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Abstract
Intelligent agents and AI-based systems are becoming increasingly prevalent. They support
people in different ways, such as providing users with advice, working with them to achieve
goals or acting on users’ behalf. One key capability missing in such systems is the ability
to present their users with an effective summary of their strategy and expected behaviors
under different conditions and scenarios. This capability, which we see as complementary
to those currently under development in the context of “interpretable machine learning” and
“explainable AI”, is critical in various settings. In particular, it is likely to play a key role
when a user needs to collaborate with an agent, when having to choose between different
available agents to act on her behalf, or when requested to determine the level of autonomy
to be granted to an agent or approve its strategy. In this paper, we pose the challenge of
developing capabilities for strategy summarization,which is not addressed by current theories
and methods in the field. We propose a conceptual framework for strategy summarization,
which we envision as a collaborative process that involves both agents and people. Last,
we suggest possible testbeds that could be used to evaluate progress in research on strategy
summarization.
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1 Introduction

Intelligent systems play a growing role in our daily lives, from voice-controlled assistants to
tools for recognizing cancerous tumors and computer-assisted driving [59]. Many of these
systems go even further, autonomously carrying out tasks on behalf of their user rather than
simply providing advice. These can either take the form of virtual agents (e.g., bots bidding
for ad placement, automatic news feed generators) or physical ones (e.g., autonomous cars,
vacuum robots). The behavior of these systems is often opaque to human users. For example,
a robotic vacuummay be equipped with several coverage algorithms and the choice of which
algorithm to use at a specific time may depend on environment conditions, which might be
outside the user’s knowledge or understanding.

In a clinical setting, the way in which an agent combines a patient’s current measures and
history may be more involved than a clinician could immediately process. In both settings,
ideally the user could gain a general understanding of how and when to deploy the agent in
advance rather than have to learn this situation-by-situation.

Users’ familiarity with the strategies and expected behaviors of agents1 under differ-
ent conditions and scenarios is essential for many purposes. First, an understanding of
agents’ behaviors can facilitate choosing between interchangeable systems (e.g., Siri, Cor-
tana, Alexa). Second, knowing the agent’s strengths and weaknesses can improve the ability
of people to collaborate with agents (e.g., being familiar with a surgical robot’s strategy can
support a surgeon in the operating room). Last, users may need to determine how much
autonomy to grant to an agent, and knowing its expected behavior can help them make more
informed decisions, and trust that the agent could perform its designated role.

However, explaining agent behavior to users is challenging because the strategies of these
agents are often determined using sophisticated computational techniques (e.g., machine-
learning models, deep learning, Markov decision processes and in many cases an ensemble
of methods). People are inherently bounded-rational and find it difficult to map from a
design and logic to actual behavior of the system. It has been shown that users’ mental
models of system behaviors are incomplete, parsimonious and unstable; that people are
limited in their ability to “run” these models to predict expected behavior; and that people
often confuse different mental models [49]. Additionally, humans do not reason in the same
way that autonomous systems do: they are likely to use different state representations and
different reasoning mechanisms, making it potentially harder to understand agents’ behavior.
Moreover, attempting to specify the system’s actual behavior in each world state is typically
infeasible because the space of possible world states the systemmay run into is often far more
immense than what a human can manage. For example, the state space in which autonomous
vehicles make decisions is based on speed, weather, road conditions, distance and much
other data gathered by a variety of sensors, including cameras, LiDARs (Light Detection
and Ranging), and radars. While the user may be a very experienced driver, it is very likely
that she has never experienced or ever considered many of the possible states in this space
(e.g., spotting a child running out to retrieve a bouncing ball or spotting an exploding tire of
a close-by car).

The idea behind strategy summarization is to provide users with some form of a summary
(either textual or visual, through an interactive interface) that demonstrates system behavior
in carefully selected world states. With this new paradigm, users gain a better understand-
ing of the system in a range of diverse key world states, in a relatively short time. Recent

1 The use of the term “agent” in this paper refers to any system for which strategy can be formally captured
or simulated. Autonomous agents are a specific case in that sense.
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efforts developed methods for explaining one-shot decisions made by autonomous agents
(e.g., [32]) or machine learning algorithms (e.g., [51]) in retrospect, or ex-post. In contrast,
strategy summarization offers a complementary important capability, which is the cohesive
description of the behavior an agent is likely to exhibit, ex-ante. A few recentworks developed
user interface designs enabling users to query an agent’s policy (e.g., [27]), yet these require
much sophistication, knowledge and effort from users in order to properly understand the
system, and do not generate automated summaries. In contrast, the strategy summarization
approach aims to communicate the actual agent behavior in a scenario-based manner, rather
than conveying its underlying decision-making model (e.g., a decision tree, the coefficients
of a logistics regression model). It reduces user effort in that it presents agent behavior in a
range of scenarios rather than requiring users to specify many queries on their own.

The study of strategy summarization will contribute to theories and methods in the areas
of decision making under uncertainty, human–agent interaction, explainable AI and multi-
agent literature. It requires expertise in diverse fields, in particular human–agent interaction,
planning and learning algorithms and representations, interpretability, and machine learning.
Still, we argue it is both feasible and worth pursuing, as methods that help people better
understand agents are expected to have an impact in many areas, including domains of
societal importance such as healthcare, education and transportation.

The goal of this position piece is to place strategy summarization in the context of other
work in explainable AI (Sect. 2), provide a framework for strategy summarization algorithms
(Sect. 3), and propose considerations for evaluation (Sect. 4). In our framework section, we
identify three key components of strategy summarization systems, which we hope will help
organize research in this nascent field. In our evaluation section, we not only suggest potential
benchmark applications, but also call out considerations for evaluating a global property such
as a summary.

2 Related work

Strategy summarization falls within the broad area of “Explainable AI” and “Human-Aware
AI”. In particular, it relates to works on explaining robot and agent behavior, interpretable
machine learning and user understanding of system behavior. In this section we argue that
the majority of work in these areas, to date, focused on ex-post explanation of local agent
decisions. Strategy summarization, on the other hand, aims to effectively convey to the user
a strategy as a whole, ex-ante. While both approaches aim to support users in understanding
the behavior of AI-based systems, they require diffeent methods and designs. We next review
related works, emphasizing these differences in approaches.

Explaining robot and agent behavior Most closely related to strategy summarization,
Huang et al. [30] recently presented a method for extracting trajectories of agent behavior
that would support users in inferring the agent’s objectives. Their approach extracts trajec-
tories that enable recovering the agent’s strategy using inverse reinforcement learning. This
work provides one approach to tackle one aspect of the strategy summarization problem,
namely automatic extraction of states to present to users. In this paper, we discuss addi-
tional potential approaches for extracting summaries of agent behavior, and further present
a conceptual framework for the problem of agent strategy summarization that includes addi-
tional aspects of the problem (e.g., choosing state representations, interacting with users)
and discuss evaluation approaches for assessing the effectiveness of strategy summarization
methods.
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Other prior work has developed methods that enable users to “debug” a robot or interact
with it in simulation to gain better understanding of its behavior. For example, Nikolaidis and
Shah [48] proposed a cross-training approach to help parties develop a better understanding
of their teammate. Lomas et al. [42] developed a system that enables a user to ask robots
questions. Brooks et al. [7] developed a system that visualizes all the past actions of a robot
and includes explanations for the actions. Hayes and Shah [27] proposed several methods for
explaining robot policies to people using past execution traces, enabling users to query the
agent’s behavior in different states and request explanations. Recent work [23,72] developed
methods for explaining the decision-making of agents playing Atari games by visualizing the
(pixel) regions the agent relies on for choosing its actions.While these approaches do provide
userswith someways of exploringwhat actions a robotwill take in different scenarios, they do
not attempt to carefully select which behaviors to demonstrate. Thus, they require substantial
manual effort from users to explore the behavior of the robot and do not ensure that users
understand the overall strategy of the robot.

The majority of prior work in the area of explaining robot and agent behavior focused
on explanations of specific decisions, without attempting to demonstrate their global strate-
gies. Sreedharan et al. [58] developed methods for generating plan explanations to users that
have different level of expertise in the domain. Another line of work used argumentation
approaches to explain agent behavior [2,8,57]. For example, Caminada et al. [8] developed
a dialogue-based system which allows a user to query the system about justification for
actions, which the system answers based on actions’ preconditions and effects. Several prior
works suggested methods for explaining recommendations given by MDP-based intelligent
assistants [13,15,16,31,32] or explaining plans [55]. Wang et al. generated explanations of
robot reasoning based on Partially Observable Markov Decision Problems (POMDPs) [68]
and similar approaches have been developed for explaining decisions in the context of Hier-
archical Task Networks (HTNs) planning, explaining an agent’s actions based on its task
model [45,46]. The problem we address differs from the problem of generating explanations
for specific decisions, as rather than providing justifications to a specific action, we aim
to describe which actions would be taken in information-critical states, with the overarch-
ing goal of providing a global understanding of the agent’s behavior. To illustrate, a local
explanation of a medical treatment policy might describe the reasons that an agent chose
to prescribe a particular medication to a patient; in contrast, a global summary might show
different states or trajectories of patients’ medical state and would describe which treatments
the agent would assign in each of these cases.

Finally, several works considered summarizing hierarchical plans or generating plans that
are more understandable to people in the first place. For example, Zhang et al. [73] proposed
measures for plan explicability and predictability and developed methods for synthesizing
plans that are more explicable by considering a human model of the domain. This problem
is distinct from the strategy summarization problem in that it aims to generate, rather than
describe plans or policies. Myers [47] proposed a method for summarizing plans represented
as HTNs to help people in reviewing and comparing them, emphasizing features such as
the allocation of roles to agents, tasks included in the plan and tasks absent. However, this
approach is limited in the sense that it is only applicable to fairly restricted short-term plans
toward achieving a specific goal and relies on very specific features of HTNs. Therefore
it cannot be used to summarize MDP policies that determine agents’ behavior in a large
state-space.

In sum, while there exists a substantial body of work addressing questions related to
explaining agents’ plans to people, the strategy summarization approach is distinct from
these works as it attempts to convey the global behavior of an agent to users. Therefore,
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it requires the development of new algorithms for extracting summaries as well as new
interaction designs for presenting summaries to users. Importantly, we note that strategy
summarization is complementary to the existing approaches described in this section and
can be integrated with them, for instance by adding explanations for local decisions as part
of a summary of a strategy.

Interpretablemachine learning Recently, many approaches have been proposed for devel-
oping interpretable machine learning models, that is, models that are understandable to
people [14,41,52,66]. These approaches typically seek to explain a decision made by a
machine learning model. For example, LIME [51] explains the features that determined
the classification of a particular instance by presenting users with a simpler locally correct
model that applies only to that particular region of the feature space. Similar to the methods
for explainingMDP decisions, these approaches explain a single decision in retrospect rather
than provide a description of a strategy or behavior of an agent in different situations. As
such, they address a different problem than that of strategy summarization.

Some recent works developed methods for choosing a set of instances to present to users
along with their classification in order to provide them with a global understanding of the
model [33,34,51]. For example, the SP-LIME algorithm [51] selects a set of instances to
show to users along with their respective classification and an explanation of the classifica-
tion of these instances. The instances are chosen to cover different regions of the state space.
While such approaches provide users with a better global understanding of a machine learn-
ing model’s classification decisions, they are not applicable to sequential decision-making
settings, where an agent follows a long-term policy. In particular, they do not account for the
effect of decisions on outcomes as there is no reward function or transition functions, which
are important aspects for agents that act in the world.

Users’ understanding of system behavior The strategy summarization idea relates to the
literature on users’ mental models of systems (software, robots). In a study of users’ trust
in personal assistants, Glass et al. [21] found that system transparency is important to users
and suggested that explanations of system behavior can facilitate trust. More accurate mental
models of users about robots’ behavior can result in improved performance when collabo-
rating with robots [12]. However, research in HCI has shown that people face difficulties in
forming accurate mental models of systems and in practice their models of system behaviors
are incomplete, parsimonious and unstable; and they are limited in their ability to predict a
system’s behavior [49]. Letting users interact with a robot’s behavior has been shown to help
them establish appropriate mental model [60]. We hypothesize that presenting users with
summaries of agent strategies will also help them establish mental models of these agents,
facilitating trust and collaboration.

3 A conceptual framework for strategy summarization

While strategy summarization is a complex task, we argue that it can be broken down into
manageable subcomponents. We suggest a conceptual framework for the process of strategy
summarization, illustrated in Fig. 1, which we envision as a collaborative effort that involves
both agents and people. We next describe the main components required for generating and
presenting summaries. The objective of this section is to define each of these components,
which we believe will provide a substrate for future work in strategy summarization. For
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Fig. 1 A conceptual model of the summarization process

example, future works could focus on a particular component or the pipeline as a whole. We
summarize the components below, and then describe conjectures and considerations on how
each component might be built.

Framework overview A key capability required for strategy summarization is identifying
states that are likely to be of interest to people interactingwith the agent, such that the behavior
of the agent in these states can be conveyed to users. To this end, the first key component
is intelligent state extraction that takes into account the sequential nature of the decisions
made, the dynamic transitions between states and the outcomes of actions (rewards). The state
extraction takes as input the strategy of the agent (or agents) that needs to be summarized
and identifies and prioritizes a subset of states to include in the summary, together with the
agent’s behavior in those states. The state extraction component requires a specification of
the desired properties of a set of world states to present in a summary. We discuss these in
Sect. 3.1.

Extracting states presupposes that we have a way to represent world states and present
them to users. We expect that internally, the agent may have a highly complex representation
of the world that it uses for decision-making. For example, a decision to invest in a stock may
depend not only on current stock prices but also on long-term and short-term trends as well
as a variety of different types of external financial and political events. This representation
might not align with that of a human user, as people might take into account different factors
or integrate less information than that of the agent. A good world-state representation will
thus substantially reduce the potentially immense and inscrutable space of agent internal
representations to those that are meaningful to the user. We discuss potential approaches to
determining the appropriate state representation in Sect. 3.2.

The final component is the strategy summary interface. Users will be the ultimate
consumers of the strategy summary, and thus an appropriate interface is essential in the
process of determining what is relevant to them. The interface must facilitate mixed-initiative
interaction, where the exploration of the summary is guided by both the user and the system.
We discuss key design and computational problems toward supporting this collaborative
exploration in Sect. 3.3.

When describing the proposed methods, we will consider the task of summarizing the
strategies of robots used for search and rescue (SAR) missions [71], one of the domains in
which we propose to evaluate strategy summarization methods. SAR robots are deployed to
help with rescue missions (e.g., following an earthquake) and are used to gather information
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such as the location of victims and collapses. The SAR missions are challenging in the sense
that they usually involve diverse and dynamic nature scenarios which require a high-level of
autonomy and versatile decision-making capabilities [53]. The robots are typically managed
by a human operator, hence having a better understanding of the behavior of different robots
and their exploration strategies can facilitate and improve the collaborative effort. Recent
advances in this field suggest fully-autonomous robotic solutions for executing complex
SAR missions in unstructured environments [53]. These rely on a flexible system archi-
tecture which integrates several learning-based capabilities (e.g., for target recognition and
interaction). While such system architectures allow the execution of high-level missions in a
fully unsupervised manner (i.e., without human intervention), the complexity of the designs
calls for strategy-summarization like capabilities to support users in deciding between several
available implementations for a specific task,2 which becomes highly crucial in the event of
crisis.

3.1 Intelligent state extraction

Implementing a state extractionmodule presents twomain problems. First, it requires defining
the desired properties of a set of world-states to present in a summary. We hypothesize that
the desired summary characteristics will depend on the context of use. Second, once the
properties of the summary are defined, the problem of automatically extracting summaries
with these properties needs to be solved.While the specific requirements for effective strategy
summaries will likely vary across problem domains, we hypothesize that there is a basic set of
requirements that are common across different settings: the summary should provide a high
coverage of states that are likely to be of interest to users and should be of reasonable length
such that it does not require too much time/cognitive effort to review but still provides the
user with sufficient information about the agent’s strategy. In addition, the summary should
be relevant to the user’s goal (e.g., whether it is to choose between alternative agents or
work together with an agent), and should provide information that would help the user to
contextualize the information presented (e.g., the likelihood of encountering different states).

In the following we assume that the agent uses a Markov Decision Process (MDP) to
represent the world. Formally, an MDP is described by the following: A is the set of actions
available to the agent; S is the set of states; R: S× A → R is the reward function, whichmaps
each state and action to a reward. T r is the transition probability function, i.e., T r(s′, a, s)
defines the probability of reaching state s′, when taking action a in state s.

We formalize the problem of extracting a summary of an agent’s behavior as fol-
lows: given access to a simulator of the agent, choose a set of state-action pairs T =
〈〈s1, a1〉, . . . , 〈sk, ak〉〉 to include in the summary. The problem definition can either specify
a limited budget k for the length of the summary, such that |T | = k, or be formulated as an
optimization problem of extracting the smallest summary which provides some guarantees
(e.g., coverage of the state or feature space).

Below,we suggest three possible directions for the development ofmethods that determine
which state-action pairs to include in the summary. Each has different computational trade-
offs, and will emphasize different states. An important research direction will be to determine
what kinds of state extraction methods work best for different contexts.

2 For example,when considering the autonomous operation ofUAVs in SARmissions, various recent solutions
can be considered [1,6,54,61,62].
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Direction: Generating state-action summaries based on states of interest Different heuris-
tics can be used for choosing states that expose an agent’s decision-making process. First,
some states might be more important than others, in the sense that the decisions made in such
states have a higher impact on the agent’s utility. For example, knowing which action a search
and rescue robot will make in a state in which some action could result in a collapse might
be of interest to a user operating the robot. Such states can be identified using the agent’s
own decision making model. For instance, the distribution of Q-values of different actions in
a given state could be used to determine the importance of the choice of action in that state,
as the Q-values reflect the expected utility of the agent from taking those actions and then
following its policy in future states. Similar ideas have been used in the past in the context
of student-teacher reinforcement learning to determine effective teaching opportunities for
agents [4,11,63]. In preliminary work on strategy summarization, we used this approach
to generate summaries [3]. Specifically, we developed the HIGHLIGHTS algorithm which
extracts the most important states from simulations of agent behavior, using the following
criteria to determine the importance Is of a state s:

I (s) = max
a

Qπ
(s,a) − min

a
Qπ

(s,a) (1)

Intuitively, a state is considered important if taking a wrong action in that state can lead to a
significant decrease in future rewards, as determined by the agent’s Q-values. In contrast, if
there is a small difference between the best and worst action at a particular state, it would sug-
gest that the state is not important. Human-subject studies showed that participants weremore
successful at evaluating the capabilities of agents when presented with summaries generated
by HIGHLIGHTS compared to baseline summaries, and rated them as more helpful [3].

Second, itmight be important to consider coverage of the state space.While the importance
of a state provides a heuristic for choosing situations that a person would find useful to
review, it is not a sufficient consideration. If state selection is only based on importance, it
is possible that the extracted summary will include states that are very similar to each other.
For example, in a search and exploration scenario, an importance-based summary might
include many situations in which the robot avoids being trapped in a collapse. In contrast, a
summary with high coverage would describe a robot’s behavior in a wider range of states,
such as navigating when there are visibility problems due to collapses, encountering a fire,
and handling scenarios where victims are spread out in different locations. The coverage
heuristic can be formalized using state similarity measures, which can be tuned by the user
or by domain experts. In our preliminary work on state extraction, adding the coverage
consideration substantially improved the ability of participants to assess agents’ capabilities
compared to summaries that only considered state importance [3].

In addition to state importance and the coverage of the state space, the likelihood of
encountering states can also be taken into considerationwhen extracting states for a summary.
This would ensure that the summary assists users in understanding the agent’s behavior in
states that are more likely to be encountered.

Finally, if the goal of a user observing summaries is to decide which agent to use, the
summary can highlight policy disagreement. That is, the summary can emphasize regions
of the state-space in which different agents differ in their decisions, thus enabling a user to
assess the differences between the agents. For example, different search and rescue agents
may vary in how they prioritize different tasks, which could be demonstrated to the user by
showing the distinct decisions these agents make in similar key states.
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Direction: Generating state-action summaries based on policy reconstruction accuracy An
alternate way to identify important states is to optimize them for the ability of a human to
reconstruct the agent’s policy. This approach is closely related to the work on machine teach-
ing [74], where an agent is provided with demonstrations of expert behavior, and attempts to
learn a policy based on those demonstrations. There are two main approaches for learning a
policy based on demonstrations: imitation learning (IL) and Inverse Reinforcement Learning
(IRL). In IL, a classifier is trained to predict an action based on state features. In this case,
state-action pairs can be chosen for a summary to optimize the accuracy of the classifier using
active learning [36]. IRLmethods try to infer the agent’s reward function based on the demon-
strations. Then, the inferred reward function can be used to learn a policy. In this framework,
the aim is to generate summaries that result in high action prediction accuracy when they
are given as demonstrations to IL or IRL methods. Our hypothesis is that summaries that are
useful for reconstructing the agent’s policy would also be helpful to people, as they capture
meaningful information which allows to generalize the agent’s behavior to unseen states. We
have begun using this approach in preliminary work [37] to extract summaries. This approach
has also been used recently by Huang et al. [30].

A key challenge in this approach to extracting summaries is overcoming the fact that we
do not know how people would generalize based on demonstrations. For example, when a
user sees a summary of a search and rescue robot, would she try to infer the robot’s reward
function (like IRL), or would she attempt to learn a direct mapping from states to actions
(like IL)? In recent work [36,37], we showed that it is important that the model used to extract
a summary matches the model used to reconstruct a policy, as in many cases a mismatch in
models results in low policy reconstruction accuracy. One possible approach to address this
problem is to generate an array of different summaries that vary in the reconstructionmethods
and choose summaries that are most robust to different models. An alternative approach is
to develop human-in-the-loop methods that will elicit people’s computational models when
extrapolating based on summaries and adjust summaries accordingly.

Direction: Generating summaries based on peer-designed agents The third direction uti-
lizes people’s judgment to identify states that will likely be of importance to users. An
example for possible methods that take this approach is the use of Peer-Designed Agents
(PDAs) [9,17,18,44]. These agents have been used in recent years for generating realistic
behaviors in various application domains (e.g., automated negotiation [40], security [39]
various social dilemmas [75], online markets [43] and the design of parking lots [10]) for the
purpose of predicting human behavior and their reaction to changes in their environment. The
idea is to provide people with a skeleton agent equipped with all the required functionality
except for its behavioral layer and have people (either directly or through the mediation of a
programmer) design and program into it the strategy they would have used in similar deci-
sion situations.3 The PDAs’ logic can then be used as a reflection of what their developers
considered to be important (or worth distinguishing) when reasoning about the strategy to
be used. This could enable synthesizing the set of world states that are most relevant for
demonstrating the system behavior, either through a manual code review, seeking for points
of code divergence, or by applying standard clustering algorithms for identifying those states
that are highly distinguishable in terms of the code used in large by the population (when
using several PDAs).

3 The method is inspired by the “strategy method” paradigm from behavioral economics [56] in the sense
of eliciting people’s strategy. Nevertheless, while in the strategy method people state their action for every
possible situation that may arise in their interaction (i.e., a state-machine-like description) with PDAs people
are actually required to program their (not-necessarily-state-based) strategy into an agent.

123



Autonomous Agents and Multi-Agent Systems (2019) 33:628–644 637

3.2 World-state representation

Deciding how to encode the state representation such that states could be effectively conveyed
to people and such that the space of states to consider for the summary will be reduced is
a hard problem. We expect that this would require either analysis of large sets of strategies
(e.g., a set of strategies programmed into PDAs for that application domain) or the design
of effective processes for eliciting state representations from domain experts. The idea in
both approaches is to reason about what types of raw states can be logically aggregated to a
single state, as far as the user is concerned, and to what extent prior events as well as various
measurable factors should be considered for distinguishing between states of interest. For
example, the underlying state representation used by a search and rescue robot might include
low-level data such as inputs from its various sensors, as well as higher-level factors such as a
map of the space. In collaboration with domain experts, this representation could be reduced
to include only higher level features such as the current map and likelihood of collapses in
different areas. This simpler representation could then be used when extracting a summary,
which would reduce the complexity of the process due to the pruned state space.

State representation encoding using experts is inherently a manual process, and designing
a process for querying experts in an efficient way (e.g., using active learning approaches) will
be key to making this process feasible. Extraction based on strategies could be performed
either based on manual code analysis or using unsupervised clustering over the raw world
states. The latter approach would identify states for which a similar action is used by a large
subset of strategies in peer-designed agents.

3.3 Strategy summary interface

Strategy summarization poses several challenges with respect to the design of collaborative
interfaces through which users can review and explore agents’ strategies. In this section we
discuss three aspects in the design of such interfaces.

Consideration: Summary presentation Naturally, different forms of presenting summaries
would be appropriate in different settings. For example, for physical agents such as self-
driving cars or home robots, it might be more helpful to visually show their actual behavior
than showing a textual summary of their expected behavior.This can be done by showing a
summary video of their execution constructed as a sequence of short clips, each demonstrat-
ing the agent’s behavior in a given situation. However, for virtual agents such as a finance
investment advising agent, some form of a textual summary or a static visual summary might
be more appropriate. For example, states might be described by showing plots of financial
trends and other key events, with the actions taken listed for the demonstrated states. A key
question is thus how to present summaries to people. There are additional important questions
such as how to provide people with sufficient context about the states shown in the summary
without overwhelming them with non-important low-level details.

Consideration: User-guided exploration of agent strategies Automatically extracted sum-
maries of agent strategies can provide an effective starting point for a user to develop an
understanding of an agent’s strategy. However, these summaries may be insufficient in
addressing all of the user’s needs. For instance, they might not describe the behavior of
the agent in a region of the state space which is of particular interest to the user. Therefore,
we propose the design of collaborative interfaces which will allow users to: (1) guide the
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generation of summaries by stating preferences, and (2) directly query the agent’s strategy
and explore its behavior in different situations. For instance, in the search and rescue domain,
the user (human operator) might ask the system to generate summaries that best distinguish
the strategies of different robots, or summaries that focus on the most risky states that can
be encountered. She might also query the system directly to ask what a robot would do in a
particular state by describing a specific rescue scenario, or request to further extend a given
segment of the summary, showing the behavior in a varied set of world states that follow the
demonstrated scenario. A key design challenge in developing these interaction methods is to
ensure that users can express their needs in their own language, rather than being asked to
specify low-level system parameters. Moreover, exploring the behavior of an agent can be
tedious. To make the process more efficient, the design of mixed-initiative interactions [29]
where the system tries to help the user in exploring the agent’s strategywill likely be required.

The use of collaborative interfaces for exploring agents’ strategies would also facilitate
continuous improvement of the state extraction and state representation methods. By observ-
ing and analyzing the information users required beyond that provided in the automatically
generated summaries, it would be possible to learn more about users’ needs and the criteria
for effective summaries, thus informing future design of methods for extracting summaries.

Consideration: Understanding users’ extrapolation from summaries The intelligent sum-
mary extraction methods make various assumptions about how the summaries will be
interpreted and generalized from when shown to users. As demonstrated in our prelimi-
nary work [36,37], it is important that these assumptions match with users’ reasoning. To
address such potential mismatches, interactive processes for eliciting users’ inference and
extrapolation processes can be designed. For example, the system could show users simple
summaries (perhaps of a small region in the state space, or a simple policy), and assess their
ability to appropriately extrapolate from the summary to the behavior of the agent in other
states. Such a process can involve the assessment of alternative feature representations, and
different summaries generated using different optimization criteria. Based on this evaluation,
the system could both tailor the summary shown to the way in which users generalize from it,
and also provide better explanations to people about the way in which they should interpret
behaviors shown in the summary.

4 Evaluationmethodologies

To assess progress in the area of strategy summarization and ensure that generated sum-
maries are helpful for users, it is essential to thoughtfully consider means of evaluation. In
the following, we consider three aspects of evaluating strategy summarization approaches:
evaluation domains, user and task characteristics and evaluation metrics.

Evaluation domains The domain characteristics could have an impact on the applicability
and usefulness of different summary generation and visualization methods. For example,
for domains where the agent is physical (e.g., a robot), showing a video demonstrating its
behavior could be feasible, while for virtual agents (e.g., an agent recommending medical
treatment) a different visualization might be needed. In addition, the size of the state-space
and its feature representation as well as the structure of the reward function can also effect
the usefulness of different summarization approaches. Therefore, it is important to evaluate
strategy summarization methods in a variety of domains and assess the generalizability of
the developed methods.
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To this end, there are several testbeds of common use in the AI-community which can be
used for evaluation, including the following:

– Search and rescue robots [35,65,67,69,71].
– Automated trading and negotiation (e.g., TAC [22,64,70] or ANAC [5] simulators).
– Route planning [24,25]

There are several advantages to using these existing testbeds. First, they provide infrastructure
where different levels of complexity can be implemented. That is, the domain can bemodified
to vary the size of the state-space as well as the difficulty of the tasks. Second, there is already
a large set of implemented agents which vary in their strategies and capabilities. That is, it
is possible to control the level of complexity both of the environment and of the agents, thus
allowing for testing summarization methods in increasingly more complex settings.

Alongside experimentation with the above testbeds, it is important to have some real test-
cases to validate the developed approaches. In such domains, researchers developing strategy
summarizationmethods canwork closelywith domain experts to ensure that summaries serve
their needs. Example applications range from clinical decision-support (e.g., for treatment
management [19,20]) to autonomous vehicles. The simpler domains which have been previ-
ously studied in the AAMAS community will facilitate relatively fast cycles of testing and
improvement of the developed methods, enabling gradual progress towards evaluation in the
more complex domains, where substantial implementation and careful experimental design
will be required.

User and task characteristics We hypothesize that different methods might be more fitting
depending on the user’s goals and expertise. For example, if a summary is used to identify
blind-spots of search and rescue robots, emphasizing important states might best support
a human operator, while if the goal is to choose between alternative agents, summaries
emphasizing their differences might be more appropriate. Therefore, we suggest evaluating
summaries in a wide range of settings. In addition to differences in users’ tasks and goals,
other characteristics such as the user’s expertise in the domain at hand and their technical
knowledge (end-user vs. agent developer) might also affect the choice of summaries. Thus,
experiments should also consider different user types.

Evaluation metrics Strategy summarization methods should be evaluated using both com-
putational measures and human-centered measures, as typically done in the context of
human–robot interaction and human–agent interaction. The main measures we suggest
include:

– Computational complexity of generating a summary (computational) The complexity of
generating a summary can be important in some cases, as we might want to generate new
summaries online based on user interactions.

– Policy reconstruction accuracy (computational and user-based) assuming some com-
putational model of policy reconstruction, it is possible to compute the accuracy of the
reconstructed policy based on the summary. We have used this measure in our recent
preliminary work [36,37], where this metric revealed that matching the computational
models used for summary extraction and summary reconstruction can be important in
order to reconstruct the policy. Similarly, users’ ability to extrapolate from a summary
and predict agent behavior can be assessed by asking users what they expect the agent
to do in different (unseen) scenarios. This metric has been used recently by Huang et al.
[30] to evaluate people’s ability to predict the behavior of an agent in a driving scenario.
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In both computational and human-based assessments, the accuracy of action predictions
for subsets of states, e.g. important states or common states, can be considered.

– Understanding of agents’ reward functions (computational and user-based) Given a
summary, IRL methods can be used to infer the agent’s reward and this inferred reward
function can be compared to the agent’s true reward function. Users’ understanding of
the agent’s reward function can be assessed by directly asking the users about the agent’s
goals or its valuation of different world-states.

– Ability to collaborate with the agent (user-based) in settings where a user will need to col-
laborate with the agent (e.g., a human operator of a search and rescue robot), the objective
performance of the human–agent team after the user reviews summaries can be measured
in a simulated collaborative activity. Several measures such as task effectiveness, atten-
tion demand and interaction effort have been proposed in the HRI literature [50] and
can be applied to evaluate the contribution of summaries to collaboration. In addition,
team fluency can be assessed using additional measures from the HRI literature such as
concurrent activity and time to complete task [28,48].

– Ability to predict agent performance (user-based) Assess the human users’ ability to
determine which of several agents would perform better on a task and ability to spot
blind-spots in the agent’s strategy. We used this metric to assess our importance-based
summarization approach [3], and were able to find differences in people’s ability to
predict the performance of agents based on different summaries.

– Users’ perceived understanding of the agent’s behavior (user-based) Eliciting people’s
(subjective) confidence when making predictions about agents’ behavior to see whether
they are confident in their understanding of the agent’s behavior, and importantly, whether
their confidence correlates with their ability to predict the agent’s behavior.

– Users’ cognitive load when reviewing summaries (user-based) Summaries may differ in
the cognitive required to extrapolate from them. To assess this, users’ cognitive load can
be measured using standard questionnaires such as NASA-TLX [26].

Considering a variety of evaluation measures can help identify the strengths and weak-
nesses of summarization methods and possibly reveal tradeoffs between them. For example,
some summaries might better support a user in predicting the agent’s behavior while posing
higher cognitive demands.

5 Discussion

With the increasing prevalence of intelligent agents, it has become paramount to ensure that
the behavior of such agents is understandable to their users. Thus, there is a growing interest
in the development of “explainable AI” [38] and “human-aware AI”. In this paper, we pose
the challenge of summarizing agent behavior to people, which we view as a complemen-
tary approach to existing methods in the area of explainable AI. We introduce a conceptual
framework for the strategy summarization problem which consists of three main compo-
nents: identifying appropriate world-state representations, extracting informative trajectories
of agent behavior and presenting this information to users through collaborative interfaces.
This framework aims to outline initial potential research directions and approaches toward
addressing the strategy summarization problem. We believe this area is ripe with interesting
and important research problems beyond those discussed in the paper, such as summarizing
strategies of agent teams (as opposed to individual agents), developing summaries for users
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with different levels of expertise and generating a set of diverse summaries that optimize for
different summary criteria.

The study of strategy summarization will contribute to various research areas within
AI, as discussed throughout the paper. More importantly, its deliverables will enable both
novice and expert users to better understand the systems they use, in particular complex
(AI-based) systems. With the growing use of AI-based agents and shift toward the design of
intelligent agents that can collaborate effectively with people [59], we expect that improved
user understanding of agents’ capabilities and limitations will lead to improved outcomes in
many areas.

One key area inwhichwe expect the developedmethods tomake a substantial impact is the
emerging use of autonomous and semi-autonomous vehicles. There is no doubt that we are on
the verge of a shift in the way vehicles, humans and the transportation infrastructures interact.
The successful operation of autonomous transportation systems (e.g., the autonomous car or
Amazon’s UAVs) requires providing the highest level of assurance to legislators, authorities
(e.g., highway authorities) and users (e.g., car buyers). With strategy summarization, both
legislators and users will be able to better understand the way in which these systems work,
potentially leading to shorter approval cycles and more effective use. For example, a better
understanding of the expected behavior of an autonomous car will help drivers anticipate
situations in which the car needs to transfer control to them.

Strategy summarization could also be beneficial in areas of vast societal importance such as
education and healthcare. In education, the methods to be developed have potential to enable
parents and educators to make better choices when deciding on the educational systems
students will become engaged with, hence improving education development. In medical
domains, strategy summarization could help patients better understand treatment protocols,
potentially leading to a better state of mind while being treated; professionals would be able
to reason about the fit of such plans to patients, potentially improving patients’ outcomes.
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