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Abstract

Beta-Bernoulli processes, also known as Indian buffet processes, are nonparametric
priors that allow generative models to automatically infer the number of features
in datasets. However, inference for these models proves to be challenging, often
relying on specific forms of the likelihood for computational tractability.
We propose to amortize inference using a variational autoencoder trained via
gradient descent, allowing for arbitrary likelihood models. Our model extends
previously considered mean field variational methods with a structured posterior
and new developments in the training of discrete variable VAEs. We experimentally
demonstrate a Beta-Bernoulli process VAE that learns decomposable latent features
and allows for scalable inference of arbitrary likelihoods on large datasets.

1 Introduction

Deep generative models are becoming increasingly feasible for performing unsupervised learning
tasks [Kingma and Welling, 2013, Gregor et al., 2015, Ranganath et al., 2014]. One limitation of
many models is their pre-defined capacity, or that latent representations must have a fixed dimension
independent of the complexity of data.

The field of Bayesian nonparametrics seeks to address this issue. By imposing a prior on an infinite
dimensional latent variable, a model has the flexibility to learn its latent dimensionality. Such methods
include the Dirichlet process [Neal, 2000] and the Beta-Bernoulli process, also known as the Indian
buffet process (IBP) [Griffiths and Ghahramani, 2011, Thibaux and Jordan, 2007]. As a prior over
infinite dimensional binary matrices, the Beta-Bernoulli process provides a principled and flexible
way to estimate latent features from data. However, inference for the Beta-Bernoulli process tends to
be focused on simple likelihoods and small datasets.

In this work, we overcome these limitations using developments in gradient-based optimization in
variational inference [Kingma and Welling, 2013, Hoffman et al., 2013, Hoffman and Blei, 2015]. We
propose a deep generative model with a nonparametric prior and train it as a variational autoencoder
for the IBP. In addition, we show that a structured variational posterior improves upon the mean field
assumption first explored by Chatzis [2014]. Finally, we leverage recent developments in the training
of VAEs to improve the quality of inference.

2 Background

The Indian buffet process (IBP) defines a distribution on latent feature allocations Z ∈ {0, 1}N×K+

,
where zn,k is 1 if feature k is on for the nth data point and 0 otherwise [Griffiths and Ghahramani,
2011]. It can be characterized using the stick breaking process, which first samples νk ∼ Beta(α, 1),
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and then samples the elements of each row as zn,k ∼ Bern(πk);πk =
∏k
j=1 νj [Teh et al., 2007].

Here, α is a hyperparameter that represents the expected number of features of each data point.

Given this prior over feature allocations Z, we can specify a generative model for our data X with a
likelihood p(X|Z). If our data is {xn}Nn=1 for xi ∈ RD, then we have

Z,ν ∼ IBP(α); An ∼ N (0, IK+); xn ∼ pθ(xn|Zn �An)

where � is the Hadamard product. Here, pθ(x|Z,A) is a likelihood defined by an arbitrary function
with parameters θ. A well studied example is the linear Gaussian model, where p(x|Z,A) ∼
N (ZA, σ2) [Griffiths and Ghahramani, 2011] (with a global A). For most of this work, we consider
arbitrary likelihood models by feeding Zn �An into a neural network. Unlike in previous methods,
our generative model includes non-exponential family likelihoods, making inference more difficult.

3 Related Work

The key difficulty in using the IBP is that, regardless of the generative model, inference and training
can be complicated. Gibbs sampling [Griffiths and Ghahramani, 2011, Teh et al., 2007] can be slow
for large datasets, while many variational methods [Doshi et al., 2009, Shah et al., 2015] often require
strong relaxations (e.g. the mean field assumption, conjugate likelihoods) for tractability.

(Structured) stochastic variational inference ((S)SVI) [Hoffman et al., 2013, Hoffman and Blei, 2015]
and variational autoencoders (VAEs) [Kingma and Welling, 2013] provide a general solution to scale
up inference using minibatch ascent. VAEs with nonparametric priors have only been rarely explored
due to the prevalence of nonreparametrizable variables in nonparametric distributions. Nalisnick and
Smyth [2017] propose a deep generative model with the stick breaking weights of a Dirichlet process
as the latent variable, avoiding discrete backpropagation. Chatzis [2014] propose a model that we
use as our primary benchmark: a deep VAE with a latent Beta-Bernoulli process, trained with black
box variational inference [Ranganath et al., 2014]. In this work, we improve upon the mean field
assumption of Chatzis [2014] with a structured variational posterior, and we also leverage recent
developments in training discrete nodes, thus pushing the state of the art for IBP inference.

4 Inference

In this section, we consider methods to learn the posterior p(Z,A,ν|X) using variational inference:
(1) mean field, as utilized by Chatzis [2014], and (2) structured, where we keep dependencies between
local and global variables in the variational posterior.

Note that our latent variables are both the global variables ν = {νk}∞k=1 (in bijection to weights πk)
and the local hidden variables ψn = {Zn,An} with Zn ∈ {0, 1}K

+

,An ∈ RK+

, in addition to
likelihood weights θ. Hence, our variational posterior is of the form q(ν, {ψn}Nn=1|X). While the
true posterior is over an infinite latent variable, we assume a truncated posterior which has support
only over finitely sized matrices, as in Doshi et al. [2009], Blei and Jordan [2004]. Throughout, we
derive point estimates of θ with gradient descent on our objective.

4.1 Mean Field Inference Networks

The simplest variational posterior makes the mean-field approximation, in which we assume that q fac-
tors: q(ν, {ψn}Nn=1) =

∏K
k=1 q(νk)

∏N
n=1 q(zn,k)q(An), where K is a truncation hyperparameter.

Chatzis [2014] explored the mean-field approximation and used the following approximation: q(νk) =
Beta(νk|ak(xn), bk(xn)); q(zn,k) = Bern(zn,k|πk(xn)); q(An) = N (An|µ(xn),diag(σ2(xn)))
where ak, bk, πk, µ, σ2 are the outputs of neural networks which have input xn.

Chatzis [2014] gives the following expression for the negative ELBO or loss L:

L = −Eq [log p(x|ψ)] + KL(q(Z|ν) ‖ p(Z|ν)) + KL(q(ν) ‖ p(ν)) + KL(q(A) ‖ p(A))

We refer to this model as MF-IBP. Note that when we train this model with the ELBO, the νk random
variables from q do not affect the generation of xn, but only Eq[log p(Z|ν)] and KL(q(ν) ‖ p(ν)).
We find in practice that the first term has very little effect, and the second term encourages the
posterior to approach the prior, which is a Beta(α, 1) distribution. So, in practice, the functions
ak(x), bk(x) degenerate to constants near α, 1.
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Figure 1: All features learned from MNIST in a linear Gaussian generative model. Note that many of the ’noise’
features are never activated.

4.2 Extension: Structured Inference Networks

We can factor our variational posterior into a hierarchical distribution over global and local variables.
We view the νk variables as being global, since they are shared between data points, and the
zn,k variables as local. So, we now have q(ν, {ψn}Nn=1) =

∏K
k=1 q(νk)

∏N
n=1 q(zn,k | νk)q(An)

with q(νk) = Beta(νk|ak, bk); q(zn,k | νk) = Bern(zn,k|πk); πk:=
∏k
j=1 νj where ak, bk are

parameters to be learned. We call this model/inference scheme S-IBP.

We maximize using SSVI [Hoffman and Blei, 2015], giving the following loss L:

KL(q(ν) ‖ p(ν)) +

N∑
n=1

−Eq[log p(xn|Zn,An)] + KL(q(An) ‖ p(An)) + KL(q(Zn|ν) ‖ p(Zn|ν))

We approximate the expectations by taking a sample ν ∼ q(ν), and then sample from Zn ∼ q(Zn | ν)
(which is implicitly a function of X from the inference net).

4.3 Training and Evaluation

For VAEs, it usually suffices to specify the variational posterior and the generative model, and
automatic differentiation will take care of the rest. However, our model has Bernoulli and Beta latent
variables, neither of which permit easy reparametrization. We consider two solutions: black box
variational inference (BBVI) [Ranganath et al., 2014] and biased approximations. For the biased
option, we approximate Bernoulli r.v.s with Gumbel softmax variables [Maddison et al., 2017, Jang
et al., 2017] during training, and Beta r.v.s with Kumaraswamy r.v.s [Nalisnick and Smyth, 2017].
See the Appendix for details.

The importance weighted autoencoder bound (IWAE) [Burda et al., 2015] is known to be a stronger
bound on the log marginal, so we use it as our metric. Since we have global latent variables in
our S-IBP models, we must be careful to sample globally a set of νk before calculating the IWAE
estimate using subsampling. See the Appendix for details.

5 Experiments

5.1 Shallow Generative Model

First, we run a linear generative model with S-IBP, (i.e., the likelihood is p(xn|Zn) = ZnA with
A learned parameters rather than sampled as in the standard linear Gaussian model) on the MNIST
dataset to demonstrate the kinds of learned features that we can recover.

We visualize the rows of A learned by the model in 100 epochs. We use a truncation of 100 for our
variational posterior, and Figure 1 shows all 100 features learned, sorted by IBP prior weight in row
major order. Note that the model has automatically learned stroke-like features, and made use of the
IBP truncation by leaving some features as noise.

5.2 Deep Generative Model

We experiment with training deep generative models on MNIST and Omniglot [Lake et al., 2015],
two large scale datasets. We use the fixed binarization of Larochelle and Murray [2011] for MNIST.
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MNIST IWAE Omniglot IWAE

Model Train Test Train Test
MF-IBP BBVI 102.6 104.5 129.4 134.5
MF-IBP Gumbel 94.2 96.4 125.0 129.5
S-IBP BBVI 93.8 96.2 115.2 124.5
S-IBP Gumbel 81.7 86.5 101.4 113.0

Table 1: MNIST and Omniglot IWAE test results. K (the truncation level) was set to 100, and α = 10.

Figure 2: Trained S-IBP Gumbel model on MNIST with α = 10, KL for ν weighted by 104 during training.
Left: Distribution of number of features used per data point. The average data point uses about 18 features, a bit
higher than the prior. Right: Number of test data that use each feature. Note the long tail of feature activations.

We construct a generative model whose likelihood is a multi-layer perceptron with a single hidden
layer of 500 units, such that the neural network parametrizes a function log p(x|Z,A) = fθ(Z,A).
Similarly, we construct a fully connected inference network with a single hidden layer of 500 units.

We consider 4 models as the combination of two choices: (1) either the mean field approximation of
Chatzis [2014] (MF-IBP) or the structured approach in section 4.2, and (2) the gradient estimation
technique for training the Bernoulli hidden variables, either BBVI or the Gumbel softmax method.
For both structured posterior approaches, we use the Kumaraswamy variational approximation for
the Beta random variables. See Appendix for training and hyperparameter details.

Our models are implemented in PyTorch, and are open source2. Table 1 shows our results, evaluated
with IWAE. We see that the structured posterior outperforms the corresponding mean-field method.

6 Discussion

We take a deep generative model (S-IBP Gumbel) trained on MNIST and analyze its inference
properties with respect to the IBP prior. Figure 2 illustrates the usage of features, where we trained
with the KL for ν weighted by 104 to encourage adhering to the prior (this did not affect the score
much). We observe that although we set α = 10 to indicate our prior for about 10 features, the model
prefers to use more to reduce its reconstruction loss. We see a “cliff” of features around 20, which
is more than we would like for an IBP(α) with α = 10. This shows that our model is not being
regularized sufficiently by the IBP prior, and that it prefers to use more features and the power of the
deep likelihood function to reconstruct the image. Future work is needed to improve feature sparsity.

7 Conclusion

In this paper, we presented several forms of Indian buffet process VAEs. We showed empirically
that choosing a structured posterior allows for a better optimum, and that the learned features are
interesting. Future work will involve applying the latent feature discovery to more interesting
generative problems.

2https://github.com/rachtsingh/ibp_vae/
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A Appendix

A.1 Inference

Gumbel softmax The Gumbel softmax, or Concreteλ, variable is a continuous approximation of
a Bernoulli variable used during training to get (biased) estimates of the gradient [Jang et al., 2017,
Maddison et al., 2017]. We follow the notation of Maddison et al. [2017].

We relax the discrete KL between two Bernoullis into a KL divergence between two Concreteλ
variables. If the original ELBO is

Ez∼qα(z|x)
[
log

pθ(x|z)pa(z)

qα(z|x)

]
(1)

where z is sampled discretely from Bern((α)), and α is the logit probability for the variational poste-
rior. We relax this by replacing discrete samples with Concrete samples with different temperatures
for the priors:

Ez∼qα,λ(z|x)
[
log

pθ(x|z)pa,λprior
(z)

qα,λ(z|x)

]
(2)

Here, λ, λprior are temperature hyperparameters, and a is the logit probability for the prior (for us,
πk). This expectation is computed using a single sample.

qα,λ(z|x) and pa,λprior
(z) are Concrete distributions, where the density for binary random variables

is

pα,λ(x) =
λαx−λ−1(1− x)−λ−1

(αx−λ + (1− x)−λ)2
(3)

Alternatively, we have the representation X = σ((L+ logα)/λ) where L is Logistic.

At train time, we sample from the Concrete density to obtain the ELBO. At test time, we sample
according to the Bernoulli.

Kumaraswamy The Kumaraswamy distribution with parameters a, b has density function

p(x; a, b) = abxa−1(1− xa)b−1

and approximates a Beta density. In particular, in the case of a = 1 or b = 1 the Kumaraswamy and
Beta distributions are identical. We have a reparametrization as

x ∼ (1− u1/b)1/a

where u ∼ Unif(0, 1). Nalisnick and Smyth [2017] use these as a variational posterior instead of
Beta variables in order to have full differentiability of their model, and we do the same in our S-IBP
model.

The KL divergence between Kumaraswamy and Beta distribution is given by for q(vk) ∼
Kumaraswamy(a, b) and p(vk) ∼ Beta(α, β):

KL(q(vk) ‖ p(vk)) =
a− α
a

(
−γ −Ψ(b)− 1

b

)
+

+ log ab+ logB(α, β)− b− 1

b
+

+ (β − 1)b

∞∑
m=1

1

m+ ab
B
(m
a
, b
) (4)

γ is the Euler constant, Ψ is the digamma function, B is the Beta function [Nalisnick and Smyth,
2017]. In practice, we take a finite approximation of the infinite sum.

A.2 Modification of the IWAE bound

The difference is that our joint and variational approximations factor only once we’ve conditioned on
the value of ν:

log p(x) = log

∫
ψ,ν

p(x,ν,ψ)
q(ν,ψ)

q(ν,ψ)
dν dψ ≥ Eq

[
log

1

k

k∑
l=1

p(νk)

q(νk)

N∏
i=1

p(xi,ψi,k|νk)

q(ψi,k|νk)

]
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MF-IBP S-IBP
Figure 3: The global features A learned by the IBP models. On the left is the true matrix of features A. Black
corresponds to a value of 1 (or higher), grey corresponds to 0, and white corresponds to a value of -1 (or lower).

To calculate this via sub-sampling, we sample the ν k times, and then iterate over the dataset,
sampling zn from the conditional posterior q(zn|ν), and computing the overall log-marginal bound.
We average to get the per data numbers in Table 1.

A.3 Training Details

For all our models, we perform gradient descent using Adam [Kingma and Ba, 2015] with learning
rate 0.001, set the hidden layer size of all neural networks to 500, set the truncation of our variational
posterior to K = 100, and set α = 10, which regularizes the model to use an average of 10 features
for each data point. We tune hyperparameters λ and λprior using grid search. For the models that use
BBVI, we use 10 samples of the gradient to estimate the control variate.

For MNIST, MF-IBP Gumbel and S-IBP Gumbel were run with λprior = 0.25, λ = 0.3. For
Omniglot, MF-IBP Gumbel and S-IBP Gumbel were run with λprior = 0.8, λ = 1.

A.4 Synthetic Data

We generate a small synthetic dataset using randomly sampled features, and show that our main
implementations are able to recover approximately the true number of features, and compare the run
time of each approximate method. Specifically, we sample a global feature matrix A ∈ RK×D with
K = 5, D = 64, a feature allocation matrix Z ∈ {0, 1}N×K , and our data X ∼ ZA + ε where ε is
Gaussian noise. Since we know the generative model for the data, we can verify our models and
examine the effects of different inference methods.

Specifically, we use our implementation of the model of Chatzis [2014] (MF-IBP), and our model
with a structured posterior and trained using the Concrete and Kumaraswamy distributions (S-IBP).
We modify the models to remove the hidden variables An, since the generative model only uses the
latent matrix Z and a global matrix A. We leave A as a parameter with a point estimate variational
posterior, and a Gaussian prior.

In Figure 3 we have visualizations of the true features, the features learned by the MF-IBP (BBVI),
and by the S-IBP (Concrete). Note that there’s duplication of features and negation of features
in the MF-IBP, which is a recurring problem in Indian buffet process inference. Also, because of
the Gaussian prior on A, many of the features are regularized down to 0. However, they are not
eliminated from the model as they might be in other IBP formulations that can take advantage of
split/merge steps [Fox et al., 2014, Hughes et al., 2015].

A.5 Reconstructions from Shallow Generative Model

In Figure 4, we examine a few digits and their reconstructions via inference by the IBP prior. We
see that the features near the front of the IBP prior are used more often, and that features in the tail
encode more information about individual digits. Unfortunately, the model does not learn sparsity
well, likely due to the balance between minimizing the reconstruction loss and the KL between the
IBP prior and the inferred feature distribution.
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Figure 4: Reconstructions of MNIST digits, along with the numbered features used, via the shallow generative
model.
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