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1 Proof of Proposition 1

Proposition 1. Let θ̂
spec

denote the estimator using empiri-
cal statistics in Equation (4). Let θ̂

m
denote theM-estimator

given by

b̂
M
1 = P̂1,

b̂
M
∞ = 1n,

B̂
M
= argmin

B∈Rn×n×n

MN (B).

Then θ̂
m
is in the same equivalence class as θ̂

spec
, so they

provide the same probability estimates.

Proof. Let x ∈ [n], and consider a solution to the moment
conditions for parameter Bx ∈ Rn×n given by

min
Bx

‖P3,x,1 −BxP2,1‖2F (1)

Equation (1) can be solved using any convex program, or,
by the Eckart-Young theorem (Eckart and Young, 1936),
through singular value decomposition. Thus we recover the
original spectral estimator: Equation (1) is equivalent to a
singular value decomposition as standard methods in spec-
tral learning do (Hsu et al., 2012; Boots et al., 2010; Boots
and Gordon, 2011; Huang et al., 2013). Note further that
while this problem is nonconvex, all local optima are also
global (Nati and Jaakkola, 2003). Hence the estimates we
obtain using optimization routines are consistent.

Hsu et al. (2012) derive Equation (1) from a different stand-
point and consider the special case of full rank k = m.
They proceed to relax the rank constraint by observing that
the parameters are learned up to a similarity transform:
given the triplet (b1, {Bx},b∞) and an invertible matrix
S ∈ Rn×n, the transformed triplet (b′1 = Sb1, {B′x =
SBxS

−1},b′∞ = S−Tb∞) provide the same joint proba-
bilities as written in Equation (5).

Instead of choosing an invertible similarity transform, one
can findU ∈ Rn×k such thatU>P2,1 (equivalently,U>O)
is invertible, as any inversions regardingU are only involved
through the product U>P2,1. A natural choice is to let U

be the matrix of k left-singular vectors of P2,1 (Hsu et al.,
2012, Lemma 2). Then an equivalent optimization proce-
dure to Equation 1 is simply

min
B′x

‖P3,x,1 −B′xP2,1‖2F (2)

where B′x ≡ U>Bx(U
T )† = (U>O)Ax(U

>O)−1 ∈
Rk×k. The advantage is that B′x is automatically con-
strained to be of rank k through the similarity transform
on Ax given by U>O. This can be solved trivially with
B′x = P3,x,1P

†
2,1, and in terms of the original parameter

Bx = (U>P3,x,1)(U
>P2,1)

−1 (Hsu et al., 2012, Proof of
Lemma 3).

2 Proof of Proposition 3

Proposition 3. The gradients are

∇RL = J>RWg(X, {R,S}) +∇RPα(R,S) (3)

∇SL = J>S Wg(X, {R,S}) +∇RPα(R,S) (4)

where the matrices JR ∈ Rn3×n2k and JS ∈ Rn3×n2k are
given by

[JR]xij,uvw =

{
−[S>x ]w·[P2,1]·j , if x = u, i = v

0, otherwise
(5)

and

[JS]xij,uvw =

{
−[Rx]iw[P2,1]vj , if x = u

0, otherwise
(6)

Proof. For a general quadratic matrix function f(θ) =
y(θ)>Wy(θ) with given matrix W, its gradient is

∇f(θ) = [∇y(θ)]>(W +W>)y(θ)

Hence for our situation where W is symmetric, it is

∇RL = 2

[
∇R

[
[P̂3,x,1]ij − [Rx]i·S

>
x [P2,1]·j

]
xij∈[n3]

]>
W [m̂xij(θ)]xij∈[n3]

= 2J>RW [m̂xij(θ)]xij∈[n3]
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The Jacobian JR is a n3 × n2k matrix, with elements
(xij, uvw) ∈ [n3] × [n2k]. The (xij, uvw)th entry is the
partial derivative of the xijth moment m̂xij on [Ru]vw:

[JR]xij,uvw =
∂

∂[Ru]vw

[
−

k∑
r=1

[Rx]ir[S
>
x ]r·[P2,1]·j

]

=

{
−[S>x ]w·[P2,1]·j if x = u, i = v

0 otherwise

Similarly, there is a Jacobian JS when taking the gradient
with respect to S, and by the same logic the Jacobian with
respect to S is

[JS ]xij,uvw =
∂

∂[Su]vw

[
−

n∑
s=1

k∑
r=1

[Rx]ir[Sx]sr[P2,1]sj

]

=

{
−[Rx]iw[P2,1]vj if x = u

0 otherwise
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