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Abstract
We propose SLTD (‘Sequential Learning-to-Defer’) a framework for learning-to-defer pre-emptively to
an expert in sequential decision-making settings. SLTD measures the likelihood of improving value of
deferring now versus later based on the underlying uncertainty in dynamics. In particular, we focus
on the non-stationarity in the dynamics to accurately learn the deferral policy. We demonstrate our
pre-emptive deferral can identify regions where the current policy has a low probability of improving
outcomes. SLTD outperforms existing non-sequential learning-to-defer baselines, whilst reducing overall
uncertainty on multiple synthetic and real-world simulators with non-stationary dynamics. We further
derive and decompose the propagated (long-term) uncertainty for interpretation by the domain expert to
provide an indication of when the model’s performance is reliable.

1 Introduction
Machine learning (ML) methods are now being deployed for decision-making in complex domains such as
loan approvals and criminal justice. In many cases, an available ML-based policy may not generalize to
situations not encountered during training. In practice, it may be safer to defer to a human expert when using
the policy may not improve outcomes. Many have considered the problem of learning to defer in myopic,
non-sequential settings (e.g. Mozannar and Sontag [2020], Madras et al. [2017]).

In situations such as managing health, however, two key challenges remain. First, focusing on long-term
outcomes is critical to decide when to defer to an expert. Deferring too late may lead to unintended harms
that are difficult to recover from in the long term. Deferring too early may increase the burden on the domain
expert. Second, learning to defer at the right time requires a well-characterized model of the dynamics to
estimate the impact of delayed deferral, which may be difficult to estimate in non-stationary settings.

Existing methods for learning-to-defer to an expert aim to improve the performance of a prediction task
e.g. Mozannar and Sontag [2020], Madras et al. [2017], Gennatas et al. [2020] by deferring to the expert.
These methods defer to experts either based on the confidence of a model prediction or by characterizing
the trade-off of paying a cost (to defer) and improving outcomes using human decisions. These approaches
do not account for the sequential nature of decision-making settings, nor the non-stationary dynamics over
time. Non-stationarity leads to propagated uncertainty that increases with time for longer-term decisions,
and we demonstrate ignoring non-stationarity leads to underestimating this propagated uncertainty, resulting
in delayed deferrals and worse long-term outcomes.
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Figure 1: Overview of possible deferral strategies in a medical setting. The target policy πtar recommends
continuing a pill-based therapy, while the domain expert (π0) suggests switching to a shot. Our approach
(SLTD, green) defers in the shaded region where πtar is unlikely to improve expected future outcomes beyond
a certain threshold, reducing unintended consequences and managing the overall uncertainty. To do so, SLTD
models changing disease dynamics, and accounts for the impact of delayed deferral, to identify when πtar is
unlikely to improve outcomes. Late deferral produces poorer outcomes and exacerbates uncertainty.

In contrast, we focus on learning to defer to a domain expert by accounting for changing disease dynamics
modelled by a non-stationary Markov Decision Process (MDP), along with quantifying the impact of delaying
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deferral. Specifically, our work makes the following contributions: We develop a learn-to-defer approach for
sequential settings using model-based reinforcement learning that defers to a human expert pre-emptively
i.e. as soon as we anticipate our model-based policy is unlikely to improve long-term outcomes (within a
user-defined threshold) (see illustration in Figure 1).We introduce a model of the non-stationary dynamics to
reliably estimate the impact of delayed deferral, and show that SLTD can help manage propagated uncertainty
and outperforms existing baselines on several different domains. We also demonstrate that under-estimation
of the propagated uncertainty can lead to sub-optimal outcomes and learn mis-calibrated deferral policies.
Finally, we interpret the agent’s decisions to defer using SLTD by decomposing the sources of uncertainty,
which could help improve outcomes beyond the behavior policy by guiding domain experts to, for instance,
collect additional data where necessary or consult with other experts where uncertainty is high.

2 Related Work
Mixture-of-Experts (MoE). A number of methods focus on deciding between two or more policies to
execute. For example, Jacobs et al. [1991], Jordan and Jacobs [1994] switch between different types of
expertise in decision-making by partitioning the input space into different regions that may be assigned to
different specialized sub-models. Variants of this framework enforce an explicit preference for a specific expert
e.g. a human expert, and train other experts to complement the human expert [Pradier et al., 2021]. In
sequential settings, Parbhoo et al. [2017], Gottesman et al. [2019], Parbhoo et al. [2018] combine parametric
and non-parametric experts to learn more accurate estimates of the value function. Our work differs from
these works in two ways: first, we focus on pre-emptive deferral to human experts when future outcomes using
the current ML-based policy are potentially undesirable; and second, we model the impact of delayed deferral
to decide when to defer.

Policy Improvement with Expert Supervision. Sonabend et al. [2020] use hypothesis testing to assess
whether, at each state, a policy from a human expert would improve value estimates over a target policy
during training to improve the target policy. In contrast, our work identifies the value of delaying deferral
to a human expert at test time. Additionally, while expert supervision can significantly help during model
development, such updates to policies may not be feasible, especially in deployment settings. In such cases,
learning-to-defer with respect to a fixed target policy will be crucial for practical decision-making. Other
works such as Chandak et al. [2020b,a] focus on safe policy optimization and improvement in a non-stationary
MDP setting. In particular, Chandak et al. [2020a] assume that the non-stationarity in an MDP is governed
by an exogenous process, or that past actions do not impact the underlying non-stationarity. Our work differs
in two ways: first, we posit that model misspecification not only affects our estimates of the probability of
deferring to an expert at each time step, but also affects the underlying uncertainty. In the sequential setting,
this non-stationarity leads to propagated uncertainty that grows with time for longer term decisions. Second,
we propose incorporating human expertise by deferring to a domain expert such that future stochasticity can
be controlled.

Learning-to-defer to Human Expertise. Madras et al. [2017], Mozannar and Sontag [2020] propose
models for triage, where only the most critical decisions are deferred to a medical expert. Here, the classifiers
are trained based solely on the samples of an expert’s decisions. Madras et al. [2017] train a separate rejection
and prediction function, while Mozannar and Sontag [2020] learn a joint predictor for all targets and deferral.
Madras et al. [2017] is conceptually closer to our work, but in a non-sequential setting. Other approaches
such as Raghu et al. [2019], Wilder et al. [2020] first train a standard classifier on the data and then compute
uncertainty estimates for this classifier and the human expert. The decision is ultimately deferred to the
expert if the model is highly uncertain or can significantly benefit from deferral. Recently, Liu et al. [2021]
propose incorporating uncertainty in Learning-to-Defer algorithms for classification tasks. Unlike these, we
focus on the learning to-defer to a human expert in the non-stationary, sequential setting.

Decomposing Uncertainty for Interpreting Policies. Uncertainty, if well calibrated and communicated
can help decision-makers understand the failure modes of a model [Bhatt et al., 2020, Tomsett et al., 2020,
Zhang et al., 2020]. As a result, several methods have estimate predictive uncertainty for machine learning [Gal
and Ghahramani, 2016, Guo et al., 2017]. In this work, we focus on capturing the propagated uncertainty
in a sequential setting by learning a non-stationary dynamics model to learn a deferral policy. Second, we
interpret the (different) sources of propagated uncertainty when SLTD defers to the expert. Decomposing
the sources of uncertainty over predictions has been explored in classification and prediction settings [Yao
et al., 2019, Depeweg et al., 2018]. In this work, we interpret two different sources of propagated long-term
uncertainty, particularly modeling uncertainty and the stochasticity in the system at the time of deferral.
Interpreting deferral by decomposing the uncertainty can help experts understand how to further manage
uncertainty by potentially deviating from the expert policy e.g. by obtaining second opinions.

3 Sequential Learning-to-Defer
We now present the SLTD framework for pre-emptive deferral under uncertainty. SLTD consists of three key
steps: first we learn a model of the non-stationary dynamics and use posterior sampling to capture uncertainty
over this model. Next, we quantify the impact delaying deferral would have on the long-term outcomes.
Based on this model uncertainty, the deferral policy is defined as the probability that the (long-term) outcome
cannot be improved beyond some threshold by delaying deferral. Finally, we decompose the uncertainty at
deferral time (provided by SLTD) to explain the decision to defer to a domain expert and highlight where
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this uncertainty comes from. This information can subsequently be used by the expert to determine how to
act.

Problem Setup. We consider a finite horizon MDP defined byM≡ (S,A,P, r, p0, γ) where S indicates
the state-space, A indicates the action-space, P the transition dynamics, r : s× a→R+ the reward function,
p0 the initial state distribution and the discount factor γ. Consider a fixed and known stochastic policy
πtar : S ×A→ [0, 1]. We consider non-stationary dynamics whereMt denotes the MDP at the tth time in an
episode. We assume the existence of a true set of non-stationary dynamics governing all episodes and denote it
by {M∗t }t. In the rest of the manuscript,Mt denotes a sample approximating the true dynamicsM∗t . With
slight abuse of notation we writeM to refer to the dynamics of the MDP when clear from context.

We assume that we have observational data collected from some behavior policy π0, denoted by D =
{si,0, ai,0, ri,0, · · · , si,T , ai,T , ri,T }Ni=1 where T is the episode-length and N is the number of episodes. The
value of a policy π at t is given by VMπ,t (s) = EM[

∑T
j=t γ

jrj(s, a)|st = s, π]. Deferral to an expert is denoted
by the action ⊥.
We now formalize how to recover a pre-emptive deferral policy with respect to a target policy.

Definition 1. Let a target policy πtar,t(a|s) be such that such that there exists ∅ ⊆ st ⊆ S ∀t ∈ {0, 1, · · · , T}
where P (VM∗πtar,t(s) < VM∗⊥,t (s) − c) > τ for constant cost of deferral c1 and threshold τ > 0, ∀s ∈ st. Let a
policy gπtar(s, t) be such that gπtar(s, t) , 1(P (VM∗πtar,t(s) < VM∗⊥,t (s)− c) > τ).

Corollary 1. By Definition 1, gπtar(s, t), includes the earliest time in the episode where P (VM∗πtar,t(s) <

VM∗⊥,t (s)− c) > τ . Therefore, gπtar(s, t) is also a pre-emptive deferral policy.

Intuitively, τ can be considered a safety threshold that trades off the tolerance for outcome and the learned
policy will defer often. Deferring using gπtar(s, t) will thus reflect in a higher value and lower propagated
uncertainty.

Definition 1 indicates that to reliably learn the deferral policy, we need to estimate the probability that
outcomes will not improve. This in-turn identifies regions of the state-space that increase future uncertainty
and do not improve long-term outcomes. To accurately estimate this probability, we should model all sources
of uncertainty in the system, including the non-stationarity in the dynamics, and the uncertainty associated
with our modeling assumptions. In the following we describe how to account for all these sources of uncertainty
and then decide when to defer.

Algorithm 1 Sequential Learning to Defer

Input: Posterior estimates {pt(·|D)}Tt=0, target policy πtar, behavior policy π0.
Initialization: Deferral function gπtar(s, t) = 0 for all s ∈ S and t ∈ {1, 2, · · · , T}.
for t ∈ {T, T − 1, · · · , 1} do
for s ∈ S do
Compute {VMπtar,t(s)} and {VM⊥,t(s)− c} ∀M
Update gπtar(s, t)←≈ EM∼pt(·|D)[1(V

M
πtar,t(s) > VM⊥,t(s)− c) > τ ]

end for
end for
return gπtar(s, t)

Modeling non-stationary dynamics with posterior sampling. To quantify all sources of (propagated)
uncertainty, our approach is based on Bayesian RL. Specifically, we model the posterior distribution over the
non-stationary MDPs using Bayesian inference to estimate the non-stationary dynamicsMt and the reward
function r(st, at). We make parametric assumptions on the family of these distributions and use conjugate
priors over the parameters of the distributions. Learning a non-stationary model allows us to capture sources
of irreducible uncertainty in the system. We can now estimate the impact of delayed deferral, by averaging
over this uncertainty.

Quantifying the impact of delaying deferral. Using the above samples, we can estimate the likelihood
of improvement by deferring based on Definition 1. That is, we choose to defer to an expert when gπtar(s, t) ≈
EM∼pt(·|D)[1(V

M
πtar,t < VM⊥,t − c) > τ ].

We test the objective at every time-point to update gπtar(s, t) if not-deferring is unlikely to improve outcomes.
Note that the estimates VMπtar,t(s, a) will also account for future potential deferrals thus allowing us to learn a
pre-emptive policy. Note that here we are focused on deferring for a fixed target policy, rather than policy
improvement, which is particularly useful in situations where such updates may not be permitted due to safety
concerns. In practice, VM⊥,t(s) could be estimated based on how a clinician might actually choose to treat the
patient and deviate from our reference policy π0. Our procedure is summarised in Algorithm 1.

4 Decomposing the uncertainty at deferral
A key contribution of our work is that we provide a justification to the clinician for the need to defer at
every point of deferral identified by Algorithm 1. We do so by explicitly highlighting sources of uncertainty
resulting in deferral. Apart from focusing on total uncertainty, we also convey different sources of uncertainty

1We introduce a constant cost for deferral so as to defer to the domain expert only when necessary
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by decomposing the total uncertainty at deferral. That is, we consider epistemic/modeling uncertainty,
which captures whether the model has high uncertainty, as well as aleatoric uncertainty resulting from the
stochasticity itself. Conveying both these sources of uncertainty can subsequently help the clinician determine
how to act.

Concretely, let td correspond to the first realization such that gπtar(std , td) = 1 in state std . Then, we are
interested in the reward (and uncertainty over the reward) at time T due to deferring at time td.When
we defer, we rely on the behavior policy. To estimate the total and epistemic uncertainty, we leverage our
posterior sampling framework once again. For any time t, the MDPM is a Dirichlet sample (for a given
state-action pair) and is denoted by µt. These dirichlet samples allow us to capture modeling uncertainty.
The model parameters that parameterize the distribution over the MDPs is denoted by θt and are indexed by
the state-action pair (st, at). That is, we sample from posterior distribution p(θt′ |D), followed by sampling
the posterior MDP dynamicsMt , µt ∼ p(µt′ |θ′t(st′ , at′)), which in-turn allows us to sample the next state.
For specificity, we denote the state at the time of deferral td by std . The outcome we are interested in is
given by:

E[rT |std , µtd ] =
∫ sT

std+1

∫ aT

atd

∫ µT

µtd+1

∫ T

θtd

r(sT , aT )

T∏
t′=td+1

p(st′ |µt′)p(µt′ |θ′t(st′ , at′))πt′(at′ |st′)p(θt′ |D)dsTtd+1da
T
tddµ

T
td+1dθ

T
td

(1)

Here for brevity, integrands are written in short-hand: sTtd+1 = {std+1, std+2, · · · , sT } (analogously for other
quantities, hidden in the above equation) and πt′ = π0 for t′ = td and can be either the the behavior or target
policy for all future times t′ > td to account for potential future deferrals.

First, note that we maintain only one estimate of parameter θt′ and sample posterior samples µt′ from this
distribution. That is, p(θt′ |D) = δθt′ which is a delta function centered at θt′ ∀ t′ ∈ {0, 1, 2, · · · , T}. Thus,
the epistemic uncertainty we capture is due to the uncertainty over dynamics under fixed parameters. High
variability in sampling µt′ indicates the current state st′ (and action) is out-of-distribution. We propose that
the (multi-step) total uncertainty can be decomposed using the law of total variance as follows:

Var(rT |std ,D)︸ ︷︷ ︸
Total Uncertainty

= Eµtd
∼p(µtd

|D)[Var(rT |µtd , std ,D)]︸ ︷︷ ︸
Irreducible/ Aleatoric Uncertainty

+Varµtd
∼p(µtd

|D)(E[rT |µtd , std ,D])︸ ︷︷ ︸
Epistemic/Modeling Uncertainty

(2)

The second term in the above equation captures the variance conditioned on knowledge of the model at
deferral time (µtd), therefore marginalizing only over current aleatoric uncertainty and future total uncertainty
(i.e. over future µt′ , future deferral, and reward). This term therefore captures propagated uncertainty due to
modeling/epistemic uncertainty at td. The first term averages over the variance due to µtd and thus captures
propagated total uncertainty to due to aleatoric uncertainty at td. We approximate this integration using
Monte-carlo sampling.

High propagated epistemic uncertainty can convey that the current uncertainty of model prediction (of the
dynamics) is high enough but could be improved if additional data in this region could be collected to improve
the reducible sources of uncertainty. High propagated aleatoric uncertainty indicates high variability in the
patient’s dynamics that may need to be managed with careful interventions and is otherwise not manageable.
Based on the communicated uncertainty, the clinician may choose to deviate from their usual practice for
rare cases with high epistemic uncertainty and instead consult multiple experts and/or attempt experimental
treatments.

Synthetic
(mean ± 2 s.e.)

Sepsis-diabetes
(mean ± 2 s.e)

Diabetes
(mean ± 2 s.e.)

Value (SLTD-πtar) 5.845 ± 0.04 -0.337 ± 0.006 65.162 ± 0.364
Value (SLTD-stationary-πtar) 5.937 ± 0.039 -1.46 ± 0.01 50.449 ± 0.301
Value (SLTD-one step-πtar) 4.867 ± 0.041 -0.386 ± 0.006 64.869 ± 0.362
Value (πtar) 4.879 ± 0.04 -0.831 ± 0.008 25.801 ± 0.262
Augmented-MDP 2.235 ± 3.227 -2.405 ± 0.606 -0.898 ± 0.022
Madras et. al. -0.002 ± 0.0 -2.817 ± 0.491 0.336 ± 0.032

Table 1: Expected rewards for SLTD compared with baselines. The table shows the value of using πtar with
our deferral method SLTD and without, including the one-step and stationary variants. Higher values indicate
better performance. For all datasets, we see a significant benefit due to early deferral. Augmented-MDP
baselines performs poorly as it defers only when the rewards are suboptimal. SLTD-one step only relies on
immediate rewards and uncertainty thus failing to improve long-term outcomes for Synthetic data. However
there are benefits to myopic deferral for Sepsis-diabetes and Diabetes as πtar also has suboptimal rewards in
regions where it takes random actions. The benefits are less compared to SLTD-πtar. The mis-specified model,
SLTD-stationary performs reasonably well for synthetic simulation, it underestimates long-term uncertainty
when the system is highly non-stationarity as in Diabetes data. Finally, the supervised Madras et. al. baseline
is myopic and unable to maximize long-term reward. SLTD-one-step focuses on immediate reward, therefore
unable to perform well for Synthetic data where modeling long-term reward is critical; whereas it shows some
benefit for Sepsis-diabetes and Diabetes where πtar can have suboptimal immediate rewards in the deferral
region.

5 Experiments
We conduct our experimental analysis to evaluate the ability of SLTD to defer pre-emptively for a known and
fixed policy πtar to behavior policy π0. More specifically, we test the benefits of key aspects of SLTD: i) the
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ability of SLTD to identify regions where the target policy is unreliable (as defined in Definition 1), ii) the
utility of learning the deferral policy by estimating the impact of delaying deferral in these regions, and iii) the
utility of modeling the non-stationarity in the system. To that end we first design a synthetic data simulation
where i) the region of early deferral is known apriori by careful design of πtar and ii) true non-stationary
dynamics are simulated. Further we test our method on a non-stationary version of the sepsis-diabetes
simulator introduced by Oberst and Sontag [2019] and a non-stationary diabetes simulator [Chandak et al.,
2020b].2 While Chandak et al. [2020b] introduce non-stationarity across episodes, our setting is more variable,
as we learn to defer when stochasticity increases over time in every episode. In the following we describe the
experimental setup and baselines in detail.

Synthetic Data: A Toy Demonstration. We design a synthetic data simulation with 8 discrete states.
All samples start at state 0 and progress toward a sink state at 7. State 6 has low reward (−5) while all
other states have a reward of +1. Action 0 reduces likelihood of landing in stage 6 and action 1 increases the
likelihood of reaching state 6. πtar increases the chances to reach state 6 by taking unfavorable actions (1)
in states 2, 3, 4 at times 3 ≤ t ≤ 8. The dynamics are non-stationary such that stochasticity of transitions
progressively increases for higher states as well as over time. Note that rewards are designed to be positive in
the states {2, 3, 4} so that sub-optimal outcomes can only be observed in the future. Hence this example
will demonstrate key aspects of pre-emptive deferral in combination with modeling non-stationary compared
to baselines. A pre-emptive policy learnt will defer to a relatively better policy π0 between the regions
{2, 3, 4} and as early as time t = 3. A myopic method will defer in state 6 irrespective of the time. A
mis-specified model (that assumes stationarity of dynamics) will underestimate propagated uncertainty and
learn mis-calibrated deferral probabilities.

Sepsis-diabetes. The Sepsis-diabetes simulator is designed for sepsis treatment of diabetic and non-diabetic
subpopulations [Oberst and Sontag, 2019]. The simulator uses physiological measurements (heart-rate, glucose
level, blood pressure and oxygen concentrations) discretized to a total of 720 states. Interventions include
mechanical ventilation, vasopressors, and antibiotics. The reward is high +1 when all measurements are
‘normal’, treatments have been discontinued while it is −1 when all measurements are simultaneously not
‘normal’ and 0 otherwise. We modify this simulator to introduce non-stationarity over time, specifically
increasing stochasticity towards completely random transitions by increasing the likelihood of fluctuations for
heart-rate, blood-pressure and glucose transitions over time. We only sample diabetic patients as they have
higher baseline stochasticity based on glucose levels. A non-stationary behavior policy is estimated by using
policy-iteration on trajectories of size N = 200 fixed-length (T = 10) episodes. The expert policy π0 we defer
to is an ε-greedy version of the behavior policy which can also non-myopically degrade (toward uniform) over
time. The target policy πtar is such that it deteriorates to random at a specific time t ≥ 3 (for all states).
Thus t = 3 is the precise time-point of pre-emptive deferral. Additional details are in the Appendix.

Real-world simulator: Diabetes Data. We use open-source implementation of the FDA approved
Type-1 Diabetes Mellitus simulator (T1DMS) for modelling treatment of Type-1 diabetes. We sample 10
adolescent patient trajectories (episodes) over 24 hours (aggregated at 15 minute intervals). Glucose levels
are discretized into 6 states according to ranges suggested in the simulator. Combination interventions of
insulin and bolus are discretized to generate a total of 8 actions. We introduce non-stationarity within each
episode by increasingly changing the adolescent patient properties to an alternative patient over the episode.
This significantly affects the utility of the initial target policy necessitating deferral as the patient properties
change over the course of the day. The non-stationary behavior policy is estimated using Q-learning. We defer
to an epsilon-greedy version of such a policy that is made to degrade over time by increasing stochasticity.
As before, the target policy resembles the behavior policy, except is changed to take random actions in
the time-window 35(= 8hrs) ≤ t ≤ 50(= 13hrs) for all states. This is the desired region of pre-emptive
deferral.

5.1 Baselines
To the best of our knowledge, there are no prior works focusing on pre-emptive deferral to expert (for
stationary or non-stationary) sequential settings. We compare to the following baselines.

Madras et. al. [Madras et al., 2017]: This is a supervised learning-to-defer method not designed for
sequential or non-stationary domains, that learns a deferral function along with a myopic treatment policy.
This baseline allows us to compare to myopic deferral decisions. We train this baseline with action targets.
Note that while this baseline learns a separate regressor to predict actions, we modify it to use πtar to learn
deferral for πtar as with SLTD.

Augmented-MDP: We consider a baseline that defers permanently to the expert (as opposed to multi-step
deferral as in SLTD) using an Augmented MDP. Augmented MDPs are commonly used to incorporate domain
knowledge. To learn a deferral policy, we augment the action and state-space, so that the action-space is
A∪ ⊥ and the augmented state-space is S ∪ sdefer (sdefer is the deferred state). The transition dynamics are
updated to reflect the augmented action and state-space transitions. This baseline models non-stationary
dynamics, and is designed to defer in sequential settings. However since the dynamics have to be augmented
to defer permanently to the expert, this baseline incurs a larger deferral cost in practice.

SLTD-one step: We also compare to a myopic version of SLTD that chooses to defer only based on the
immediate reward. This baseline is called SLTD-one step. The key difference with the myopic Madras et. al.

2Jinyu Xie. Simglucose v0.2.1 (2018) [Online]. Available: https://github.com/jxx123/simglucose. Accessed on: 07-24-2021.
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(c) Learned deferral probabilities for SLTD, its variants, and
Augmented-MDP. Top row shows learned probabilities over time
(marginalized by state) and bottom over states (marginalized by
time). Shaded yellow indicates the region of pre-emptive deferral.
SLTD-πtar which models non-stationarity best approximates the
distribution on the left as can be seen by higher deferral likelihood
early in the shaded yellow region (top row). SLTD-stationary does
not learn calibrated probabilities in the yellow region over time.
The deferral probabilities w.r.t the states (bottom row) are less well
calibrated due to imperfect model estimation and potential bias in
data collected from π0. SLTD-πtar and SLTD-stationary still learn
state 4 has highest likelihood of deferral. SLTD-one-step (seen as a
small bump on the state histogram) and Augmented-MDP (dotted
red line) only defer when in state 6. Augmented-MDP defers with
probability 1 in state 6.

baseline here is that SLTD-one step models the uncertainty on the immediate reward of deferring versus not
deferring, while Madras et. al. defers based on their confidence in predicting the next action.

SLTD-stationary: To assess the impact of misspecifying the stationarity of the dynamics on the learned
deferral policy, we further compare to a version of SLTD with assumes the dynamics (and rewards) are
stationary.

5.2 Implementation Details
Data is generated using behavior policy π0 in all cases. We estimate posteriors of non-stationary dynamics
with Dirichlet priors over each state-action pair and learn non-stationary deferral policies. Additional details
are in the Appendix.

6 Results
We validate the following aspects of SLTD using the empirical evaluation. First, we assess whether SLTD
learns a pre-emptive deferral policy for a given target policy πtar. Second, we evaluate whether such pre-
emptive deferral improves long-term cumulative outcomes over methods that myopically recommend deferral
or those are not pre-emptive. We also analyze the change in uncertainty due to deferral decisions of SLTD
(and its variants). Finally we interpret the deferral decision by conveying the decomposed uncertainty that
led to deferral.

SLTD improves long-term outcomes. Cumulative rewards obtained from all methods are in Table 1.
SLTD (and the stationary variant) that optimize for long-term outcomes outperform other baselines for all
datasets. SLTD is able to significantly improve over the target policy πtar. In cases where the systematic
non-stationarity is not too high, as in Synthetic data, the mis-specification induced by using the stationary
variant of SLTD is less concerning. In this case, a stationary model gains from the additional samples available
for dynamics model estimation resulting in comparable performance to modeling non-stationarity. However,
in the case of the Diabetes simulator with significantly more induced non-stationarity, the improvement is
significant. For all datasets, myopic deferral, as learned by Madras et. al. is unable to improve long term
cumulative rewards. Here, focusing on predictive confidence, as the Madras et. al. baseline does, is not
sufficient to identify regions of the state-space that increase propagated uncertainty by deploying the model
(πtar). Note that πtar actually has reasonably high reward (+1) in regions where it takes sub-optimal actions
for Synthetic data (since these actions worsen long-term reward), which is challenging for SLTD-one-step to
identify. In Sepsis-diabetes and Diabetes data, SLTD-one-step gains from focusing on immediate reward and
uncertainty when πtar has suboptimal rewards in the deferral region. This allows it to defer early. Augmented-
MDP fails to incur meaningful benefit and is worse than the nominal πtar. Augmented-MDP also focuses on
the immediate reward, and thus defers precisely only when the immediate reward is sub-optimal.

SLTD learns a pre-emptive deferral policy. Figure 2c shows the learned deferral probabilities from
SLTD and its variants. Top row shows the probabilities over time and bottom row shows the probabilities
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Total
Uncertainty

Epistemic
Uncertainty

Mean
Outcome

Synthetic data
(td = 6) 27.00 0.267 2.52

Sepsis-diabetes
(td = 3) 1.474 0.129 -4.15

Diabetes
(td = 17) 2921.49 35.207 71.950

Table 2: Interpreting first time of deferral for a sample trajectory. Modeling uncertainty remains low in all
cases whereas in comparison, total variance is high. This indicates irreducible stochasticity of the dynamics
is the primary source of uncertainty in all datasets. We observe a similar pattern for other examples (not
included here due to space constraints).

over states. Figure 2a shows the probabilities under the true modelM∗. Thus, SLTD-πtar approximates the
true probabilities better compared to the SLTD-stationary and SLTD-one-step. The likelihood of deferral
is higher at the beginning of this region compared to the stationary variant that does not learn calibrated
deferral probabilities over time. The SLTD-one-step baseline only defers in state 6, when the immediate
reward is negative, as can be seen by the bump in deferral probabilities over states (bottom rows). Similarly,
Augmented-MDP (denoted by the red dashed line when it defers) is not pre-emptive and deterministically
defers when the reward is sub-optimal indicating Augmented-MDP also does not learn a pre-emptive policy
by focusing on regions where the reward is unfavorable.

Figures 4 and 5 in the Appendix show the learned deferral policy for Sepsis-diabetes and Diabetes data.
Qualitatively, learned deferral policies over time are similar with differences in deferral probabilities for states
for these datasets. The qualitative differences in probabilities reflect in the mean improvement in outcomes as
demonstrated in Table 1. Although the SLTD variants find the right time of deferral, the SLTD-πtar policy
for Diabetes learns to defer with higher probability earlier in the sub-optimal region of πtar in comparison to
the stationary variant. The deferral likelihoods for different states is significantly different indicating strong
differences in qualitative behavior of SLTD variants.

Pre-emptively deferring using SLTD reduces overall uncertainty. In general, a higher value and
lower uncertainty here demonstrates the utility of quantifying propagated uncertainty. Figure 2b shows a
heatmap that demonstrates the propagated uncertainty by delaying deferral. Specifically, the y-axis in the
heatmap denotes the earliest deferral time chosen by SLTD-πtar. Conditioned on this decision, we then test
the effect of delaying deferral by varying amounts to the times denoted on the x-axis. Thus each row in the
heatmap demonstrates the effect of delaying deferral after SLTD-πtar’s chosen time. If SLTD recommends
earlier deferral (top rows on the y-axis), the increase in uncertainty is higher by virtue of delaying deferral
to the time point denoted on the x-axis. Similar results for other variants of SLTD, i.e. SLTD-stationary
and SLTD-one step as well as for other datasets are in the Appendix. When the non-stationarity is not
high, as discussed before, SLTD-stationary benefits significantly from additional samples. This results in
relatively better characterization of and reduction in uncertainty resulting in comparable reduction in overall
uncertainty. SLTD-one step is unable to reduce uncertainty as much as these variants for Synthetic data
where long-term modeling is critical. The change in uncertainty is comparable to SLTD for the Sepsis-diabetes
and Diabetes data indicating that in regions where πtar is designed to be sub-optimal, rewards are relatively
lowered suggesting some benefits to deferring myopically.

Decomposing uncertainty in SLTD can help interpret deferral. The reduction in epistemic uncer-
tainty is promising. Conveying the high uncertainty (as an interpretation of deferral) along with the type of
uncertainty to a domain expert can enable them to identify the dominant source of uncertainty that resulted
in a deferral in relation to their own standard practice (expert policy). Table 2 shows this decomposition
for a few selected deferral times for all datasets. In all cases, the modeling/epistemic uncertainty is a small
fraction of the total uncertainty. This suggests that the systematic non-stationarity is the dominant source of
uncertainty which generally cannot be reduced by collecting data or second opinions. However, knowledge of
the contribution of the model/epistemic uncertainty can enable users to further improve decision-making
by clinicians choosing to potentially rely on their standard expert behavior or by other means (like second
opinions).

6.1 Limitations
While quantifying the uncertainty when deferring is an important aspect of our method, there is an additional
computational cost associated with modeling non-stationarity. Additionally, we assumed that data are
generated by a single behaviour policy which is in general, an untestable assumption that may not necessarily
hold in practice.

7 Discussion
In this work we formulate the problem of learning-to-defer in a sequential decision-making setting. Our goal
is to learn a pre-emptive deferral policy, where a deferral policy is considered pre-emptive if it defers in
regions where delaying defer has a higher likelihood of leading to worse long-term outcomes. We learn a pre-
emptive deferral probability by approximating the likelihood of worse outcomes under systematic uncertainty.
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Non-stationary dynamics can exacerbate this propagated uncertainty while increased stochasticity over time
can further hinder our ability to “recover” (still obtain high reward) from executing a sub-optimal policy.
Based on this insight, we estimate the deferral probabilities by modeling the underlying non-stationary
dynamics. We showed that the proposed method SLTD learns pre-emptive deferral policy in comparison
to other non-pre-emptive methods. Myopic methods designed to rely on prediction confidence do not defer
pre-emptively as they rely heavily on their confidence, thus failing to identify regions where the current
policy is unreliable. Augmented-MDP baselines account for sequential outcomes and model the underlying
non-stationary dynamics however, are unable to pre-emptively defer by focusing on regions where reward is
sub-optimal. Relying on an Augmented-MDP alone can result in delayed deferral. We also demonstrated that
pre-emptively deferring can manage propagated uncertainty which we further interpreted by decomposing its
effect on long-term outcomes. Evaluating the impact of these policies on long-term improvements as well as
on a clinician’s ability to intervene in a more informed manner is an exciting avenue for future work, including
user-studies. Relaxing the assumptions about knowledge of the dynamics is left for future work.
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8 Appendix

8.1 Datasets

Measurement
Stationary
fluctuation
probability

Modified probabilities
T=episode length
t=time in episode

Heart-rate 0.1
0.2

min(0.5, 0.1 + 0.8t1.0/T )
2min(0.5, 0.1 + 0.8t1.0/T )

Systolic- BP 0.1
0.2

min(0.5, 0.1 + 0.5t1.0/T )
2min(0.5, 0.1 + 0.5t1.0/T )

Percoxyg. 0.1
0.2

min(0.5, 0.1 + 0.5t1.0/T )
2min(0.5, 0.1 + 0.5t1.0/T )

Glucose
(Diabetes only)

0.3
0.6

min(0.5, 0.3 + 0.5t1.0/T )
0.6

Table 3: Modified sepsis-diabetes simulator to induce non-stationarity

Sepsis-Diabetes simulator. The Sepsis-diabetes simulator is designed for sepsis treatment of diabetic
and non-diabetic subpopulations [Oberst and Sontag, 2019]. The simulator uses physiological measurements
(heart-rate, glucose level, blood pressure and oxygen concentrations) discretized to a total of 720 states.
Interventions include mechanical ventilation, vasopressors, and antibiotics. The reward is high +1 when all
measurements are ‘normal’, treatments have been discontinued while it is −1 when all measurements are
simultaneously not ‘normal’ and 0 otherwise. We modify this simulator to introduce non-stationarity over
time, specifically increasing stochasticity towards completely random transitions by increasing the likelihood
of fluctuations for heart-rate, blood-pressure and glucose transitions over time. We only sample diabetic
patients as they have higher baseline stochasticity based on glucose levels. In particular, the fluctuations are
modified from the original simulator as shown in Table 3.

Diabetes simulator. We use open-source implementation of the FDA approved Type-1 Diabetes Mellitus
simulator (T1DMS) for modelling treatment of Type-1 diabetes. The simulator models managing an in-
silico patient’s blood glucose levels when consuming a meal. If the blood glucose level is either too high
(hyperglycemia) or too low (hypoglycemia), this can have fatal consequences such as organ failure. As a
result, a clinician must administer an insulin dosage to minimize the risk of such events. While a doctor’s
initial dosage prescription is usually available, the insulin sensitivity of a patient’s internal organs changes
over time, thereby introducing non-stationarity that should be accounted for. We sample 10 adolescent
patient trajectories (episodes) over 24 hours (with measurements aggregated at 15 minute intervals). Glucose
levels are discretized into 6 states according to ranges suggested in the simulator (additional details are in
the appendix). Further, insulin and bolus intervention combinations are discretized to generate a total of 8
actions. We introduce non-stationarity within each episode by increasingly changing the adolescent patient
properties to an alternative patient over the episode. This significantly affects the utility of the initial target
policy necessitating deferral as the patient properties change over the course of the day. The non-stationary
clinician/behavior policy is estimated using Q-learning. We use an epsilon-greedy version of such a policy
that is further made to degrade over time by increasing stochastic. The target policy resembles the clinician
policy except is changed to take random actions in the time-window 35(= 8hrs) ≤ t ≤ 50(= 13hrs). This
is the desired region of pre-emptive deferral. Discretization of Glucose levels is provided in Table 4 and
discretization of interventions is summarized in Table 5.

Blood Glucose
(mg/dL) - BG Discrete state

50 < BG ≤ 70 0
70 < BG ≤ 90 1
90 < BG ≤ 110 2
110 < BG ≤ 180 3
180 < BG ≤ 300 5
otherwise 6

Table 4: Discretization of Blood Glucose for the Diabetes simulator

Incorporating non-stationarity into the simulator: We use the “Navigator" sensor to generate blood-glucose
measurements and the “Insulet" pump to simulate interventions. For each episode, non-stationarity is induced
by modifying the patient configurations over a period of 24 hours. This result in different dynamics over the
course of the day. These configurations modify insulin sensitivity, glucose absorption and the insulin action on
glucose production among other parameters. For each episode, two random adolescent patients are sampled
(say ‘a’, and ‘b’), over every minute the patient parameters are then sampled as a convex combination of
patient ‘a’ and patient ‘b’ where, as we progress in time, the convex combination increasingly shifts from 0 to
1 thus changing patient parameters. Over the episode, the patient parameters increasingly look like that
of patient ‘b’ instead of ‘a’. The rate of change of this convex combination can be controlled and is set to
cos(t× speed×0.0005)×0.5+0.5, where speed = 5 for our simulations. A similar policy was used by Chandak
et al. [2020b] to induce non-stationarity. However Chandak et al. [2020b] do not induce non-stationarity
within an episode, but across different episodes. Our setting is thus highly variable.
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Bolus
(g/min)

Insulin
(U/min) Discrete Action

0.00 0.00 0
21.00 10.58 1
21.00 5.25 2
51.00 18.19 3
71.00 17.75 4
9.00 2.25 5
9.00 5.823 6
9.00 10.09 7

Table 5: Discretization of bolus and insulin combination treatments
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Figure 3: Sample trajectories for SLTD variants, target policy πtar and clinician policy π0. Mean improvement
are comparable for discrete data but significant using SLTD for Sepsis-diabetes and Diabetes. Relative
benefits of SLTD-stationary and SLTD-one-step are less compared to modeling non-stationarity particularly
for Sepsis-diabetes and Diabetes data. Overall long-term uncertainty is comparable for all baselines for
Synthetic data and Diabetes data but significantly worse for Sepsis-diabetes for SLTD-stationary baseline. A
detailed analysis of this propagated uncertainty is provided in Figure 6.

8.2 Implementation Details
Data is generated using the behavior policy π0 in all cases. We estimate posteriors of the non-stationary
dynamics with Dirichlet priors over each state-action pair and learn non-stationary deferral policies for all
datasets. Note that we also account for uncertainty over rewards by estimating posteriors via Bayesian
inference, as in the case of the dynamics. In this case, for discrete rewards, Dirichlet priors are used, while for
continuous rewards, a normal-gamma prior over each state-action pair is used. Supervised learning-to-defer
baselines are commonly evaluated for accuracy of recommended treatment decision as opposed to outcome
improvement. Hence, for a fair comparison with sequential decision-settings, we evaluate all methods using
virtual roll-outs by deploying the respective deferral policies using the true dynamics. We average cumulative
rewards over 1000 trajectories for each method and 100000 trajectories to estimate propagated uncertainty.
For all baselines the cost of deferral is constant for each time-step when the policy defers to ensure fairness to
myopic baselines. Deferral threshold τ are fixed based on the policy histograms for each dataset separately,
but can be tuned more finely depending on the application. All policies are learned by averaging over 5
random seeds where each run is averaged over 5 bootstrapped samples.

8.3 Computation Infrastructure
All code is implemented using Python 3.8. Models were trained on a single Intel 8268 “Cascade Lake" CPUs
using minimum 12GB of memory. Operating system: CentOS7. Code has also been reproduced on MacOS
Catalina 10.15.7 (8 GB 2133 MHz LPDDR3, 2.3 GHz Dual-Core Intel Core i5). Code appendix includes
Anaconda package dependencies required to reproduce the results.

8.4 Additional Results
Evaluating early vs late deferral: Sample Trajectories Figure 3 shows 100000 trajectories sampled
with πtar, π0, SLTD, SLTD-stationary, and SLTD-one-step baselines over time, with the expected outcome
(± 1 std-dev) for all datasets. Vertical yellow shaded regions show the regions where the target policy takes
suboptimal actions indicating the desired region of pre-emptive deferral. The mean improvement in outcome
is apparent. Qualitative differences in deferral times can also be seen for all datasets. Quantification of
propagated uncertainty is plotted in more detail in Figure 6.

Evaluating learned deferral policy. To qualitatively analyze our policies, we plot the stochastic policies
learned using SLTD, SLTD-one step, SLTD stationary in the following. Note that our policy function is
gπtar(s, t) is non-stationary. To visualize, we plot the marginal probability of deferral over time and states
separately.

Figure 4 demonstrates the policy histograms learned for the Sepsis-diabetes data. All baselines behave
similarly and are able to find the appropriate region of deferral. However, the differences in the actual
deferral probabilities, which reflect particularly differing in the probabilities of deferral observed at the state
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Figure 4: Learned deferral policy to Sepsis-diabetes data. Top row shows learned probabilities over time
(marginalized by state) and bottom over states (marginalized by time). Shaded yellow indicates the region of
pre-emptive deferral.
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Figure 5: Learned deferral policy to Diabetes data. Top row shows learned probabilities over time (marginalized
by state) and bottom over states (marginalized by time). Shaded yellow indicates the region of pre-emptive
deferral.

level. Although the target policy is designed to uniformly deteriorate for all states, the SLTD-stationary
baseline shows high variability in deferral probabilities in states, indicating that this policy underestimates
the propagated uncertainty for certain states. Similarity between SLTD-one-step and SLTD-πtar suggests that
introducing random actions in πtar also results in a change in the immediate reward distributions providing
some benefit to myopic deferral and resulting in similar deferral probabilities learned by these methods.

Figure 5 similarly demonstrates the non-stationary policy learned for the Diabetes data. All baselines learn
higher likelihood of deferral in shaded regions. As in the case of Sepsis-diabetes, qualitative differences in
actual learned probabilities manifest in the gap in the long-term outcomes or value as is demonstrated in
Table 1. The SLTD-stationary baseline is not completely pre-emptive, with higher likelihoods of deferral
toward the end of the shaded region, suggesting this policy underestimates the propagated uncertainty and
therefore does not defer earlier. The probabilities of deferral by state are also significantly different as a
result. Similarities between the one-step baseline and SLTD-πtar indicate that immediate rewards deteriorate
in the shaded yellow region as well, suggesting some benefit of myopic deferral. However, the mean outcomes
do not improve as much as modeling long-term outcomes.

Uncertainty quantification. Figure 6 shows how propagated uncertainty evolves due to deferral from
different SLTD variants for all datasets. Analogous to Figure 2b, this quantifies the relative increase in
uncertainty when we delay deferral from the time chosen by the appropriate baseline. Top row corresponds to
Synthetic data, middle rows shows the results for Sepsis-diabetes, and bottom row shows results of Diabetes
data. Each column corresponds to heatmaps for SLTD, SLTD-stationary, and SLTD-one-step respectively
(with πtar. Each row within a heatmap corresponds to the earliest deferral time chosen by the baseline.
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In each heatmap, the y-axis is the deferral time chosen by the respective deferral policy. The x-axis shows
possible late deferrals (after the policy’s chosen deferral time). Overall delaying deferral increases uncertainty
due to the stochasticity in the system. For Synthetic data, the change in uncertainty using SLTD-stationary
is slightly higher than SLTD particularly when SLTD recommends earlier deferral (top rows in the heatmaps).
On the other hand, the differences are not significant when SLTD and the stationary variants recommend to
defer late. On the other hand, SLTD-one-step has a significantly higher impact on variance, increasing relative
uncertainty even more compared to other baselines, suggesting the one-step variant reduces uncertainty
signficantly. However, managing this uncertainty by deferring according to SLTD-one-step is not reflected in
improved mean outcomes.

Change in uncertainty is relatively comparable for Sepsis-diabetes and Diabetes data, for SLTD and its
stationary variant. The non uniform increase in variance suggests that deferring at times after the region
where πtar takes sub-optimal action e.g. t ≥ 50 for Diabetes does not eventually impact variance as much
as delaying deferral before or within the sub-optimal/shaded region. Similar behavior is observed for the
stationary and one-step variants. The relative similarity between uncertainty patterns of SLTD and the
one-step variant indicates that rewards also deteriorate in the region where πtar takes sub-optimal decisions,
indicating that myopic deferral has some benefits. Nonetheless the improvement in mean outcomes is not
similar with SLTD-one-step baseline. Note that for Diabetes data, we subsample time points to show every
10 time-steps.
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(a) SLTD uncertainty
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(b) SLTD-stationary uncertainty
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(c) SLTD-one step uncertainty

Figure 6: Heatmap of increased uncertainty due to delayed deferral. The y-axis shows SLTD’s earliest chosen
deferral time. The x-axis shows possible later deferral times. The values in each cell are the relative increase
in variance over cumulative reward if we defer after the baseline’s first deferral time. ‘n/d’ implies the baseline
did not recommend deferral at that time on the y-axis for any trajectory. SLTD and SLTD-stationary reduce
uncertainty comparably in the system for all datasets. Change in uncertainty using SLTD-one step is higher
and highly variable as long-term modeling is critical but is not accounted for by this baseline. In practice,
SLTD-one step also results in worse outcomes compared SLTD being more certain of suboptimal outcomes.

13


	1 Introduction
	2 Related Work
	3 Sequential Learning-to-Defer
	4 Decomposing the uncertainty at deferral
	5 Experiments
	5.1 Baselines
	5.2 Implementation Details

	6 Results
	6.1 Limitations

	7 Discussion
	8 Appendix
	8.1 Datasets
	8.2 Implementation Details
	8.3 Computation Infrastructure
	8.4 Additional Results


