; 3

2 ; ≠
s

2
0(C0≠x)2

—

2

(x ≠ C0) +
2F1

1
1
2 , –; 3

2 ; ≠
s

2
0(C1≠x)2

—

2

(C1 ≠ x)

T

V (48)



Note that E[⁄] ¥


–/—. This is because ⁄

2
≥ Gamma(–, —) implies ⁄ ≥ Nakagami(m = –, � = –/—). Using

the approximation �(– + 1
2 )/�(–) ¥

Ô
– (follows from Sterling’s formula) we have:

E[⁄] =
�(– + 1

2 )
�(–) —

≠1/2
¥

Ú
–

—
(49)

Figure 1 plots the exact functional covariance Cov(f(x ≠ t/2), f(x + t/2)) with and without the Gamma prior
on the intensity (given by Equations 27 and 47, respectively) as a function of input x for di�erent values of a
fixed separation t (so t = 0 corresponds to the variance). Also shown are empirical estimates based on 1000
samples drawn from the prior. The covariance drops of sharply near the boundaries of C = [≠1, 1] but is
approximately constant within this region.

(a) Uniform intensity (b) Uniform intensity with Gamma prior

Figure 1: True (solid line) and estimated (dots) functional covariance Cov(f(x≠ t/2), f(x+ t/2)) of PoRB-Net
with a uniform intensity with and without a Gamma prior. For both models we set s

2
0 = 1, ‡

2
w

= 1, ‡
2
b

= 0,
C = [≠1, 1], and E[K] = 20.



B CONSISTENCY

We are interested in the posterior behavior of our model as the number of observations n æ Œ. For better
comparison with existing results, we use slightly di�erent notation in this section. We want to show that
the estimated regression function ĝn(x) := E[Y | X = x] is asymptotically consistent for the true regression
function g0(x), i.e.: ⁄

(ĝn(x) ≠ g0(x))2
dx

p

≠æ 0

To do this, we first show that the posterior probability assigned to all joint distribution functions f(X, Y ) in
any Hellinger neighborhood of the true joint distribution function f0(X, Y ) approaches one as n æ Œ. That
is, if A‘ = {f | DH(f, f0) Æ ‘} defines a Hellinger neighborhood of the true distribution function, then ’‘ > 0:

p(A‘ | (X1, Y1), . . . , (Xn, Yn)) p

≠æ 1

We assume that the marginal distribution of X is uniform on [0, 1] (i.e., f(X) = 1), so the joint distribution
f(X, Y ) and the conditional distribution f(Y | X) are the same, since f(X, Y ) = f(Y | X)f(X) = f(Y | X).
The estimated regression function is defined as ĝn(x) = E

f̂n
[Y | X = x], where f̂n is given by the posterior

predictive density:
f̂n(X, Y ) =

⁄
f(X, Y ) dP (f | (X1, Y1)), . . . , (Xn, Yn)).

After introducing a few definitions and notation, Section B.1 discusses the necessary conditions on the prior
required for any radial basis function network to achieve consistency, with many results taken or adapted from
[Lee, 2000]. Section B.2 checks that these necessary conditions are met by PoRB-Net with a homogeneous
Poisson process prior on the number of hidden units. We first show asymptotic consistency when the number
of hidden units is allowed to grow with the data. This gives a sequence of models known as a sieve. We then
extend this to the case when the number of hidden units is inferred.

Definitions and notation

We begin by specifying our notation and definitions, which di�ers from other sections in this paper.

• D is the input dimension.

• K is the network width.

• I, I
(w) and I

(c) are the number of total parameters, weight parameters, and center parameters, respectively.
I = I

(w) + I
(c) + 1.

• I, I
(w), I

(c), and I
(⁄

2) are the index set of total parameters, weight parameters, center parameters,
and intensity respectively (e.g., I = 1, 2, . . . , I). I

(w)
µ I, I

(c)
µ I, I

(⁄
2)

µ I, I = |I|, I
(w) = |I

(w)
|,

I
(c) = |I

(c)
|, and 1 = |I

(⁄
2)

|.

• The subscript n always denotes the sample size dependence (applies to Kn, In, In, I
(w)
n , I

(w)
n , I

(c)
n , I

(c)
n ,

Cn).

• Let ◊i denote any parameter, ci denote a center parameter, and wi denote a weight parameter.

• Cn is a bound on the absolute value of the parameters. For the sieves approach in we assume Cn Æ

exp(nb≠a), where 0 < a < b < 1.

• Assume that the Poisson process intensity function ⁄(c) is only defined on a bounded region C.

• Let f(x, y) denote a joint density of covariates X and label Y and let g(x) = E[Y | X = x] denote a
regression function.

• Let f0(x, y) and g0(x) denote the true joint density and regression function, respectively.



• We assume x œ X = [0, 1]D and that the marginal density of x is uniform, i.e. f(X) = 1.

• Let DH(f0, f) denote the Hellinger distance and let A‘ = {f : DH(f0, f) Æ ‘}.

• Let DK(f0, f) denote the KL divergence and let K“ denote a KL neighborhood of the true joint density:
K“ = {f | DK(f0, f) Æ “}= {f : DK(f0, f) Æ “}.

• Let (x1, y1), . . . , (xn, yn) denote the n observations and fin denote a prior probability distribution over
the parameters of a single hidden layer PoRB-Net conditional on there being Kn nodes, where Kn

increases with n. Let In denote the number of parameters for an RBFN network with Kn nodes.

• Let F denote the space of all single-layer radial basis function networks RBFN(x;✓) ‘æ y, let Fn µ F be
its restriction to networks with parameters less than Cn > 0 in absolute value, where Cn also increases
with n; let Hn µ F be its restriction to networks with Kn nodes; and let Gn = Fn flGn be the intersection
of both restrictions.

B.1 CONSISTENCY OF RBFNs WITH ARBITRARY PRIORS

B.1.1 Supporting results

The following theorems are used in proof of Lemma 2, which is adapted from [Lee, 2000]. Theorem 1 upper
bounds the bracketing number N[]( ) by the covering number N( ). Define the Hellinger bracketing entropy
by H[]( ) := log N[]( ).
Theorem 1. [van der Vaart and Wellner, 1996] Let s, t œ Fn, i.e., s and t are realizations of the parameter
vector. Let ft(x, y) œ F

ú be a function of x and y with parameter vector equal to t. Suppose that:

|ft(x, y) ≠ fs(x, y)| Æ d
ú(s, t)F (x, y) (50)

for some metric d
ú, for some fixed function F , and for every s, t, and every (x, y). Then for any norm Î·Î,

N[](2‘ ÎFÎ , F
ú
, Î·Î) Æ N(‘, Fn, d

ú). (51)

Theorem 2. [Wong and Shen, 1995] Define the ratio of joint likelihoods between the inferred density and the
true density as

Rn(f) =
nŸ

i=1

f(xi, yi)
f0(xi, yi)

. (52)

For any ‘ > 0 there exists constants a1, a2, a3, a4 such that if
⁄ Ô

‘

‘2/28

Ò
H[](u/a3) du Æ 2a4

Ô
n‘

2
, (53)

then

P
ú

A
sup

fœAc
‘flFn

Rn(f) Ø exp(≠a1n‘
2)

B
Æ 4 exp(≠a2n‘

2). (54)

Lemma 1. (Adaptation of Lemma 1 in Lee [2000])1 Suppose that H[](u) Æ log[(aÕ
n

a
C

a
ÕÕ

n
In/u)In ], where

In = (D + 1)Kn + 1, Kn Æ n
a, a

Õ
, a

ÕÕ
> 0, and Cn Æ exp(nb≠a) for 0 < a < b < 1. Then for any fixed

constants a
ÕÕÕ

, ‘ > 0 and for all su�ciently large n,
⁄

‘

0

Ò
H[](u) Æ c

Ô
n‘

2
. (55)

1This lemma di�ers from [Lee, 2000] because they assume H[](u) Æ log[(C2
nIn/u)In ] and In = (D + 2)Kn + 1.



Proof. Let an = a
Õ
n

a
C

a
ÕÕ

n
In, so H[](u) Æ log[(an/u)In ] = In log(an/u). Taking the square root and integrating

each side, we have:
⁄

‘

0

Ò
H[](u) du =

⁄
‘

0


In log(an/u) du (56)

=


In/2
⁄

‘

0


2 log(an/u) du (57)

=


In/2
⁄

‘

0
z du, (58)

where we define the substitution z :=


2 log(an/u). Then:

dv = 1
2(2 log(an/u))≠1/2(2)(≠an/u

2)
an/u

dz = ≠z
≠1

u
≠1

du (59)

=∆ du = ≠zu dz = ≠anzu/an dz = ≠anz exp

Q

a≠
1
2 2 log(an/u)¸ ˚˙ ˝

z2

R

b dz = ≠anz exp(≠z
2
/2) dz. (60)

Thus:
⁄

‘

0

Ò
H[](u) du Æ ≠


In/2

⁄
z‘

Œ
anz

2 exp(≠v
2
/2) dz (61)

= an


In/2

⁄ Œ

z‘

z
2 exp(≠v

2
/2) dz (62)

where we define z‘ =


2 log(an/‘). Next, integrate by parts (using u = z and dv = z exp(≠z
2
/2) dz), giving:

⁄
‘

0

Ò
H[](u) du = an


In/2

5
≠z exp(≠z

2
/2)

--Œ
z‘

+
⁄ Œ

z‘

exp(≠z
2
/2) dz

6
(63)

= an


In/2

5
z‘ exp(≠z

2
‘
/2) +

Ô

2fi

⁄ Œ

z‘

1
Ô

2fi
exp(≠z

2
/2) dz

6
(64)

Æ an


In/2

5
z‘ exp(≠z

2
‘
/2) +

Ô

2fi
„(z‘)

z‘

6
Mill’s Ratio (65)

= an


In/2z‘

C
exp(≠z

2
‘
/2) +

Ô

2fi

1Ô
2fi

exp(≠z
2
‘
/2)

z2
‘

D
(66)

= an


In/2z‘ exp(≠z

2
‘
/2)

5
1 + 1

z2
‘

6
(67)

= an


In/2z‘ exp(≠z

2
‘
/2)¸ ˚˙ ˝

‘/an

5
1 + 1

z2
‘

6
(68)

= ‘


In/2z‘

5
1 + 1

z2
‘

6
. (69)

Since an æ Œ as n æ Œ, we have z
2
‘

= 2 log(an/‘) æ Œ as well, so [1 + 1/z
2
‘
] Æ 2 for large n. Continuing:

⁄
‘

0

Ò
H[](u) du Æ ‘


In/2z‘ (70)

= ‘


In/2


2 log(an/‘) (71)

= ‘


In


log(an/‘) (72)

Æ ‘


In

Ò
log(aÕnaCaÕÕ

n
In/‘) (73)

Æ ‘


In


log(aÕ) + a log(n) + aÕÕ log(Cn) + log(In) ≠ log(‘) (74)



Æ ‘


(D + 1)na + 1

Ò
log(aÕ) + a log(n) + aÕÕnb≠a + log((D + 1)na + 1) ≠ log(‘) (75)

where we plug in In = (D + 1)Kn + 1 Æ (D + 1)na + 1 and Cn = exp(nb≠a).

Since 0 < a < b < 1, there exists a “ such that a < “ < b and b ≠ a < 1“. This follows from the fact that
since 0 < a < b < 1, there must exist a ” > 0 such that a + ” < b and b + ” < 1. Now let “ = a” to see that
b ≠ a = b + ” ≠ (a + ”) < 1 ≠ (a + ”) = 1 ≠ “. Multiplying by 1/

Ô
n =

Ô

n≠“

Ô

n≠(1≠“) on each side:

1
Ô

n

⁄
‘

0

Ò
H[](u) du Æ ‘

Ô

n≠“


(D + 1)na + 1 (76)


n≠(1≠“)

Ò
log(aÕ/‘) + a log(n) + aÕÕnb≠a + log((D + 1)na + 1) (77)

= ‘

Ò
(D + 1)n≠(“≠a) + n≠“ (78)

Ò
n≠(1≠“) log(aÕ‘) + an≠(1≠“) log(n) + aÕÕn≠((1≠“)≠(b≠a)) + n≠(1≠“) log((D + 1)na + 1)

(79)
æ Œ as n æ Œ (80)

since each of “, 1 ≠ “, “ ≠ a, and (1 ≠ “) ≠ (b ≠ a) are positive. Thus, for any a
ÕÕÕ

, ‘ > 0

1
Ô

n

⁄
‘

0

Ò
H[](u) du Æ a

ÕÕÕ
‘

2 (81)

Lemma 2. (Adaptation of Lemma 2 in [Lee, 2000] (same statement but particularized for RBFNs)) Define
the ratio of joint likelihoods between the inferred density and the true density as

Rn(f) =
nŸ

i=1

f(xi, yi)
f0(xi, yi)

. (82)

Under the assumptions of Lemma 1,

sup
fœAc

‘flFn

Rn(f) Æ 4 exp(≠a2n‘
2) (83)

almost surely for su�ciently large n, where a2 is the constant from Theorem 2.

Proof. Much of this proof is reproduced exactly as in Lemma 2 in [Lee, 2000], with only a few adaptations
that we mention along the way. We first bound the Hellinger bracketing entropy using Theorem 1 and then
use Lemma 1 to show the conditions of Theorem 2.

Since we are interested in computing the Hellinger bracketing entropy for neural networks, we need to use the
L2 norm on the square roots of the density function, f . Later, we compute the LŒ covering number of the
parameter space, so here d

ú = LŒ. We would like to apply Theorem 1 particularized for the L2 norm, i.e.,
|


ft(x, y) ≠


fs(x, y)| Æ d

ú(s, y)F (x, y) for some F then N[](2‘ ÎFÎ2 , F
ú
, Î·Î2) Æ N(‘, Fn, d

ú). To show
that the condition holds true, apply the Fundamental Theorem of Integral Calculus. For particular vectors s

and t, let g(u) =


f(1≠u)s+ut(x, y). Let vi = (1 ≠ u)si + uti and denote the space of ◊ by �i.

|


ft(x, y) ≠


fs(x, y)| =

⁄ 1

0

g

du
du (84)

=
⁄ 1

0

Iÿ

i=1

ˆg

ˆ◊i

ˆ◊i

ˆu
du (85)

=
Iÿ

i=1
(ti ≠ si)

⁄ 1

0

ˆg

ˆ◊i

du (86)



Æ

Iÿ

i=1
sup

i

|ti ≠ si|

⁄ 1

0
sup

◊iœ�i

----
ˆg

ˆ◊i

---- du (87)

= sup
i

|ti ≠ si|

Iÿ

i=1
sup

◊iœ�i

----
ˆg

ˆ◊i

----
⁄ 1

0
du (88)

Æ sup
i

|ti ≠ si|I sup
i

5
sup

◊iœ�i

----
ˆg

ˆ◊i

----

6
(89)

= Ît ≠ sÎŒ F (x, y) (90)

where F (x, y) = I sup
i
[sup

◊iœ�i
|ˆg/ˆ◊i|]. Here ˆg/ˆ◊i is the partial derivative of

Ô
f with respect to the ith

parameter. Recall that f(x, y) = f(y | x)f(x), where f(x) = 1 since X ≥ U [0, 1] and f(y | x) is normal with
mean determined by the neural network and variance 1.

So far, this proof follows Lemma 2 in [Lee, 2000] exactly. Now we make a slight modification for an
RBFN model. By Lemma 3, |ˆg/ˆ◊i| Æ (8fie

2)≠1/42n
a
C

3
n

= n
a
C

3
n
/2, where a

Õ := 4(8fie
2)≠1/4. Then set

F (x, y) = a
Õ
n

a
C

3
n
I/2, so ||F ||2 = a

Õ
n

a
C

3
n
I/2. Applying Theorem 1 to bound the bracketing number by the

covering number we have:

N[](u, F
ú
, || · ||2) = N[]

3
2

3
u

2||F ||2

4
||F ||2, F

ú
, || · ||2

4
(91)

Æ N

3
u

2||F ||2
, F

ú
, || · ||2

4
(92)

Notice that the covering number of Fn is clearly less than ((2Cn)/(2‘) + 1)I . So, for any ÷ > 0, we have:

N (÷, F
ú
, LŒ) Æ

3
2Cn

2÷
+ 1

4I

=
3

Cn + ÷

÷

4I

Æ

3
Cn + 1

÷

4I

. (93)

Therefore,

N[](u, F
ú
, || · ||2) Æ

A
Cn + 1

u

2||F ||2

BI

(94)

=
3

2||F ||2(Cn + 1)
u

4I

(95)

=
3

a
Õ
n

a
C

3
n
In(Cn + 1)
u

4I

(96)

=
3

a
Õ
n

a
C̃

4
n
In

u

4I

(97)

where C̃n = Cn + 1. For notational convenience, we drop F
ú and || · ||2 going forward. Taking the logarithm:

H[](u) Æ log[(aÕ
n

a
C

a
ÕÕ

n
In/u)I ]. (98)

The bound above holds for a fixed network size, but we can now let Kn grow such that Kn Æ n
a for any

0 < a < 1. Thus by Lemma 1, we have:

1
Ô

n

⁄
‘

0

Ò
H[](u) du Æ a

ÕÕÕ
‘

2
, (99)

which shows the conditions of Lemma 1. Therefore, we have that for any a
ÕÕÕ

, ‘ > 0,
⁄

‘

0

Ò
H[](u) du Æ a

ÕÕÕÔ
n‘

2
, (100)



With an eye on applying Theorem 2, notice that
s

‘

‘2/28


H[](u) du <

s
‘

0


H[](u) du. Substituting
Ô

2‘ for ‘,
we get ⁄ Ô

‘

‘2/28

Ò
H[](u) du Æ 2a

ÕÕÕÔ
n‘

2
, (101)

letting a3 = 1 and a4 := 2a
ÕÕÕ, where a3 and a4 are the constants required by Theorem 2. This gives the

necessary conditions for Theorem 2, which implies that

P
ú

A
sup

fœAc
‘flFn

Rn(f) Ø exp(≠a1n‘
2)

B
Æ 4 exp(≠a2n‘

2). (102)

Now apply the first Borel-Cantelli Lemma to get the desired result.

B.1.2 Main theorems

The following theorem is proved by Lee [2000] for single-layer feedforward networks with a logistic activation
and Gaussian priors. With a few modifications to the proof as described below, it can be applied to RBFNs.
Here, the number of units is allowed to grow with the number of observations but it is not inferred from the
data. We call this a sieves approach.
Theorem 3. (Consistency when width grows with data (sieves approach)) [Lee, 2000] Suppose the following
conditions hold:

(i) There exists an r > 0 and an N1 œ N such that ’n Ø N1, fin (Fc

n
) < exp(≠nr).

(ii) For all “ > 0 and ‹ > 0, there exists an N2 œ N such that ’n Ø N2, fin (K“) Ø exp(≠n‹).

Then ’‘ > 0, the posterior is asymptotically consistent for f0 over Hellinger neighborhoods, i.e.:

P (A‘ | (x1, y1), . . . , (xn, yn)) p

æ 1. (103)

Proof. Lee [2000] proves this result for single-layer feedforward networks with a logistic activation and
Gaussian priors (Theorem 1 in their paper). Their proof relies on their Lemmas 3 and 5. Their Lemma 5
needs no adaptation for RBFNs but their Lemma 3 depends on their Lemma 2, which does need adaptation
for RBFNs. Above we proved their Lemma 2 for RBFNs, which we call Lemma 1. Thus their Lemma 3 holds,
so their Theorem 1 holds, which gives the results of this theorem.

Lee [2000] shows that Hellinger consistency gives asymptotic consistency.
Corollary B.1. (Hellinger consistency gives asymptotic consistency for sieves prior) [Lee, 2000] Under the
conditions of Theorem 3, ĝn is asymptotically consistent for g0, i.e.:

⁄
(ĝn(x) ≠ g0(x))2

dx
p

æ 0. (104)

The following is an extension of Theorem 3 to when there is a prior over the number of units. The proof
in [Lee, 2000] assumes a feedforward network with a logistic activation and Gaussian priors, but these
assumptions are not used beyond their use in applying Theorem 3. Since we adapt Theorem 3 to our model,
the proof of the following Theorem 4 needs no additional adaptation.
Theorem 4. (Consistency for prior on width) [Lee, 2000] Suppose the following conditions hold:

(i) For each i = 1, 2, . . . there exists a real number ri > 0 and an integer Ni > 0 such that ’n Ø Ni,
fii (Fc

n
) < exp(≠rin).

(ii) For all “, ‹ > 0 there exists an integer I > 0 such that for any i > I there exists an integer Mi > 0
such that for all n Ø Mi, fii(K“) Ø exp(≠‹n).



(iii) Bn is a bound that grows with n such that for all r > 0 there exists a real number q > 1 and an integer
N > 0 such that for all n Ø N ,

qŒ
i=Bn

⁄i < exp(≠rn
q).

(iv) For all i, ⁄i > 0.

Then ’‘ > 0, the posterior is asymptotically consistent for f0 over Hellinger neighborhoods, i.e.:

P (A‘ | (x1, y1), . . . , (xn, yn)) p

æ 1. (105)

Corollary B.2. (Hellinger consistency gives asymptotic consistency for prior on width). Under the conditions
of Theorem 4, ĝn is asymptotically consistent for g0, i.e.:

⁄
(ĝn(x) ≠ g0(x))2

dx
p

æ 0. (106)

Proof. The conditions of Theorem 4 imply the conditions of Theorem 3, so then Corollary B.1 must hold.

B.2 CONSISTENCY OF PORB-NET

B.2.1 Supporting results

Theorem 5. (RBFNs are universal function approximators) Park and Sandberg [1991] Define S„ as the set
of all functions of the form:

RBFN„(x; ◊) =
Kÿ

k=1
wk„ (⁄(x ≠ ck)) , (107)

where ⁄ > 0, wk œ R, ck œ RD and ◊ = {{wk}
K

k=1, {ck}
K

k=1, ⁄} is the collection of network parameters. If
„ : Rd

æ R is an integrable bounded function such that „ is continuous almost everywhere and
s
Rd „(z) dz ”= 0,

then the family S„ is dense in Lp(Rd) for every p œ [1, Œ).

In our case, „(z) = exp(≠z
2), which clearly satisfies the conditions of Theorem 5. We will denote RBFN(x; ◊)

the expression in Equation (107) particularized for the squared exponential „ function.
Lemma 3. (Bound on network gradients)

ˆ


f(x, y; ◊)
ˆ◊i

Æ (8fie
2)≠1/4 ˆRBFN(x; ◊)

ˆ◊
= (8fie

2)≠1/42n
a
C

3
n

(108)

Proof. Applying the chain rule we have:
-----
ˆ


f(x, y; ◊)
ˆ◊i

----- = 1
2 (f(x, y; ◊))≠1/2 ˆf(x, y; ◊)

ˆ◊i

(109)

= 1
2(2fi)≠1/4 exp

3
≠

1
4(y ≠ RBFN(x; ◊))2

4
|y ≠ RBFN(x; ◊)|

----
ˆRBFN(x; ◊i)

ˆ◊i

---- (110)

First we show that we can bound the middle terms by:

exp
3

≠
1
4(y ≠ RBFN(x; ◊))2

4
|y ≠ RBFN(x; ◊)| Æ exp(≠1/2)21/2 (111)

To see this, rewrite the left-hand-side of Equation 111 as s(z) := exp(≠(1/4)z2)|z|, where z = y ≠ RBFN(x; ◊).
Taking the derivative we have:

ˆs(z)
ˆz

=
I

≠
1
2 z

2 exp(≠ 1
4 z

2) + exp(≠ 1
4 z

2) z Ø 0
1
2 z

2 exp(≠ 1
4 z

2) ≠ exp(≠ 1
4 z

2) z < 0
(112)



=
I

exp(≠ 1
4 z

2)(≠ 1
2 z

2 + 1) z Ø 0
exp(≠ 1

4 z
2)( 1

2 z
2

≠ 1) z < 0
(113)

Setting to zero, we must have that 1
2 z

2 = 1 =∆ z =
Ô

2. Thus, a(z) Æ exp(≠1/2)21/2, as in Equation 111.

Next, consider the derivatives of the radial basis function network:
----
ˆRBFN(x; ◊i)

ˆb

---- = 1 (114)

----
ˆRBFN(x; ◊i)

ˆwk

---- = exp(≠1
2⁄

2(x ≠ ck)2) Æ 1 (115)

----
ˆRBFN(x; ◊i)

ˆwk

---- = |wk| exp(≠1
2⁄

2(x ≠ ck)2)⁄2
|x ≠ c| (116)

Æ |wk|⁄
2(|ck| + 1) (117)

Æ C
2
n
(Cn + 1) (118)

Æ C
3
n

+ C
2
n

(119)
Æ 2C

3
n

(120)

since C
2
n

= exp(2n
b≠a) < exp(3n

b≠a) = C
3
n

----
ˆRBFN(x; ◊i)

ˆwk

---- = 1
2

-----

Knÿ

k=1
wk exp(≠1

2⁄
2(x ≠ ck)2)(x ≠ c)2

----- (121)

= 1
2

Knÿ

k=1

----wk exp(≠1
2⁄

2(x ≠ ck)2)(x ≠ c)2
---- (122)

Æ
1
2

Knÿ

k=1
|wk|(|c| + 1)2 (123)

Æ
1
2

n
aÿ

k=1
Cn(Cn + 1)2 (124)

= 1
2n

a
Cn(Cn + 1)2 (125)

= 1
2n

a
Cn(C2

n
+ 2Cn + 1) (126)

= 1
2n

a(C3
n

+ 2C
2
n

+ Cn) (127)

Æ
1
2n

a(C3
n

+ 2C
3
n

+ C
3
n
) (128)

Æ 2n
a
C

3
n

(129)

Plugging everything in to Equation 110 we have the desired inequality.

Lemma 4. (Bounding sum of exponentially bounded terms). For two sequences {an}
Œ
n=1 and {bn}

Œ
n=1 suppose

there exists real numbers ra > 0 and rb > 0 as well as integers Na > 0 and Nb > 0 such that an Æ exp(≠ran)
for all n Ø Na and bn Æ exp(≠rbn) for all n Ø Nb. Then there exists a real number r > 0 and an integer
N > 0 such that an + bn Æ exp(≠rn) for all n Ø N .

Proof. Set r̃ = min{ra, rb} and Ñ = max{Na, Nb}. Then we have:

an Æ exp(≠ran), ’n Ø Ñ Ø Na (130)



Æ exp(≠r̃n, ) ’n Ø Ñ (131)

. Similarly, bn Æ exp(≠r̃n), ’n Ø Ñ . Thus we have an + bn Æ 2 exp(≠r̃n), ’n Ø Ñ .

Now set N = max{Á
log 2

r̃
Ë + 1, Ñ} and r = r̃ ≠

log 2
N

. Notice r > 0, since N Ø Á
log 2

r
Ë + 1 >

log 2
r

implies
r = r̃ ≠

log 2
N

> r̃ ≠ log 2 r̃

log 2 = 0. It follows that 2 exp(≠rn) Æ exp(≠rn), ’n Ø N , since:

2 exp(≠r̃n) Æ exp(≠rn) (132)
≈∆ log 2 ≠ r̃n Æ ≠rn (133)

≈∆ log 2 ≠ r̃n Æ ≠

3
r̃ ≠

log 2
N

4
n (134)

≈∆ log 2 ≠ r̃n Æ ≠r̃n + n log 2
N

(135)

≈∆ N Æ n (136)

Lemma 5. (Useful equality) For all ” Æ 1 and x œ [0, 1], if |c̃ ≠ c| Æ ” and |⁄̃ ≠ ⁄| Æ ”, then there exists a
constant › such that |›| Æ A(|c|, ⁄)” and:

⁄̃
2(x ≠ c̃)2 = ⁄

2(x ≠ c)2 + ›, (137)

where A(|c|, ⁄) = 2⁄(|c| + 1)(⁄ + |c| + 2) + (⁄ + |c| + 2)2

Proof. Since |c̃ ≠ c| Æ ” and |⁄̃ ≠ ⁄| Æ ” there exists constants ›1 and ›2, where |›1| Æ ” and |›2| Æ ”, such
that c̃ = c + ›1 and ⁄̃ = ⁄ + ›2

Plugging c̃ = c + › and ⁄̃ = ⁄ + ›2 into the left-hand-side of the desired inequality:

⁄̃(x ≠ c̃) = (⁄ + ›2)(x ≠ c ≠ ›1) (138)
= ⁄(x ≠ c) + (≠⁄›1) + ›2(x ≠ c) ≠ ›1›2¸ ˚˙ ˝

:=›3

(139)

Notice:

|›3| = |(≠⁄›1) + ›2(x ≠ c) ≠ ›1›2| (140)
Æ ⁄|›1| + |›2||x ≠ c| + |›1||›2| (141)
Æ ⁄” + ”(|c| + 1) + ”

2 (142)
Æ (⁄ + |c| + 2)” (143)

In Equation 142 we use |x ≠ c| Æ (|c| + 1), which follows since we assume x œ [0, 1], as well as ›1 Æ ” and
›2 Æ ”. In Equation 143 we use ”

2
Æ ”, which follows since we assume ” Æ 1. Squaring the left-hand-side of

the desired inequality:

⁄̃
2(x ≠ c̃)2 = (⁄̃(x ≠ c̃))2 (144)

= (⁄(x ≠ c) + ›3)2 (145)
= ⁄

2(x ≠ c)2 + 2⁄(x ≠ c)›3 + ›
2
3¸ ˚˙ ˝

:=›4

(146)

Notice:

|›4| = |2⁄(x ≠ c)›3 + ›
2
3 | (147)

Æ 2⁄|x ≠ c||›3| + |›
2
3 | (148)

Æ 2⁄(|c| + 1)(⁄ + |c| + 2)” + (⁄ + |c| + 2)2
”

2 (149)



Æ
!
2⁄(|c| + 1)(⁄ + |c| + 2) + (⁄ + |c| + 2)2"

¸ ˚˙ ˝
:=A(|c|,⁄)

” (150)

In Equation 149 we use |›3| Æ (⁄ + |c| + 2)” and |x ≠ c| Æ (|c| + 1) again and Equation 150 we use ”
2

Æ ”.
This proves the desired inequality for › := ›4.

Lemma 6. (Proximity in parameter space leads to proximity in function space). Let g be an RBFN with
K nodes and parameters (◊1, . . . , ◊I) and let g̃n be an RBFN with K̃n nodes and parameters (◊̃1, . . . , ◊̃

Ĩ(n)),
where K̃n grows with n. Define ◊i = 0 for i > I, ◊̃i = 0 for i > ĩ, and M”, for any ” > 0, as the set of all
networks g̃ that are close in parameter space to g:

M”(g) := {g̃n | |◊̃i ≠ ◊i|, i = 1, . . . } (151)

Then for any g̃ œ M” and su�ciently large n,

sup
xœX

(g̃(x) ≠ g(x))2
Æ

!
3K̃n

"2
”

2 (152)

Proof.

sup
xœX

(g̃(x) ≠ g(x))2 (153)

= sup
xœX

Q

ab̃ +
K̃nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ b ≠

Kÿ

k=1
wk exp(≠⁄

2(x ≠ ck)2)

R

b
2

(154)

= sup
xœX

Q

a(b̃ ≠ b) +

Q

a
K̃nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠

Kÿ

k=1
wk exp(≠⁄

2(x ≠ ck)2)

R

b

R

b
2

(155)

= sup
xœX

Q

a(b̃ ≠ b) +

Q

a
K̃

ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

R

b

R

b
2

(156)

Æ sup
xœX

Q

a|b̃ ≠ b| +

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------

R

b
2

(157)

= sup
xœX

S

U|b̃ ≠ b|
2 + 2|b̃ ≠ b|

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------
(158)

+

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------

2T

XV (159)

Æ |b̃ ≠ b|
2 + 2|b̃ ≠ b| sup

xœX

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------
(160)

+ sup
xœX

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------

2

(161)

= |b̃ ≠ b|
2 + 2|b̃ ≠ b| sup

xœX

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------
(162)

+

Q

asup
xœX

------

K̃
ú
nÿ

k=1
w̃k exp(≠⁄̃

2(x ≠ c̃k)2) ≠ wk exp(≠⁄
2(x ≠ ck)2)

------

R

b
2

(163)



Æ |b̃ ≠ b|
2 + 2|b̃ ≠ b| sup

xœX

K̃
ú
nÿ

k=1

--w̃k exp(≠⁄̃
2(x ≠ c̃k)2) ≠ wk exp(≠⁄

2(x ≠ ck)2)
-- (164)

+

Q

asup
xœX

K̃
ú
nÿ

k=1

--w̃k exp(≠⁄̃
2(x ≠ c̃k)2) ≠ wk exp(≠⁄

2(x ≠ ck)2)
--

R

b
2

(165)

Æ |b̃ ≠ b|
2 + 2|b̃ ≠ b|

K̃
ú
nÿ

k=1
sup
xœX

--w̃k exp(≠⁄̃
2(x ≠ c̃k)2) ≠ wk exp(≠⁄

2(x ≠ ck)2)
-- (166)

+

Q

a
K̃

ú
nÿ

k=1
sup
xœX

--w̃k exp(≠⁄̃
2(x ≠ c̃k)2) ≠ wk exp(≠⁄

2(x ≠ ck)2)
--

R

b
2

(167)

= |b̃ ≠ b|
2 + 2|b̃ ≠ b|

K̃
ú
nÿ

k=1
�k +

Q

a
K̃

ú
nÿ

k=1
�k

R

b
2

(168)

Æ ”
2 + 2”

K̃
ú
nÿ

k=1
�k +

Q

a
K̃

ú
nÿ

k=1
�k

R

b
2

, (169)

where:
�k := sup

xœX

--w̃k exp(≠⁄̃
2(x ≠ c̃k)2) ≠ wk exp(≠⁄

2(x ≠ ck)2)
-- (170)

Let u(x)2 := ⁄
2(x ≠ ck)2 and ũ(x)2 = ⁄̃

2(x ≠ c̃k)2 and pick any x œ X . By Lemma 5 there exists a constant
÷ such that |÷| Æ A(|c|, ⁄)” and

ũ(x)2 = u(x)2 + ÷. (171)
Now define › =


|÷| and consider two cases.

• If ũ(x)2
Ø u(x)2, then Equation 171 is equivalent to ũ(x)2 = u(x)2 + ›

2. Then �k becomes:

�k = sup
xœX

--w̃k exp(≠ũ
2(x)) ≠ wk exp(≠u

2(x))
-- (172)

=
--w̃k exp(≠u

2(x) ≠ ›
2) ≠ wk exp(≠u

2(x)2)
-- (173)

= sup
xœX

exp(≠u(x)2)
--w̃k exp(≠›

2) ≠ wk

-- (174)

=
--w̃k exp(≠›

2) ≠ wk

-- sup
xœX

exp(≠u(x)2) (175)

Æ
--w̃k exp(≠›

2) ≠ wk

-- (176)

Since |w̃k ≠ wk| Æ ”, there exists · , where |· | Æ ”, such that w̃k = wk + · . Plugging this in:

�k Æ
--(wk + ·) exp(≠›

2) ≠ wk

-- (177)
Æ

--wk(exp(≠›
2) ≠ 1) + ·

-- (178)
Æ |wk|| exp(≠›

2) ≠ 1| + |· | (179)
Æ |wk|›

2 + ”, (180)

where we use the result that 1 ≠ ›
2

Æ exp(≠›
2) in Equation 179.

• If ũ(x)2
< u(x)2, then Equation 171 is equivalent to u(x)2 = ũ(x)2 + ›

2. Then �k becomes:

�k = sup
xœX

--w̃k exp(≠ũ
2(x)) ≠ wk exp(≠u

2(x))
-- (181)

= sup
xœX

--w̃k exp(≠ũ
2(x) ≠ wk exp(≠ũ

2(x) ≠ ›
2)

-- (182)



= sup
xœX

exp(≠ũ
2(x))

--w̃k ≠ wk exp(≠›
2)

-- (183)

=
--w̃k ≠ wk exp(≠›

2)
-- sup

xœX
exp(≠ũ

2(x)) (184)

Æ
--w̃k ≠ wk exp(≠›

2)
-- (185)

Using the same · as above:

�k Æ
--(wk + ·) exp(≠›

2) ≠ wk

-- (186)
Æ

--wk(1 ≠ exp(≠›
2)) + ·

-- (187)
Æ |wk||1 ≠ exp(≠›

2)| + |· | (188)
= |wk|| exp(≠›

2) ≠ 1| + |· | (189)
Æ |wk|›

2 + ”. (190)

In either of the two cases, we have �k Æ |wk|›
2 + ”. Proceeding:

�k Æ |wk|›
2 + ” (191)

Æ |wk|A(|c|, ⁄)” + ” (192)
= (|wk|A(|c|, ⁄) + 1)” (193)

Now consider

K̃
ú
nÿ

k=1
�k Æ

K̃nÿ

k=1
�k for large n (194)

Æ ”

K̃nÿ

k=1
(|wk|A(|c|, ⁄) + 1) (195)

Æ ”

Q

a
K̃nÿ

k=1
|wk|A(|c|, ⁄) + K̃n

R

b (196)

Æ ”
!
K̃n + K̃n

"
(197)

= 2”K̃n for large n (198)

Equation 197 follows because for k Ø K, wk = 0 by definition, so
q

K̃n

k=1 |wk|A(|c|, ⁄) is a constant and thus
less than K̃n for large n.

Plugging Equation 198 into Equation 169:

sup
xœX

(g̃(x) ≠ g(x))2
Æ ”

2 + 2(2”K̃n) + (2”K̃n)2 (199)

=
!
1 + 2(2K̃n) + (2K̃n)2"

”
2 (200)

=
!
1 + 2K̃n)

"2
”

2 (201)
Æ (3K̃n)2

”
2 (202)

B.2.2 Main theorems for PoRB-Net

Recall the generative model for PoRB-Net in the case of a uniform intensity function with a Gamma prior on
its level. For simplicity and w.l.o.g, we consider the case where the hyperparameter s

2
0 and the observation

variance are fixed to 1.



We first consider the case where the width of the network is allowed to grow with the data but is fixed in the
prior. We call the estimated regression function ĝn, with width Kn and prior fin, where n is the number of
observations. The following theorem gives consistency for this model.

Note that the following proof uses [Park and Sandberg, 1991] to show the existence of a neural network that
approximates any square integrable function. We assume that the center parameters of this network are
contained in the bounded region over which the Poisson process is defined, which can be made arbitrarily
large.
Theorem 6. (PoRB-Net consistency with fixed width that grows with the number of observations). If there
exists a constant a œ (0, 1) such that Kn Æ n

a, and Kn æ Œ as n æ Œ, then for any square integrable
ground truth regression function g0, ĝn is asymptotically consistent for g as n æ Œ, i.e.

⁄
(ĝn(x) ≠ g0(x))2

dx
p

æ 0. (203)

Proof.

Proof outline

• Show Condition (i) of Theorem 3 is met

– Write prior probability of large parameters as a sum of integrals over each parameter
– Bound each set of parameters:

ú Bound weights (as in Lee [2000])
ú Bound centers (trivial since parameter space bounded)
ú Bound ⁄

2 with Cherno� bound
– Bound sum using Lemma 4

• Show Condition (ii) of Theorem 3 is met.

– Assume true regression function g0 is L2
– Use Theorem 5 to find an RBFN g that approximates g0
– Define M” as RBFNs close in parameter space to g

– Show M” µ K“ using Lemmas 5 and 6.
– Show fin (M”) Ø exp(≠rn):

ú Show you can write as a product of integrals over parameters
ú Bound each term separately:

· Bound weights as in Lee [2000]
· Bound centers and ⁄

2

Condition (i) We want to show that there exists an r > 0 and an N1 œ N such that ’n Ø N1:

fin (Fc

m
) < exp(≠nr).

Write prior probability of large parameters as a sum of integrals over each parameter. The
prior fin assigns zero probability to RBFNs with anything but Kn nodes, so there is no issue writing fin(Fn)
and its value is equivalent to fin(Gn), even though Gn µ Fn.

Notice that fin (Gc

n
) requires evaluating a multiple integral over a subset of the product space of In parameters.

Notice Gn can be written as an intersection of sets:

Gn =
In‹

i=1
{RBFN œ Hn | |◊i| Æ Cn}.



Therefore we have:

fin (Fc

n
) = fin (Gc

n
)

= fin

AC
In‹

i=1
{RBFN œ Hn | |◊i| Æ Cn}

DcB

= fin

A
In€

i=1
{RBFN œ Hn | |◊i| Æ Cn}

c

B
De Morgan

= fin

A
In€

i=1
{RBFN œ Hn | |◊i| > Cn}

B

Æ

Inÿ

i=1
fin ({RBFN œ Hn | |◊i| > Cn}) Union bound. (204)

Next, independence in the prior will allow us to write each term in Equation 204 as an integral over a single
parameter. Define the following sets:

Ci(n) := �i \ [≠Cn, Cn]
Ri(n) := �1 ◊ . . . ◊ �i≠1 ◊ Ci(n) ◊ �i+1 ◊ . . . ◊ �In

where �i is the parameter space corresponding to parameter ◊i (either R or R+). Notice that because Ri(n)
is a union of two rectangular sets (one where ◊i is less than ≠Cn and one where ◊i is greater than Cn), we
can apply Fubini’s theorem. Thus, each term in Equation 204 can be written as:

fin ({RBFN œ Hn | |◊i| > Cn}) (205)

=
⁄

. . .

⁄

Ri(n)
fin(◊1, . . . , ◊In)d(◊1, . . . , ◊In) (206)

=
⁄

d◊1 . . .

⁄
d◊In fin(◊1, . . . , ◊In) (207)

=
⁄

d⁄
2

⁄
dw1 . . .

⁄
dwIw

n

⁄
dc1 . . .

⁄
dwIc

n
fin(⁄2)

Ÿ

j

fin(cj | ⁄
2)

Ÿ

j

fin(wj) (208)

=

Q

a
⁄

d⁄
2

fin(⁄2)
⁄

dc1 . . .

⁄
dcIc

n

Ÿ

j

fin(cj | ⁄
2)

R

b

Q

a
⁄

dw1 . . .

⁄
dwIw

n

Ÿ

j

fin(wj)

R

b (209)

=

Q

a
⁄

d⁄
2

fin(⁄2)
Ÿ

j

⁄
dcj fin(cj | ⁄

2)

R

b

Q

a
Ÿ

j

⁄
dwj fin(wj)

R

b (210)

=

Y
_]

_[

s
Cn

d⁄
2

fin(⁄2) i = I
(⁄

2)
ns

Cn
dw fin(w) i œ I

(w)
ns

R+ d⁄
2

fin(⁄2)
s

Cn
dci fin(ci | ⁄

2) i œ I
(c)
n

(211)

In Equation 206 we apply Fubini’s theorem, which allows us to write a multiple integral as an interated
integral. It is understood that the ith integral is over the restricted parameters space [≠Cn, Cn] while the
remaining integrals are over the entire parameter space, meaning they integrate to 1. This allows us to write
the result in Equation 211.

Therefore, by Equations 204 and 211 we have:

fin (Fc

n
) Æ

⁄

Cn

d⁄
2

fin(⁄2)
¸ ˚˙ ˝

⁄2 term

+
ÿ

iœI(w)
n

⁄

Cn

dw fin(w)

¸ ˚˙ ˝
W term

+
ÿ

iœI(c)
n

⁄

R+
d⁄

2
fin(⁄2)

⁄

Cn

dci fin(ci | ⁄
2)

¸ ˚˙ ˝
C term

(212)



Bound each term in the sum. We will deal with each of these terms separately.

• W term. With some minor di�erence for the dependence of the number of weight parameters on the
network width (DKn in our case compared to (D + 2)Kn + 1), equations 119-128 in [Lee, 2000] show for
all n Ø Nw for some Nw: ÿ

iœI(w)
n

⁄

Ci(n)
fin(wi) dwi Æ exp(≠nr)

• C term. Since the parameter bound Cn æ Œ as n æ Œ and since the prior over the center parameters
is defined over a bounded region, as n æ Œ the bounded region will be contained in [≠Cn, Cn] and thus
disjoint from Ci(n) := �i \ [≠Cn, Cn]. Thus, for all n greater than some Nc,

s
Ci(n) fin(ci) dci = 0 for all

center parameters.

• ⁄
2 term.

⁄
fin(⁄2)d⁄ =

⁄ Œ

Cn

—⁄

–⁄

�(–⁄)⁄
2(–⁄≠1) exp(≠—

2
⁄
⁄)d⁄

2 (213)

Æ

3
—⁄Cn

–⁄

4–

⁄

exp(–⁄ ≠ —⁄Cn) Cherno� Bound (214)

Æ

3
—⁄e

–⁄

4–

exp(–⁄n
b≠a) exp(≠—⁄ exp(nb≠a)) Cn Æ n

b≠a (215)

Taking the negative log we have:

≠ log
3⁄

fin(⁄2)d⁄
2
4

Ø ≠– log
3

—e

–

4

¸ ˚˙ ˝
:=A

+— exp(nb≠a) ≠ –n
b≠a (216)

= A + —

Q

a
Œÿ

j=0

(nb≠a)j

j!

R

b ≠ –n
b≠a (217)

= A + —

Q

a1 + n
b≠a + 1

2n
2(b≠a) +

Œÿ

j=3

(nb≠a)j

j!

R

b ≠ –n
b≠a (218)

= (A + —) + (— ≠ –)nb≠a + 1
2—n

2(b≠a)

¸ ˚˙ ˝
:=h(n)

+—

Œÿ

j=3

(nb≠a)j

j! (219)

= h(n) + —

Œÿ

j=3

(nb≠a)j

j! . (220)

Now pick k
ú

œ {3, 4, . . . } such that (b ≠ a)kú
Ø 1, so n

(b≠a)k
ú

Ø n, and pick any r œ (0, —/(kú!)). Then,
since every term in the sum is positive, we have:

≠ log
3⁄

fin(⁄2)d⁄
2
4

Ø h(n) + —
n

(b≠a)k
ú

kú! (221)

Ø h(n) + —

kú!n (222)

Ø h(n) + rn (223)
Ø rn ’n Ø N⁄, (224)

where the last inequality holds because — > 0 and (b ≠ a) œ (0, 1) clearly implies there exists an N⁄ > 0
such that for all n Ø N⁄, h(n) > 0. Negating and exponentiating each side we have:

⁄
fin(⁄2)d⁄

2
Æ exp(≠rn) ’n Ø N⁄. (225)



Bound sum. For any n Ø Nc, since the C term is zero in this case, we have:

fin (Fc

n
) Æ

ÿ

iœI(w)
n

⁄

Ci(n)
fin(wi) dwi +

⁄

Ci(n)
fin(⁄2) d⁄

2 (226)

Æ exp(≠rn) ’n Ø N (227)

where the last inequality follows from Lemma 4 applied to the sequences:

an :=
ÿ

iœI(w)
n

⁄

Ci(n)
fin(wi) dwi (228)

bn :=
⁄

Ci(n)
fin(⁄2) d⁄

2 (229)

which we already showed to be exponentially bounded above for large n.

Condition (ii) Let “, ‹ > 0.

Assume true regression function. Assume g0 œ L2 is the true regression function

Find RBFN near ground truth function. Set ‘ =


“/2. By Theorem 5 there exists an RBFN g such
that Îg ≠ g0Î2 Æ ‘. We assume the center parameters of g are contained in the bounded region C over which
the Poisson process is defined, which can be made arbitrarily large.

Define M”. Set ” = ‘/(3n
a) and let M” be defined as in Lemma 6. Then by Lemma 6, for any g̃ œ M” we

have:
sup
xœX

(g̃(x) ≠ g(x))2
Æ

!
3K̃n”

"2 = ‘
2 (230)

Next we show that M” µ K“ for all “ > 0 and appropriately chosen ”. This means we only need to show
fin (M”) Ø exp(≠n‹), since M” µ K“ implies fin (K“) Ø fin (M”).

Show M” contained in K“. Next we show that for any g̃ œ M”, DK(f0, f̃) Æ “ i.e. M” µ K“ . The
following are exactly equations 129-132 and then 147-151 from Lee [2000].

DK(f0, f̃) =
⁄ ⁄

f0(x, y) log f0(x, y)
f̃(x, y)

dy dx (231)

= 1
2

⁄ ⁄ #
(y ≠ g̃(x))2

≠ (y ≠ g0(x))2$
f0(y | x)f0(x) dy dx (232)

= 1
2

⁄ ⁄ #
≠2yg̃(x) + g̃(x)2 + 2yg0(x) ≠ g0(x)2$

f0(y | x)f0(x) dy dx (233)

= 1
2

⁄
(g̃(x) ≠ g0(x))2

f0(x) dx (234)

= 1
2

⁄
(g̃(x) ≠ g(x) + g(x) ≠ g0(x))2

f0(x) dx (235)

Æ
1
2

S

WWU

⁄
sup
xœX

(g̃(x) ≠ g(x))2

¸ ˚˙ ˝
Lemma 6

f0(x) dx +
⁄

(g(x) ≠ g0(x))2
¸ ˚˙ ˝

Theorem 5

f0(x) dx (236)



+2 sup
xœX

|g̃(x) ≠ g(x)|
¸ ˚˙ ˝

Lemma 6

⁄
|g(x) ≠ g0(x)|¸ ˚˙ ˝

Theorem 5

f0(x)dx

T

XXV (237)

<
1
2 [‘2 + ‘

2 + 2‘
2] (238)

= 2‘
2 = “ (239)

Show mass on M” is greater than exponential

fin (M”) =
⁄

◊1+”

◊1≠”

. . .

⁄
◊Ĩn

+”

◊Ĩn
≠”

fin(◊̃1, . . . , ◊̃
Ĩn

) d◊̃1 . . . d◊
Ĩn

=
⁄

◊1+”

◊1≠”

. . .

⁄
◊Ĩn

+”

◊Ĩn
≠”

fin(⁄̃2)
Ÿ

i

fin(c̃i | ⁄̃2)
Ÿ

i

fin(w) d◊̃1 . . . d◊
Ĩn

=
⁄

⁄
2+”

⁄2≠”

fin(⁄̃2)
Ĩ

(c)
nŸ

i=1

⁄
ci+”

ci≠”

fin(c̃i | ⁄̃2) dc̃i d⁄̃2 ◊

Ĩ
(w)
nŸ

i=1

⁄
wi+”

wi≠”

fin(w̃i) dw̃i

=
⁄

⁄
2+”

⁄2≠”

fin(⁄̃2)
Ĩ

(c)
nŸ

i=1

⁄
ci+”

ci≠”

1
µ(C)1[c̃iœC] dc̃i d⁄̃2 ◊

Ĩ
(w)
nŸ

i=1

⁄
wi+”

wi≠”

fin(w̃i) dw̃i

=
⁄

⁄
2+”

⁄2≠”

fin(⁄̃2) d⁄̃2

¸ ˚˙ ˝
⁄2 term

◊

Ĩ
(c)
nŸ

i=1

⁄
ci+”

ci≠”

1
µ(C)1[c̃iœC] dc̃i

¸ ˚˙ ˝
C term

◊

Ĩ
(w)
nŸ

i=1

⁄
wi+”

wi≠”

fin(w̃i) dw̃i

¸ ˚˙ ˝
W term

• W term. The following correspond to equations 138-145 from [Lee, 2000].

W term =
Ĩ

(w)
mŸ

i=1

⁄
wi+”

wi≠”

fin(w̃i) dw̃i (240)

=
Ĩ

(w)
nŸ

i=1

⁄
wi+”

wi≠”

(2fi‡
2
w

)≠1/2 exp
3

≠
1

2‡2
w

w̃
2
i

4
dw̃i (241)

Ø

Ĩ
(w)
nŸ

i=1
2” inf

◊̃iœ[◊i≠1,◊i+1]

;
(2fi‡

2
w

)≠1/2 exp
3

≠
1

2‡2
w

w̃
2
i

4<
(242)

Ø

Ĩ
(w)
nŸ

i=1
”

Û
2

fi‡2
w

exp
3

≠
1

2‡2
w

’i

4
’i := max{(◊i ≠ 1)2

, (◊i + 1)2
} (243)

Ø

A
”

Û
2

fi‡2
w

BĨ
(w)
n

exp
3

≠
1

2‡2
w

’ Ĩ
(w)
n

4
’ := max{’1, . . . , ’

Ĩ
(w)
n

} (244)

= exp
A

≠Ĩ
(w)
n

C
”

≠1
Ú

fi‡2
w

2

DB
exp

3
≠

1
2‡2

w

’ Ĩ
(w)
n

4
(245)

(246)

= exp
A

≠Ĩ
(w)
n

C
3n

a

‘

Ú
fi‡2

w

2

D
≠

1
2‡2

w

’ Ĩ
(w)
n

B
(247)



= exp
A

≠Ĩ
(w)
n

C
a log n ≠ log

Ú
9fi‡2

w

2‘2 + 1
2‡2

w

’

DB
(248)

= exp
3

≠Ĩ
(w)
n

5
2a log n + 1

2‡2
w

’

64
for large n (249)

Ø exp
3

≠Dn
a

5
2a log n + 1

2‡2
w

’

64
Ĩ

(w)
n

Æ Dn
a (250)

Ø exp(≠‹n) for large n (251)

Let Nw denote the integer large enough so that Equations 249 and 251 hold for ‹/3.

• C term.

Ĩ
(c)
nŸ

i=1

⁄
ci+”

ci≠”

1
µ(C)1[c̃iœC] dc̃i Ø

Ĩ
(c)
nŸ

i=1

”

µ(C) (252)

Ø

3
”

µ(C)

4Ĩ
(c)
n

(253)

= exp
3

≠Dn
a log

5
µ(C)

”

64
(254)

= exp
3

≠Dn
a log

5
3µ(C)na

‘

64
(255)

= exp
3

≠Dn
a

5
a log n ≠ log

3
3µ(C)

‘

464
(256)

= exp (≠Dn
a [2a log n]) for large n (257)

= exp (≠2aDn
a log n) (258)

Ø exp(≠‹n) for large n (259)

Let Nc denote the integer large enough so that Equations 257 and 259 hold for ‹/3.

• ⁄
2 term.

⁄
⁄

2+”

⁄2≠”

fin(⁄̃2) d⁄̃2 =
⁄

[⁄2≠”,⁄2+”]flR+

—
–

�(–) ⁄̃2–≠1 exp(≠—⁄̃2) d⁄̃2 (260)

Ø ”

A
inf

⁄̃2œ[⁄2≠”,⁄2+”]flR+

;
—

–

�(–) ⁄̃2–≠1 exp(≠—⁄̃2)
<B

(261)

Ø ”

A
inf

⁄̃2œ[⁄2≠1,⁄2+1]flR+

;
—

–

�(–) ⁄̃2–≠1 exp(≠—⁄̃2)
<B

¸ ˚˙ ˝
:=A

for large n (262)

= ”A (263)

= A‘

3na
(264)

Ø exp(≠‹n) for large n (265)

In Equation 261 we note that the length of the interval [⁄2
≠ ”, ⁄

2 + ”] fl R+ is at least ”, since ⁄
2

œ R+.
In Equation 262 we note that ” < 1 for large n, allowing us to define the quantity A that does not
depend on n. Let N⁄ denote the integer large enough so that Equations 262 and 265 hold for ‹/3.



Bound product Set N2 = max{Nw, Nc, N⁄}. Then for all n Ø N2:

fin (M”) Ø exp(≠n‹/3) exp(≠n‹/3) exp(≠n‹/3)
= exp(≠n‹)

This shows condition (ii). Thus, the conditions of Theorem 3 are met, so the model is Hellinger consistent.
By Corollary B.1 this gives asymptotic consistency.

Now we consider the case where the number of hidden units K of the network is a parameter of the model.
Since the center parameters follow a Poisson process prior with intensity ⁄ over the region C, then conditional
on ⁄, K follows a Poisson distribution with parameter µ(C)⁄, where µ is the measure of C. We again denote
the estimated regression function by ĝn with the understanding that the number of hidden units not fixed.
Theorem 7. (PoRB-Net consistency for homogeneous intensity). For any square integrable ground truth
regression function g0, ĝn is asymptotically consistent for g as n æ Œ, i.e.

⁄
(ĝn(x) ≠ g0(x))2

dx
p

æ 0. (266)

Proof. Since the number of hidden units follows a Poisson prior, the proof of this result is exactly as in
Theorem 7 of Lee [2000]. Their result relies on their Theorem 8, but we have adapted this result in Theorem
4 to our model and the remainder of the proof requires no additional assumptions regarding the model.
Asymptotic consistency follows from Corollary B.2.



C MODEL SPECIFICATION AND MCMC ALGORITHM

C.1 HOMOGENEOUS INTENSITY

C.2 Notation

name symbol domain
centers {ck}

K

k=1 ck œ RD

weights {wk}
K

k=1 wk œ R
bias b R

intensity ⁄ R
number of hidden units K K

Table 1: Overview of all parameters in the PoRB-Net with homogeneous intensity.

When the meaning is clear, we suppress the subscript and superscripts outside the bracket. For example,
{ck} denotes {ck}

K

k=1.

C.3 Likelihood

L(✓) := p({yn} | {xn},✓) =
NŸ

n=1
N (f(xn;✓), ‡

2
x
) (267)

where ✓ = {{wk}, b, {ck}, K, ⁄
2
} and:

f(x;✓) = b +
Kÿ

k=1
wk exp

3
≠

1
2s

2
0⁄

2(x ≠ ck)T (x ≠ ck)
4

(268)

is the network output.

C.4 Prior

wk | K
i.i.d.
≥ N

!
0, ‡̃

2
w

"
, k = 1 . . . , K (269)

b ≥ N (0, ‡̃
2
b
) (270)

{ck}
K

k=1 | ⁄ ≥ exp (≠�)
KŸ

k=1
⁄(ck), where � =

⁄

C
⁄(u)du. (271)

where ‡̃
2
w

=


s
2
0/fi‡

2
w

. If the intensity function is uniform, we use a Gamma prior:

⁄
2

≥ Gamma(–, —) (272)

A note regarding the Poisson process prior. If you do not condition on the number of centers K, the on the
centers prior is:

p({ck}
K

k=1 | ⁄) = exp (≠�)
KŸ

k=1
⁄(ck), where � =

⁄

C
⁄(u)du. (273)

If you do condition on K, the prior on the centers is:

p({ck}
K

k=1 | K, ⁄) = K!
KŸ

k=1

⁄(ck)
� (274)



Notice you can relate this to the prior when you do not condition on K, since K has a Poisson distribution
with parameter �.

p({ck}
K

k=1 | ⁄) = p({ck}
K

k=1 | K, ⁄)p(K, ⁄) (275)

=
A
��K!

KŸ

k=1

⁄(ck)
◆�

B 3
exp(≠�)���K

��K!

4
(276)

= exp (≠�)
KŸ

k=1
⁄(ck) (277)

Joint distribution

p({yn}, {xn}, {wk}, b, {ck}, K, ⁄
2)

= p({yn} | {xn}, {wk}, b, {ck}, K, ⁄
2) ◊ p({xn}, {wk}, b, {ck}, K, ⁄

2)
Ã p({yn} | {xn}, {wk}, b, K, ⁄

2
¸ ˚˙ ˝

✓

) ◊ p({wk}, b, {ck}, K, ⁄
2

|���{xn}) ◊⇠⇠⇠⇠p({xn})¸ ˚˙ ˝
1

Ã p({yn} | {xn},✓) ◊ p({wk}, b, {ck}, K, ⁄
2)

Ã p({yn} | {xn},✓) ◊ p(b |���{wk},���{ck},⇢⇢K,��⁄2) ◊ p({wk}, {ck}, K, ⁄
2)

Ã p({yn} | {xn},✓) ◊ p(b) ◊ p({wk} |���{ck}, K,��⁄2) ◊ p({ck}, K, ⁄
2)

Ã p({yn} | {xn},✓) ◊ p(b) ◊ p({wk} | K) ◊ p({ck}, K, ⁄
2)

Ã p({yn} | {xn},✓) ◊ p(b) ◊ p({wk} | K) ◊ p({ck}, K | ⁄
2) ◊ p(⁄2)

Ã

A
NŸ

n=1
N (yn; f(xn;✓), ‡

2
y
)
B

N (b; 0, ‡̃
2
b
)
A

KŸ

k=1
N (wk; 0, ‡̃

2
w

)
B A

exp (≠�)
KŸ

k=1
⁄(ck)

B
Gamma(⁄2; –, —)

Ã

A
NŸ

n=1
exp

;
≠

1
2‡2

y

(yn ≠ f(xn;✓))2
<B

exp
;

≠
1

2‡
2
b

b
2
< A

KŸ

k=1
(2fi‡

2
w

)≠1/2 exp
;

≠
1

2‡2
w

w
2
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C.5 Gibbs steps

There are 3 steps:

1. Update {wk}
K

k=1, b, {ck}
K

k=1 with HMC

2. Update K with birth or death MH steps

3. Update ⁄
2 with an MH step (only if intensity is uniform)

Updating {wk}
K

k=1, b, {ck}
K

k=1 with HMC The full conditional distribution of the weight, bias, and center
parameters is given by:
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We update the weight, bias, and center parameters using HMC with ≠ log p({wk}, b, {ck} | ) as the potential
energy function.

Updating K We update the network width K with birth or death MH steps of hidden units. Each iteration
of the sampler, we perform either a birth or death step with equal probability. The full conditional distribution
of the network width is given by:
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Birth step

A proposal for a birth consists of two parameter proposals:

• Sample w
Õ
K+1 ≥ N (wK+1; 0, ‡

2
w

)

• Sample c
Õ
K+1 ≥ ⁄(c)/� (i.e., from the prior intensity conditioned on the number of units K).

Therefore the proposal density is:

q(K æ K + 1) = N (wK+1; 0, ‡
2
w

)⁄(cK+1)
� (278)

A proposal for a death consists only of sampling a unit uniformly at random. The proposal density for a
birth is therefore:

q(K æ K ≠ 1) = 1/K (279)
The ratio of proposal densities is therefore:

q(K + 1 æ K)
q(K æ K + 1) = �

(K + 1)⁄(cK+1)N (wK+1; 0, ‡2
w

) (280)

To derive the acceptance ratio, we next derive the ratio of posterior probabilities, letting ✓Õ =
{{wk}, b, {ck}, K + 1, ⁄

2
}:

p(K + 1 | )
p(K | ) (281)
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Ã
L(✓Õ)N (wK+1; 0, ‡

2
w

)⁄(cK+1)
L(✓) (283)

The acceptance rate is then:

abirth = p(K + 1 | )
p(K | )

q(K + 1 æ K)
q(K æ K + 1) (284)
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= L(✓Õ)
L(✓)

�
K + 1 (286)

Death step

Now letting ✓Õ = {{wk}, b, {ck}, K ≠ 1, ⁄
2
}, the acceptance probability for a death step can be derived

analogously to the birth step discussed above:

adeath = p(K ≠ 1 | )
p(K | )

q(K æ K ≠ 1)
q(K ≠ 1 æ K) (287)
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� (289)

Updating ⁄
2 We only update the intensity function when it is uniform (i.e., ⁄(c) = ⁄ for any c). Therefore,

the integral of the intensity is given by � :=
s

C ⁄(c)dc = µ(C)⁄. The full conditional distribution is therefore:
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}

To update ⁄
2 we use a Metropolis-Hastings step with a normal proposal distribution centered around the

current value of ⁄
2. Since this distribution is symmetric, the proposal distributions cancel out in the acceptance

ratio. Letting (⁄Õ)2 denote the proposed value of ⁄
2 and ✓Õ = {{wk}, b, {ck}, K, (⁄Õ)2

} , the acceptance rate
is therefore:

a = p(⁄2ú
| )

p((⁄Õ)2 | ) (290)

Ã
L(✓Õ)(⁄Õ)K+2(–≠1) exp{≠µ(C)⁄ ≠ —(⁄Õ)2
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3

⁄
Õ

⁄

4K+2(–≠1)
(292)

C.6 INHOMOGENEOUS INTENSITY

C.7 Notation

name symbol domain
centers {ck}

K

k=1 ck œ RD

weights {wk}
K

k=1 wk œ R
bias b R

thinned centers {c̃m}
M

m=1 c̃m œ RD

GP function values {gk}
K

k=1 g̃m œ R
thinned GP function values {g̃k}

M

m=1 g̃m œ R
intensity upper bound ⁄

ú R
number of hidden units K K

number of thinned centers M N

Table 2: Overview of all parameters in PoRB-Net when an input dependent intensity is inferred.



When the meaning is clear, we suppress the subscript and superscripts outside the bracket. For example, {ck}

denotes {ck}
K

k=1. For convenience we also use the following notation (also applied analogously to the centers):

symbol meaning
g̃M vector of {g̃m}

M

k=1
gK vector of {gk}

K

k=1
gM+K vector of {gm}

M

k=1 and {gk}
K

k=1
gM+K+1 gM+K with one additional component
gM+K≠i gM+K without component i

Table 3: Alternative notation for convenience. The same subscripts are also applied to the centers.

C.8 Likelihood

L(✓) := p({yn} | {xn},✓) =
NŸ

n=1
N (f(xn;✓), ‡

2
x
) (293)

where ✓ = {{wk}, b, {ck}, {gk}, ⁄
ú
} and:

f(x;✓) = b +
Kÿ

k=1
wk exp(≠s

2
k
(x ≠ ck)T (x ≠ ck)) (294)

s
2
k

= (s0⁄(ck))2 = (s0⁄
ú
‡(h(ck)))2 (295)

is the network, where ‡(·) is the sigmoid (logistic) function and h is a GP.

C.9 Prior

wk | K
i.i.d.
≥ N

!
0, ‡̃

2
w

"
, k = 1 . . . , K (296)

b ≥ N (0, ‡̃
2
b
) (297)

⁄
ú

≥ Gamma(–, —) (298)

p({ck},{c̃m}, {gk}, {g̃m}, K, M | ⁄
ú) (299)

Ã (⁄ú)K+M exp (≠⁄
ú
µ(C))
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‡(≠g̃m) ◊ GP({gk}, {g̃m} | {ck}, {c̃m}) (300)

where µ(C) is the measure of C and ‡̃
2
w

=


s
2
0/fi‡

2
w

.

Note can write the GP prior in a few ways (just di�erent notation):

GP({gk}, {g̃m} | {ck}, {c̃m}) = p(gM+K | cM+K) (301)

= (2fi)≠(M+K)/2
|�|

≠1/2 exp
;

≠
1
2gT

M+K
�≠1gM+K

<
(302)

where � = kernel(cM+K , cM+K) is the M +K ◊M +K kernel matrix evaluated on all of the center parameters
cM+K .

Joint distribution

p({yn}, {xn}, {wk}, b, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)

= p({yn} | {xn}, {wk}, b, {ck},���{c̃m}, {gk},���{g̃m}, K,⇢⇢M, ⁄
ú) ◊ p({xn}, {wk}, b, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄

ú)



Ã p({yn} | {xn}, {wk}, b, {ck}, {gk}, K, ⁄
ú

¸ ˚˙ ˝
✓

) ◊ p({wk}, b, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú

|���{xn}) ◊⇠⇠⇠⇠p({xn})¸ ˚˙ ˝
1

Ã p({yn} | {xn},✓) ◊ p({wk}, b, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)

Ã p({yn} | {xn},✓) ◊ p(b |���{wk},���{ck},���{c̃m},���{gk},���{g̃m},⇢⇢K,⇢⇢M,⇢⇢⁄ú) ◊ p({wk}, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)

Ã p({yn} | {xn},✓) ◊ p(b) ◊ p({wk} |���{ck},���{c̃m},���{gk},���{g̃m}, K,⇢⇢M,⇢⇢⁄ú) ◊ p({ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)

Ã p({yn} | {xn},✓) ◊ p(b) ◊ p({wk} | K) ◊ p({ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)

Ã p({yn} | {xn},✓) ◊ p(b) ◊ p({wk} | K) ◊ p({ck}, {c̃m}, {gk}, {g̃m}, K, M | ⁄
ú) ◊ p(⁄ú)

Ã

A
NŸ

n=1
N (yn; f(xn;✓), ‡

2
y
)
B

N (b; 0, ‡̃
2
b
)
A

KŸ

k=1
N (wk; 0, ‡̃

2
w

)
B

A
(⁄ú)K+M exp (≠⁄

ú
µ(C))

KŸ

k=1
‡(gk)

MŸ

m=1
‡(≠g̃m) ◊ GP({gk}, {g̃m} | {ck}, {c̃m})

B
Gamma(⁄ú; –, —)

Ã

A
NŸ

n=1
exp

;
≠

1
2‡2

y

(yn ≠ f(xn;✓))2
<B

exp
;

≠
1

2‡
2
b

b
2
< A

KŸ

k=1
(2fi‡

2
w

)≠1/2 exp
;

≠
1

2‡2
w

w
2
k

<B

A
(⁄ú)K+M exp (≠⁄

ú
µ(C))

KŸ

k=1
‡(gk)

MŸ

m=1
‡(≠g̃m) GP({gk}, {g̃m} | {ck}, {c̃m})

B
(⁄ú)–≠1 exp{≠—⁄

ú
}

Ã L(✓) exp
;

≠
1

2‡
2
b

b
2
<

(2fi‡
2
w

)≠K/2 exp
I

≠
1

2‡2
w

Kÿ

k=1
w

2
k

J
(⁄ú)–+K+M≠1 exp (≠⁄

ú(— + µ(C)))
KŸ

k=1
‡(gk)

MŸ

m=1
‡(≠g̃m) GP({gk}, {g̃m} | {ck}, {c̃m})

C.10 Gibbs steps

There are 6 steps:

1. Update {wk}
K

k=1, b, {ck}
K

k=1 with HMC

2. Update K with birth or death MH steps

3. Update ⁄
ú with an MH step (optional)

4. Update M with birth or death MH steps

5. Update {c̃m}
M

m=1 with a MH step

6. Update {gk}
K

k=1 and {g̃m}
M

m=1 with HMC

Updating {wk}
K

k=1, b, {ck}
K

k=1 with HMC The full conditional distribution of the weight, center
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Updating K

p(K | ) Ã p({yn}, {xn}, {wk}, b, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)

Ã L(✓)
⇠⇠⇠⇠⇠⇠⇠
exp

;
≠

1
2‡

2
b

b
2
<

(2fi‡
2
w

)≠K/2 exp
I

≠
1

2‡2
w

Kÿ

k=1
w

2
k

J

(⁄ú)�–+K+⇠⇠⇠M≠1
((((((((((
exp (≠⁄

ú(— + µ(C)))
KŸ

k=1
‡(gk)

������MŸ

m=1
‡(≠g̃m) ◊ p(gM+K | cM+K)

Ã L(✓)(2fi‡
2
w

)≠K/2 exp
I

≠
1

2‡2
w

Kÿ

k=1
w

2
k

J
(⁄ú)K

KŸ

k=1
‡(gk) ◊ p(gM+K | cM+K)

Birth step

A proposal for a birth consists of three steps:

• Sample w
Õ
K+1 ≥ N (0, ‡

2
w

)

• Sample c
Õ
K+1 ≥ 1/µ(C) uniformly

• Sample g
Õ
K+1 ≥ p(gK+1 | c

Õ
K+1, cM+K , gM+K)

Therefore the proposal density is:

q(K æ K + 1) Ã N (wK+1; 0, ‡
2
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)p(gÕ
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Õ
K+1, cM+K , gM+K)/µ(C) (303)

A proposal for a death consists only of sampling a unit uniformly at random, so the proposal density for a
death is:

q(K æ K ≠ 1) = 1
K

(304)

The ratio of proposal densities is therefore:
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Ratio of posterior probabilities:
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The acceptance rate:
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Death step

The acceptance rate:
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Updating ⁄
ú We use MH. Here is the full conditional:
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To propose a new intensity upper bound ⁄
úÕ we use a normal distribution centered on the current value of

⁄
ú. Since this distribution is symmetric, the proposal distributions cancel out in the acceptance ratio. The

acceptance rate is therefore:

a = p(⁄úÕ
| )

p(⁄ú | ) (317)

=
L(✓Õ)(⁄úÕ)–+K+M≠1 exp

1
≠⁄

úÕ(— + µ(C))
2

L(✓)(⁄ú)–+K+M≠1 exp (≠⁄ú(— + µ(C))) (318)
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exp
1

≠(⁄úÕ
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ú)(— + µ(C))
2

(319)

Updating M

p(M | ) Ã p({yn}, {xn}, {wk}, b, {ck}, {c̃m}, {gk}, {g̃m}, K, M, ⁄
ú)
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⇢

⇢
⇢
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k=1
‡(gk)

MŸ

m=1
‡(≠g̃m) ◊ p(gM+K | cM+K)

Ã L(✓)(⁄ú)M

MŸ

m=1
‡(≠g̃m) ◊ p(gM+K | cM+K)

Birth step A proposal for a birth consists of two parameter proposals:

• Sample c̃
Õ
M+1 ≥ 1/µ(C) uniformly over C.

• Sample g̃
Õ
M+1 ≥ p(g̃M+1 | c̃M+1, cM+K , gM+K)

The proposal probability for a birth is therefore:

q(M æ M + 1) =
p(g̃Õ

M+1 | c̃M+1, cÕ
M+K

, gM+K)
µ(C) (320)

A proposal for a death consists only of sampling a hidden unit uniformly at random. The proposal proability
for a death is therefore:

q(M æ M ≠ 1) = 1
M

(321)

The ratio of proposal densities is:

q(M + 1 æ M)
q(M æ M + 1) = µ(C)

(M + 1)p(g̃Õ
M+1 | c̃M+1, cÕ

M+K
, gM+K) (322)

The ratio of posterior probabilities is:

p(M + 1 | )
p(M | ) = L(✓Õ)(⁄ú)M+1 r

M+1
m=1 ‡(≠g̃m) ◊ p(gM+K+1 | cM+K+1)

L(✓)���(⁄ú)M

⇠⇠⇠⇠⇠⇠⇠r
M

m=1 ‡(≠g̃m) ◊ p(gM+K | cM+K)
(323)

=
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‡(≠g̃
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M+1 | c̃
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The acceptance rate is therefore:

a = p(M + 1 | )
p(M | )

q(M + 1 æ M)
q(M æ M + 1) (327)

=
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(328)

= L(✓Õ)⁄ú
µ(C)

L(✓)(M + 1)(1 + exp(g̃Õ
M+1)) (329)

Death step



We sample a thinned center to be deleted uniformely at random. For notational simplicity, assume element
M is deleted. The acceptance rate for deleting this unit follows analogously to the birth step above.

a = p(M ≠ 1 | )
p(M | )

q(M ≠ 1 æ M)
q(M æ M ≠ 1) (330)
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= L(✓Õ)⁄ú
µ(C)

L(✓)M(1 + exp(g̃M )) (332)

Updating {c̃m}
M

m=1 with MH Thinned center parameters and thinned GP function values are proposed
jointly and accepted based on MH. The full conditional is:
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The proposal probability ratio is then:
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The proposal distribution for thinned unit i consists of two steps:

• Sample c̃
Õ
i

≥ N (c̃Õ
i
; c̃i, ‡

2
qc

)

• Sample g̃
Õ
i

≥ p(g̃Õ
| c̃i, cM+K≠i, gM+K≠i)

Therefore, the proposal probability from the current state to the proposed state is:
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The proposal probability ratio is then:
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The acceptance ratio is then:

a = p(c̃Õ
i
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Updating {gk}
K

k=1 and {g̃m}
M

m=1 with HMC The full conditional distribution of the GP function values
is given by:
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To update the GP function values, we use HMC with ≠ log p({gk}, {g̃m} | ) as the potential energy function.



D ADDITIONAL EXPERIMENTS AND DETAILS OF EXPERIMENTAL
SETUP

D.1 EXPERIMENTS ILLUSTRATING PROPERTIES OF PORB-NETS

D.1.1 PoRB-Nets decouple amplitude variance and lengthscale

Here we examine the dependence of the variance and lengthscale (as measured by the upcrossings of y = 0) for
three di�erent models: a standard BNN (in this case a single layer neural network with a Gaussian activation)
(Figure 2), an RBFN with a homogeneous Poisson process prior on the number of hidden units but without
scaling the hidden units by the intensity, as in PoRB-Net (Figure 3), and PoRB-Net with a homogeneous
intensity (Figure 4). We compute the average variance and upcrossings over 2000 function samples drawn
from each over the interval x œ [≠0.5, 0.5]. The goal is to examine how each of these two properties scales
with the model parameters.

Figure 2: Average variance and upcrossings of a BNN. Dotted line: 20 hidden units, solid line: 100 hidden
units. Generally the input-to-hidden weights variance ‡

2
w1 controls the upcrossings while the hidden-to-output

weights variance ‡
2
w1 controls the variance, but notice how ‡

2
w1 impacts both properties (and in a nonlinear

way). This shows that these properties cannot be controlled independently .



Figure 3: Average variance and upcrossings of an RBFN with homogeneous Poisson process prior on the
centers but without scaling the hidden units by the intensity. Notice the intensity ⁄ impacts both the
upcrossings and the variance, since a higher intensity implies more radial basis functions, which continue to
add up if their width is not scaled. The panels on the right show the hidden-to-output weights variance.

Figure 4: Average variance and upcrossings of PoRB-Net. The intensity ⁄ and hidden-to-output weights
variance ‡

2
w

independently control the upcrossings and variance .

Now consider an inhomogenous Poisson process prior on the center parameters with an arbitrary intensity
function ⁄(c). Recall in PoRB-Net we set the scale parameters of each unit to s

2
k

= s
2
0⁄(ck). Figure 5 shows

di�erent function samples for a single fixed intensity sampled from the prior. On the left, the s
2
k

is constant
for each unit while on the right s

2
k

= s
2
0⁄(ck). The top row shows the true intensity, the middle row shows the

amplitude variance, and the bottom row show a histogram of the number of function upcrossings of y = 0.
We see that setting the scales based on the intensity results in approximately constant function variance and
increased upcrossings.



(a) Constant s
2
k (b) s

2
k = s

2
0⁄(ck)2, where for s

2
0 = 2fi.

Figure 5: Setting s
2
k

= s
2
0⁄(ck)2 results in approximately stationary amplitude variance

.

D.1.2 PoRB-Nets can use prior information to adjust uncertainty in gaps in the training
data

If prior information is available about a function’s lengthscale, this can be incorporated into the PoRB-Net
prior by adjusting a fixed Poisson process intensity. Figure 6 shows an example with input data x sampled
uniformly while Figure 7 shows an example where there is a large gap in the x data.

(a) True LS low, Model LS low (b) True LS low, Model LS high

(c) True LS high, Model LS low (d) True LS high, Model LS high

Figure 6: Left-to-right: increased lengthscale (LS) for the PoRB-Net model. Top-to-bottom: increased
lengthscale for the true function (drawn from a PoRB-Net prior)

.



2x intensity in gap 3x intensity in gap 4x intensity in gap

Figure 7: By adjusting the Poisson process intensity a gap in the data (note that green points are test
observations), the out of sample uncertainty can be adjusted. Higher intensity results in a smaller length
scale.

D.1.3 PoRB-Nets can be used for classification

We focus on one-dimensional regression examples in this paper, since our primary interest is theoretical.
However, PoRB-Nets can easily be extended to higher dimensional inputs and outputs. Figure 8 the posterior
predictive distribution on a simple two dimensional XOR classification dataset.

(a) Data (b) PoRB-Net posterior predictive.

Figure 8: PoRB-Nets can do classification. We fit a PoRB-Net to a simple, two-dimensional XOR
classification dataset.

D.2 COMPARISON WITH OTHER MODELS

D.2.1 Details on experimental setup

Data

• sin, inc, inc2, const. We create four synthetic datasets of 100 observations each by adding i.i.d.
N (0, 0.02) noise to functions from Gaussian process priors with the following nonstationary kernel [Gibbs,
1997]:

�(x, x
Õ) = ‡(x)‡(xÕ)

Û
2l(x)l(xÕ)

l(x)2 + l(xÕ)2 exp
3

≠
(x ≠ x

Õ)2

l(x)2 + l(xÕ)2

4
(339)

Each dataset corresponds to a di�erent lengthscale function, l(x). lconst(x) = 1 is a constant function,
lsin(x) = sin(x) + 1.1 is a sine function shifted above zero, and linc(x) is a function that increases from



left to right (see plots below). Note that “inc” and “inc2” have the same lengthscale, the former just has
gaps in the x data while the latter has x data sampled uniformly.

• mimic. Each of the four datasets from the Mimic Critical Care Database Johnson et al. [2016] shows
patient heart rate over time.

• motorcycle. The motorcycle accident dataset [Silverman, 1985] tracks the acceleration force on the
head of a motorcycle rider in the first moments after impact.

• finance. Chicago Board Options Exchange (CBOE) volatility index (VIX), downloaded from https:
//fred.stlouisfed.org/series/VIXCLS. For testing data, we create two large, artificial gaps in the
data. The remaining observations are downsampled by 25%, leaving 25 training observations
144 train 60 test

Matching priors To highlight di�erences between the models, we attempt to approximately match the
priors in amplitude variance and lengthscale. We choose these these properties since they are the focus of this
paper. For each dataset, we start by selecting the variance parameter ‡

2 and lengthscale parameter l of a GP
with an RBF kernel by optimizing the log marginal likelihood of the data, where an RBF kernel is given by:

�rbf(x, x
Õ) = ‡

2 exp
3

≠
(x ≠ x

Õ)2

2l2

4
. (340)

Since some of the datasets contain gaps in x space, we constrain the lengthscale to be larger than lmin =
1/(2fi · 5) ¥ 0.032, which implies the expected number of upcrossings u of y = 0 over x œ [0, 1] is 5, since
u = 1/(2fil) [Williams and Rasmussen, 2006]. It is also di�cult to model very small lengthscales with
networks of small capacity, which we needed to limit because we wished to perform full HMC inference. The
observational noise variance is assumed fixed and and set to a reasonable value for each dataset (or the
ground truth, if available). Once these parameters were selected for each dataset, we matched the BNN and
PoRB-Net to this prior by a searching over a 25 ◊ 25 grid of two model parameters. To measure lengthscale
and amplitude variance of each model, we used the average upcrossings and average variance over x œ [0, 1].

For the BNN (single layer), we controlled the overall lengthscale by adjusting the input-to-hidden weights
variance from 10 to 15,000 and we controlled the the overall amplitude variance by adjusting the hidden-to-
output weights variance from .01 to 1.0. We included the variance of the bias parameters in this search. Note
that both the upcrossings and the amplitude variance are concentrated near the origin for a BNN.

For PoRB-Net, we controlled the lengthscale by adjusting the intensity ⁄ (in the case of a homogeneous
Poisson process) from 5 to 402 and the intensity upper bound ⁄

ú (in the case of an inhomogeneous Poisson
process) from 2 ◊ 5 to 2 ◊ 40 (we multiply by 2 because the mean intensity under a sigmoidal Gaussian Cox
process is 1/2⁄

ú because the GP, assumed have zero mean, is squashed through the sigmoid function); we
controlled the amplitude variance by adjusting the hidden-to-output weights variance from .01 to 1.0. Note
that both the upcrossings and amplitude variance are approximately constant over x œ [0, 1].

Model implementations

• PoRB-Net. The code is available on our GitHub: https://github.com/dtak/porbnet. For a homo-
geneous intensity ⁄ (PoRB-Net† in the figures and tables), we assumed a Gamma(–⁄, —⁄) prior on the
intensity. For an inhomogenous intensity we assumed used a sigmoidal Gaussian Cox process defined by
intensity ⁄(c) = ⁄

ú
‡(g(c)), where g is a GP with an RBF kernel �rbf of lengthscale .25 and variance 5.

We set the variance of the GP to be fairly large since we did not place a prior on ⁄
ú. We set s

2
0 = 2. For

inference we use HMC with 5000 burn in samples and 5000 recorded samples. During the first half of
the burn in, we find it is advantageous to not do any birth or death steps of (unthinned) hidden units.
During all of burn in, dynamically adjust the HMC leapfrog step size ‘ to target an acceptance rate
of 65%. Since the Poisson process is defined over a region C, we implement Roll-back HMC [Yi and
Doshi-Velez, 2017], which introduces a sharp sigmoid factor in the potential energy to approximate the
probability drop at the boundaries of C.

2Technically we adjusted –⁄ and set —⁄ = 1 so that E[⁄] ranged from 5 to 40.

https://fred.stlouisfed.org/series/VIXCLS
https://fred.stlouisfed.org/series/VIXCLS
https://github.com/dtak/porbnet


• GP. We use the GPy package, available at https://sheffieldml.github.io/GPy/. We use an RBF
kernel.

• LGP. We use the Matlab code made publicly available by the authors [Heinonen et al., 2016] at
https://github.com/markusheinonen/adaptivegp. We modified the code slightly to ensure that the
observational noise variance was fixed that only the input dependence of the lengthscale was inferred
(and not the input dependence of the amplitude variance or observational noise variance, for which this
model allows). For inference we used HMC with 1000 samples, since it seems to converge faster than a
BNN or PoRB-Net. We set the lengthscale parameter —l of the GP prior on the log lengthscale function
to be .25, the same as value as used in the GP defining the sigmoidal Gaussian Cox process used by
PoRB-Net.

• BNN. We use our own implementation, also available on our GitHub. We use a Gaussian activation
function „(z) = exp(≠ 1

2 s
2
0z

2) for all experiments for better comparison to PoRB-Net (we add the scale
parameter s

2
0 = 2 so the activation function is the same as in PoRB-Net). For inference we the same

HMC implementation with the same number of samples (5000 burn in and 5000 for recorded) as for
PoRB-Net.

D.2.2 Results

Numerical results Tables 4 and 5 show the test log likelihoods and root mean squared errors (RMSEs)
for all datasets and all models. We evaluate the test log likelihood of the neural networks as:

Ep(xı,yı) [log p(yı
|x

ı
, D)] = Ep(xı,yı)

5
log

⁄
p(yı

|x
ı
,✓)p(✓|D)d✓

6
, (341)

where ✓ are the model parameters.

Table 4: Test Log Likelihoods. The number next to the BNN indicates the number of hidden units.

PoRB-
Net†

PoRB-
Net GP LGP BNN

(25)
BNN
(50)

BNN
(100)

sin* 0.767 0.817 0.728 0.814 0.755 0.742 0.789
inc* -0.401 0.001 -0.227 0.183 -0.153 -0.284 -0.160

inc-gap* 0.656 0.747 0.543 0.183 0.631 0.627 0.678
const-gap* 0.277 0.330 0.413 0.239 0.009 -0.295 -0.133

mimic1 0.887 0.947 0.827 0.897 1.047 0.952 0.912
mimic2 0.534 0.603 0.564 0.540 0.441 0.389 0.472
mimic3 -0.634 -0.571 -0.671 -0.583 -0.648 -0.626 -0.594
mimic4 -1.719 -1.531 -1.848 -1.439 -1.383 -1.084 -1.362
finance -1.410 -0.521 -1.975 0.033 -2.629 -0.754 -0.734

motorcycle 0.184 0.155 0.167 0.141 0.159 0.125 0.127
*synthetic dataset †infers homogeneous intensity

https://sheffieldml.github.io/GPy/
https://github.com/markusheinonen/adaptivegp


Table 5: Test RMSEs. The number next to the BNN indicates the number of hidden units.

PoRB-
Net†

PoRB-
Net GP LGP BNN

(25)
BNN
(50)

BNN
(100)

sin* 0.075 0.068 0.089 0.067 0.077 0.083 0.073
inc* 0.394 0.356 0.348 0.346 0.345 0.399 0.349

inc-gap* 0.114 0.099 0.137 0.346 0.122 0.120 0.111
const-gap* 0.174 0.168 0.159 0.260 0.304 0.326 0.327

mimic1 0.084 0.078 0.081 0.086 0.064 0.071 0.078
mimic2 0.187 0.163 0.171 0.165 0.240 0.246 0.220
mimic3 0.204 0.201 0.205 0.203 0.204 0.203 0.202
mimic4 0.280 0.275 0.281 0.278 0.262 0.265 0.269
finance 0.586 0.403 0.628 0.254 0.429 0.333 0.399

motorcycle 0.200 0.206 0.201 0.205 0.212 0.217 0.212
*synthetic dataset †infers homogeneous intensity



Posterior predictive plots
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Figure 9: Each dataset is drawn from a GP with the nonstationary kernel given in Equation 339 with a
di�erent input dependent lengthscale function l(x) (see Figure 12). We see qualitative similarity (especially in
the gaps in the data along the x-axis) between PoRB-Net† and the GP (both stationary) and PoRB-Net and
the LGP (both nonstationary). The BNN looks di�erent from the other models (e.g., it has small uncertainty
in both gaps in the sin dataset). Training points are gray; test points are red.
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Figure 10: Posterior predictive distributions. The mimic1 dataset shows the largest qualitiative di�erences
between models, with PoRB-Net and LGP learning a smooth function for x > 0.5. Meanwhile, PoRB-Net†,
which has a homogeneous intensity, more closely resembles a stationary GP than a BNN, which places
relatively high uncertainty near the origin and relatively less away from it. Training points are gray; test
points are red.
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Figure 11: Posterior predictive distributions. The nonstationary models exhibit better generalization on
the finance dataset. All models look fairly similar on the motorcycle dataset. Training points are gray; test
points are red.



Intensity and lengthscale plots Here we compare the inhomogeneous Poisson process intensities inferred
by PoRB-Net and the inverse of the input dependent lengthscales inferred by the LGP. In both cases, higher
values indicate less smooth functions.
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Figure 12: Each dataset is drawn from a GP with the nonstationary kernel given in Equation 339, with the
inverse of the ground truth input dependent lengthscale function l(x) shown in each plot. Both models pick
up on the patterns in the ground truth data. Note that the LGP uses the same kernel as in the ground truth
(but it infers l(x) with another GP as a prior).
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Figure 13: PoRB-Net and LGP pick up on similar lengthscale patterns in the mimic data.
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Figure 14: For the finance dataset, both models infer a smaller lengthscale near the beginning and end of
the time period, where the VIX was clearly more volatile. This resulted in better uncertainty in the gaps
in the data as compared to stationary models (GP and PoRB-Net with a homogeneous intensity). For the
motorcycle dataset, both models infer a fairly homogeneous lengthscale, which makes sense because the
motorcycle dataset is typically considered an example of input dependent amplitude variance rather than
input dependent lengthscale [Heinonen et al., 2016].
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