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ABSTRACT
We present a machine learning algorithm for building clas-
sifiers that are comprised of a small number of disjunctions
of conjunctions (or ’s of and ’s). An example of a classifier
of this form is as follows: If X satisfies (conditions A1, A2,
and A3) OR (conditions B1 and B2) OR (conditions C1 and
C2), then we predict that Y=1, ELSE predict Y=0. Mod-
els of this form have the advantage of being interpretable to
human experts, since they produce a set of conditions that
concisely describe a specific class. In our Bayesian model,
there are prior parameters that the user can set in order for
the model to have a desired size and shape to conform with
a domain-specific definition of interpretability. Our method
has a major advantage over classical associative classification
methods in that it is not greedy. We present an approximate
MAP inference technique involving association rule mining
and simulated annealing, which allows the method to scale
nicely. Our interest in developing this model is to use it
to create a predictive model of user behavior with respect
to in-vehicle context-aware advertising. This is part of an
effort to create the connected vehicle, where context data
might be collected from the vehicle in order to benefit the
driver and passengers. We present several predictive models
of user behavior based on data collected from Mechanical
Turk; these models are accurate, yet interpretable. We also
quantify the effect on prediction accuracy of having contex-
tual attributes.

Keywords
association rules, interpretable classifier, Bayesian modeling

1. INTRODUCTION
Our goal is to construct predictive classification models

that consist of a small number of disjunctions of conjunc-
tions, that is, the classifiers are or ’s of and ’s. These are log-
ical models that have the advantage of being interpretable
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to human experts. Interpretability of a predictive model is a
fundamentally desirable quality, particularly for knowledge
discovery problems. For instance, consider the study of hu-
man behavior, where our goal is to understand how people
make decisions. Consider the possibility, for instance, that
there are simple rules characterizing how humans react to
a coupon for a local business in certain contexts. If we can
identify these simple rules, we can better understand con-
sumer behavior and target advertisements more effectively
to consumers. Our goal is not just to predict what the deci-
sions a person will make; we want to explain why we believe
the person will make that decision.

Machine learning methods often produce black box mod-
els where the relationship between variables is extremely
complicated (e.g., neural networks), or where the number
of variables is so large that humans cannot easily see the
input-output relationships (humans can handle about 7±2
cognitive entities at once [40]). On the other hand, it is pos-
sible that the space of good predictive models is large enough
to include much sparser models that are interpretable [24].
There are a number of reviews on interpretability in pre-
dictive modeling [3,18,25,37,38,47], and the form of model
we consider (disjunctions of conjunctions) has some recent
precedent in the literature [19,21,22,36] as a form of model
that is natural for modeling consumer behavior, and beyond
that, as a form of model that is interpretable generally to
human experts.

Here is an example of a classifier that is a disjunction of
conjunctions (an or -of-and ’s):

if X satisfies ( A1 AND A2 AND A3 )
OR ( B1 AND B2 )
OR ( C1 AND C2 ) then

Predict Y = 1
else

Predict Y = 0
end if

We will call conjunctions such as ( A1 AND A2 AND A3 )
patterns and the disjunction of conjunctions a pattern set.
We refer to an individual element of a pattern, such as A1,
as a attribute-value pair or an item.

We take a Bayesian approach to the construction of or -
of-and classifiers. The parameters of the Bayesian model
allow us to focus on interpretable classifiers by providing
expected pattern lengths (number of items in a pattern) and
pattern set size (number of patterns in a pattern set). Our
approximate inference technique uses a combination of asso-
ciation rule mining and simulated annealing to approximate



the global optima; it is not a greedy method. Our key insight
is that accurate models can often be composed of sufficiently
frequent patterns; thus itemset mining can be used to cre-
ate the building blocks for our approximation. Our approach
contrasts with methods that either solve a full computation-
ally hard problem or find a (possibly severe) relaxation of the
optimization problem [21,22]. It also contrasts heavily with
associative classification techniques that mine for frequent
patterns and combine them heuristically, without optimiz-
ing for accuracy of the final model [11, 12, 32, 34, 39, 46, 61],
as well as greedy approaches that add patterns one at a time
(e.g., [19,36]).

Our applied interest involves the connected vehicle, where
in the future, one’s car would record information (e.g., time,
date, terrain, route, weather, passenger information, etc.)
and provide useful services. In particular, we aim to under-
stand user response to personalized advertisements that are
chosen based on the user, the advertisement, and the con-
text. Such systems are called context-aware recommender
systems (see surveys [1,2,6,57] and references therein). One
major challenge in the design of recommender systems, re-
viewed in [57], is the interaction challenge: users typically
wish to know why certain recommendations were made and
why they change. Our work addresses precisely this chal-
lenge: we provide patterns in data that describe when a
recommendation will be accepted.

2. RELATED WORK
The models we are studying have different names in dif-

ferent fields. They are called “disjunctions of conjunctions”
or “non-compensatory decision rules” in marketing, “classi-
fication rules” in data mining, “disjunctive normal forms”
(DNF) in artificial intelligence. Learning logical models
of this form has an extensive history. Valiant [55] showed
that DNFs could be learned in polynomial time in the PAC
(probably approximately correct) setting, and recent work
has improved those bounds via polynomial threshold func-
tions [28] and Fourier analysis [17]. However, these theoret-
ical approaches often require unrealistic modeling assump-
tions (such as noiseless observations) and are not designed
to scale to realistic problems.

In parallel, the data-mining literature has developed ap-
proaches to building logical models. Associative classifica-
tion methods (e.g., [11,12,32,34,39,46,61]) mine for frequent
patterns in the data and combine them to build classifiers,
generally in a heuristic way, where rules are ranked by an
interestingness criteria and the top several rules are used.
Some of these methods, like CBA (Classification Based on
Associations), CPAR (Classification based on Predictive As-
sociation Rules) and CMAR (Classification based on Multi-
ple Association Rules) [11,12,32,61] still suffer from a huge
number of rules and do not yield interpretable classifiers.

Another class of approaches aim to construct DNF models
by greedily adding the conjunction that explains the most
of the remaining data [19,20,36,44,59].

Work on or “inductive logic programming” aims to find
optimized conjunctions. They are generally used together
as a set of disjunctions of conjunctions, even though the
disjunction would not be optimized, just the individual con-
junctions.

There are few recent techniques that do aim to fully learn
DNF models [21, 22]. Both of these works present integer
programming approaches for solving the full problems, and

also present relaxations for computational efficiency.
Note that all methods for combining conjunctions are ro-

bust to outliers and naturally handle missing data, with no
imputation needed for missing attribute values (and as a re-
sult, can sometimes outperform outperform traditional con-
vex optimization-based methods such as support vector ma-
chines or Lasso). Generally, the pre-mined frequent itemsets
are then combined heuristically, without optimizing for ac-
curacy of the final model.

Our method is also a special case of another form of in-
terpretable modeling called M -of-N rules [13, 18, 42, 52, 54],
in particular when M=1. In an M -of-N rules model, an
example is classified as positive if at least M criteria among
N are satisfied. If M=1, the model becomes a disjunction
of conditions. If M=N , then the model is a single con-
junction. (In these models, one rule generally refers to one
feature/condition, whereas in our model, each pattern can
have multiple conditions in each disjunction.)

In-vehicle context-aware recommender systems for coupons
are different than, for instance, recommendation systems for
in-vehicle context-aware music recommendations (on which
there is a growing interest, see [7, 26, 51, 58]). Whether
a user will accept a music recommendation does not de-
pend on anything analogous to the location of a business
that the user would drive to; the context is entirely dif-
ferent, as well as the commitment that would be made by
the user in accepting the recommendation. The setup of
in-vehicle recommendation systems are also different than,
for instance, mobile-tourism guides [41,49,53,56] where the
user is searching to accept a recommendation, and interacts
heavily with the system in order to find an acceptable rec-
ommendation. The closest work to ours is probably that of
Park, Hong, and Cho [43] who also consider Bayesian pre-
dictive models for context aware recommender systems to
restaurants. They also consider demographic and context-
based attributes. Lee at al. [30] create interpretable context-
aware recommendations by using a decision tree model that
considers location context, personal context, environmental
context and user preferences. However, they did not study
advertising targeted at users in vehicles, which means the
contextual information they considered did not include a
user’s destination, relative locations of recommended restau-
rants to the destination, passenger(s) in the vehicle, etc.

3. A BAYESIAN OR-OF-AND MODEL
We work with standard classification data. The data ma-

trix X consists of N observations (rows) described by T
attributes (columns), either categorical or numerical. D+ is
the class of observations with positive labels, and the ob-
servations with negative labels are D−. Our goal is to find
the best set of patterns that describe D+ and discriminate
it from D−.

Figure 1 shows an example of a pattern set. Each pat-
tern is a yellow patch that covers a particular area. (An
observation obeys the conjunction if it lies within all of the
boundaries of the patch.) In Figure 1, the white oval in the
middle indicates the positive class. Our goal is to find a set
of patterns that covers mostly the positive class, but little
of the negative class.

Let us present a probabilistic model for selecting patterns
for our classifier. Taking a Bayesian approach allows us to
flexibly incorporate users’ expectations on the number of
patterns in our pattern set and the number of conditions in



Figure 1: Illustration of disjunction of conjunctions

a pattern. In this way, the user can guide the model toward
more domain-interpretable solutions by specifying a desired
balance between the size and number of patterns—without
committing to any particular value for these parameters.

As with all Bayesian approaches, our model has two parts.
The prior encourages interpretability by encouraging the
classifier to use relatively few, short patterns. The likeli-
hood ensures that the model still explains the data well,
that is, has good classification performance. We detail both
of these parts below.

3.1 Prior
Let R denote the set of all patterns. Each pattern is a

conjunction of attribute-value pairs, such as “X·,3=red and
X·,7=square”. Let Rl be the set of all patterns with length l;
thus, ∪lRl = R. In our model, interpretability of a pattern
is determined by its length, so that the a priori probability
that a pattern r of length l is selected for a pattern set
depends only on l. We use a beta prior on the probability
pl for the inclusion of a pattern r ∈ Rl:

pl ∼ Beta(αl, βl). (1)

The parameters {αl, βl|l ∈ {1, ..., L}} on the priors con-
trol the expected number of patterns of each length in the
pattern set. Specifically, let R̂l ⊆ Rl denote the set of
patterns r selected from Rl, and Ml = |R̂l| be the num-
ber patterns of length l in the pattern set. We then have
E[Ml] = |Rl|E[pl] = |Rl| αl

αl+βl
. Therefore, if we favor short

patterns, we could simply increase αl
αl+βl

for smaller l and

decrease the ratio for bigger l.
A pattern set R̂l is a collection of Ml patterns indepen-

dently selected from Rl, R̂l ⊆ Rl. We integrate out the
probability pl to get the probability of R̂l:

P (R̂l|αl, βl) =

∫
pl

p
Ml
l Beta(pl;αl, βl)d(pl)

∝ Γ(|Rl|+ 1)

Γ(Ml + 1)Γ(|Rl| −Ml + 1)
× Γ(Ml + αl)Γ(|Rl| −Ml + βl)

Γ(|Rl|+ αl + βl)

where the first line follows because each pattern is selected
independently and the second line follows from integrating
over the beta prior on pl. The BOA classifier is represented
by R̂ = ∪l∈{1,...}R̂l, and thus the probability of a pattern

set R̂ that incorporates patterns of different lengths is:

P (R̂|{αl, βl}l) =
∏
l

P (R̂l|αl, βl). (2)

3.2 Likelihood
Let Dn denote the n-th observation, zn denote the classifi-

cation outcome for Dn using R̂, and yn denote the observed
outcome. We introduce likelihood parameter ρ+ to govern
the probability that an observation is a real positive class
case when it satisfies the pattern set, and ρ− as the proba-
bility that y = 1 when it does not satisfy the pattern set.

If zn = 1,

yn =

{
1 with probability ρ+

0 with probability 1− ρ+.
(3)

If zn = 0,

yn =

{
1 with probability ρ−

0 with probability 1− ρ−.
(4)

The likelihood of data given a pattern set R̂ and parameters
ρ+, ρ− is thus:

P (D|R̂, ρ+, ρ−) = (5)∏
n

ρznyn1 (1− ρ1)zn(1−yn)(1− ρ0)(1−zn)(1−yn)ρ0
(1−zn)yn ,

where the four components in formula (5) represent four
classification outcomes: true positive, false positive, true
negative, and false negative.

We place beta priors over the classification error proba-
bilities ρ+ and ρ−:

ρ+ ∼ Beta(α+, β+)

ρ− ∼ Beta(α−, β−).

Here, α+, β+, α−, β− should be chosen such that E[ρ+] is
larger than E[ρ−] which means the positive class is correctly
characterized by the pattern set.

Integrating out the priors on the classification error prob-
abilities ρ+ and ρ− from the likelihood in (5), we get

P (D|R,α+, β+, α−, β−) ∝
Γ(
∑
n zn + 1)

Γ(
∑
n znyn + 1)Γ(

∑
n zn(1− yn) + 1)

×
Γ(
∑
n znyn + α+)Γ(

∑
n zn(1− yn) + β+)

Γ(
∑
n zn + α+ + β+)

×
Γ(
∑
n(1− zn) + 1)

Γ(
∑
n(1− zn)yn + 1)Γ(

∑
n(1− zn)(1− yn) + 1)

×
Γ(
∑
n(1− zn)yn + α−)Γ(

∑
n(1− zn)(1− yn) + β−)

Γ(
∑
n(1− zn) + α− + β−)

.

(6)

According to the two outcomes of yn and zn, the train-
ing data are divided into true positives (TP =

∑
n znyn),

false positives (FP =
∑
n zn(1 − yn)), true negatives (TN

=
∑
n(1 − zn)(1 − yn)) and false negatives (FN =

∑
n(1 −



zn)yn). The above likelihood can be rewritten as:

P (D|R,α+, β+, α−, β−) ∝
Γ(TP + FP + 1)

Γ(TP + 1)Γ(FP + 1)
× Γ(TP + α+)Γ(FP + β+)

Γ(TP + FP + α+ + β+)

× Γ(FN + TN + 1)

Γ(FN + 1)Γ(TN + 1)
× Γ(FN + α−)Γ(TN + β−)

Γ(FN + TN + α− + β−)
. (7)

4. APPROXIMATE MAP INFERENCE
In this section, we describe a procedure for approximately

solving for the maximum a posteriori or MAP solution to the
BOA model. Inference in the BOA model is challenging be-
cause finding the best model involves a search over exponen-
tially many possible sets of patterns: the number of patterns
increases exponentially with the number of attribute-value
pairs, and the number of sets of patterns increases expo-
nentially with the number of patterns. To efficiently search
for the MAP solution, we first eliminate poor patterns via
pattern mining. Then we optimize over the remaining pat-
terns through a simulated annealing approach with moves
designed to quickly explore promising solutions.

4.1 Narrowing the Search Space via Pattern
Mining

We note that any reasonably accurate sparse classifier
should have high accuracy for all patterns it contains. Rather
than considering all possible conjunctions (exponential in
the number of attributes), we use only the pre-mined con-
junctions. As long as enough high-quality patterns are in-
cluded, we can still discover an approximate MAP solution
corresponding to an accurate classifier. The approximation
to frequent itemsets is a statistical approximation, rather
than a greedy approximation. (By contrast, decision tree
algorithms such as CART or C4.5 [9, 45] rely heavily on
greedy splitting and pruning.) Our assumption provides a
dramatic reduction in computation.

We remark also that building an optimal disjunction of
conjunctions is an optimal subset selection problem, which
is a much easier problem computationally than optimizing
fully over decision trees. (See also [31,46] for more details.)

We first convert each row in D+ into a set of items (con-
ditions). An item is an attribute-value pair, where the value
could be a category for categorical attributes, or a numer-
ical value or range of values for numerical attributes. We
consider both positive associations (e.g., Xjl=‘blue’) and
negative associations (Xjl=not ‘green’) as items. (The im-
portance of negative items is stressed, for instance, by [10,
50,60].) We then mine for frequent patterns within the set of
positive observations D+ using an established frequent pat-
tern mining algorithm. In our implementation, we use the
FP-growth algorithm [8], which can in practice be replaced
with any desired frequent pattern-mining method. We set
only a minimum support and a maximum length of pat-
tern, and the frequent pattern mining algorithm generates
a list of patterns (conjunctions of items). Frequent pattern
mining algorithms all return the same results since they all
perform a type of breadth-first-search for all sufficiently fre-
quent patterns. There are many existing algorithms in the
data mining literature that discuss how to handle discretiza-
tion of continuous attributes [15, 16, 48], and other possible
types of patterns one might be interested in mining.

Even when we restrict the length of patterns and the min-
imum support, the number of patterns generated by FP-

growth could still be too large to handle. (For example,
almost a million patterns are generated for one of the adver-
tisement datasets we are interested in). Therefore, we may
wish to use a second criterion besides support to screen for
the most potentially useful conjunctions. We first filter out
patterns on the lower right plane of ROC space, i.e., their
false positive rate is greater than true positive rate. Then we
use information gain to screen patterns, similarly to other
works [11,12]. For a pattern r, the information gain is

InfoGain(D|r) = H(D)−H(D|r)

where H(D) is the entropy of the data and H(D|r) is the
conditional entropy for data that obey conjunction r. Given
a dataset D, entropy H(D) is constant; therefore our screen-
ing technique chooses the M patterns that have the smallest
H(D|r), where M is user-defined.

We illustrate the effect of screening on one of our adver-
tisement data sets that is discussed later. We mined all
patterns with minimum support 5% and maximum length
3. For each pattern, we calculated its true positive rate and
false positive rate on the training data, and plotted it as a
dot in Figure 2. The top M patterns according to the in-
formation gain criteria are colored in red, and the rest are
in blue. As shown in the figure, information gain indeed
selected good patterns as they are closer to the upper left
corner in ROC space.

Figure 2: All patterns and selected patterns on a
ROC plane

4.2 Stochastic Optimization and Simulated An-
nealing

We want to maximize the posterior probability:

P (R̂|D;α+, β+, α−, β−, {αl, βl}l). (8)

Exhaustive evaluation of R̂ over all R will not be feasible; if
we were to brute force search for the best classifier out of the
whole set of possible classifiers, this would involve evaluating
all possible subsets of patterns on the training data, and for
M candidate patterns, there are 2M such subsets. We use



simulated annealing [27] to search for a MAP pattern set.

At each iteration, the proposed R̂∗ is generated from the
current R̂t using one of two options, chosen at random:

1. ADD: Choose a pattern uniformly from R that is not
currently in R̂t and add it to produce R̂∗. Tidy R̂∗.

2. CUT: Choose a pattern uniformly from R̂t and remove
it.

In action ‘Add’, tidying R̂∗ is useful since sometimes mul-
tiple longer patterns can be merged into a shorter pattern
without affecting the predictions. For example, two pat-
terns [Gender:Male,Age:<21] and [Gender:Male,Age:>=21]
should be merged into [Gender:Male]. The merging does
not affect the likelihood since the two patterns are equiv-
alent to the merged shorter pattern, but it does affect the
prior since we choose priors that favor shorter patterns and
smaller pattern sets. So the latter will have larger posterior
probability.

At each iteration, the proposal R̂∗l is accepted with prob-
ability

min

{
1, exp

(
−E(R̂∗)− E(R̂t)

T (t)

)}
where T (t) is the temperature, which follows a cooling sched-
ule:

T (t) =
T0

log(1 + t)
. (9)

We perform the search three times, from three random start-
ing points, and we select the one with the highest MAP.

5. SIMULATION STUDIES
In this section, we present three simulation studies to show

that if data are generated from a fixed pattern set, our simu-
lated annealing procedure can recover it with high probabil-
ity. We also provide analysis for convergence on simulated
data sets to show that our model can achieve the optimal
solution in a relatively short time.

5.1 Performance variation with different pa-
rameters

Given observations with arbitrary features and a collec-
tion of patterns on those features, we can construct a bi-
nary matrix where the rows represent observations and the
columns represent patterns, and the entry is 1 if the pattern
matches that observation and 0 otherwise. We need only
simulate this binary matrix to represent the observations
without losing generality. Each entry is set to 1 indepen-
dently with probability 0.1. Here are the most important
variables in this simulation study:

• M : the number of candidate patterns

• m: the number of patterns in a true pattern set

• N : the number of observations in a data set

The binary matrix representing the data set has size N×M .
To compute the prior, we chose all patterns to have same
length (and we did not need to write out those patterns by
our setup). A true pattern set was generated by randomly
selecting m patterns to form the pattern set. We used edit

distance between the true pattern set and a generated pat-
tern set as the performance measure. We repeated each ex-
periment in the simulation 100 times and reported the mean
performance.

Performance with size of data set, N .
In the first study, we set m = 5, M = 1000, and var-

ied the size of the data set N . For each sample size N ∈
{100, 500, 1000, 2000, 3000, 4000}, we generated 100 indepen-
dent data sets and pattern sets, and we thus obtained data
for 600 recovery problems. For each recovery problem, we
then used simulated annealing as described in Section 4.2
with three different starting points. We chose the number
of iterations for the simulated annealing runs to be 5000,
10000, and 20000, and we recorded the output of BOA. The
edit distance was computed for each of the 100 replicates and
the means are plotted in Figure 3. Our results show that as
the number of iterations increases, the true pattern sets were
recovered with higher probability, as expected. However, the
number of observations N did not have a large influence on
the result for N approximately greater than 500. The curve
is almost flat after N = 500. This means that accuracy at
N = 500 on the recovery problem is similar to the accuracy
at N = 4000. This result is quite intuitive since simulated
annealing searches over the pattern space, and likely finds
the same solution once N is sufficiently large.

Figure 3: Mean edit distance to the true pattern
sets with increasing N

Performance with size of pattern space, M .
In the second study, we set m = 5, N = 2000, and var-

ied the size of pattern space. For each size M of patterns
in {100, 200, 500, 1000, 2000}, we repeated the above proce-
dure and plotted the mean over 100 replicates in Figure 4.
The number of possible pattern sets of patterns is O(2M );
therefore as M increases, searching the space becomes diffi-
cult for simulated annealing. (This does not mean, however,
that prediction performance will suffer; as we increase the
number of iterations, the mean edit distance decreases.) We
can compensate for larger M by running the simulation for
longer times in order to recover the underlying pattern.

Performance with size of true pattern set, m.
In the third study, we set N = 2000,M = 1000 and chose

the size of the true pattern m within {1, 2, 4, 6, 8}. Figure 5



Figure 4: Mean edit distance to the true pattern
sets with increasing M

shows that as the number of patterns increases, it becomes
harder for the model to recover the true pattern set; how-
ever, performance improves over simulated annealing itera-
tions.

Figure 5: Mean edit distance to the true pattern
sets with increasing m

5.2 Convergence analysis
We show how fast our algorithm converges to the optimal

solution. We set the size of the data set N to be 2000 and
the size of the true pattern set m to be 5. We then ran
simulated annealing and recorded the output at steps 100,
500, 1000, 2000, 5000, 10000 and 20000. We repeated this
procedure 100 times and plotted the mean and variance of
edit distances to true pattern sets in Figure 6, along with
running times in seconds. Running times were less than one
minute, even for 20000 iterations.

6. APPLICATION TO THE ADVERTISING
IN THE CONNECTED VEHICLE

Our goal was to determine the feasibility of an in-vehicle
recommender system that would provide coupons to the
driver for local businesses. Such systems do not exist presently,
but are likely to exist within the next ∼ 5 years (see patent
applications [33,35]). The coupons would be targeted to the
user in his/her particular context, and use of the coupon sys-

Figure 6: Converence of mean edit distance and run-
ning time with number of iterations

tem would be completely optional. The danger of driver dis-
traction is a major consideration in the use of such systems.
Currently, the preliminary prototype takes this into account
as follows: the prototype substitutes advertisements that
the user would hear anyway between, for instance, songs on
a music channel, with targeted coupons that are relevant to
the user. To accept the coupon, either the driver states (out
loud) the word “yes,” or s/he could press a button on the
steering wheel, which is a small thumb movement. Since
such recommender systems do not exist currently in vehi-
cles, the feasibility of a system needs to be explored via
surveys. There is quite a lot of work showing that conclu-
sions from surveys often translate into conclusions in real
situations [4, 14,23] (this issue is clearly beyond our scope).

More broadly, our project fits into the goal of the con-
nected vehicle, where information connected by sensors in-
side the car would help to provide useful services. For in-
stance, weight sensors can be placed under the seats to deter-
mine how many passengers are in the car and how many of
them are children. Voice recorders could determine whether
passengers are male or female. The car’s historical route in-
formation can be used to predict the current destination [29].
In our particular application, this information would be used
to recommend local businesses to interested users, but there
could potentially be many other uses for these data.

Our data were collected on Amazon Mechanical Turk via a
survey that we will describe shortly.1 We used Turkers with
high ratings (95% or above). The conclusions we make are
conditioned on the population of Turkers with high scores
who chose to complete the survey; this sample can be im-
portance sample-weighted or subsampled to approximate a
local area with different population characteristics. Each
user provided very detailed demographic information, so it

1These data are publicly available here: Placeholder



would be easy to subsample to create a population with dif-
ferent overall demographics. In order to collect high quality
data, we used two random questions with easy answers in the
survey to determine whether the worker was self-consistent
while completing the survey. The Turkers’ surveys were ac-
cepted only if they provided the correct answers to the two
questions. Out of 752 surveys, 652 were accepted by us,
which generated a data set containing 12684 data cases (af-
ter removing rows containing missing attributes).

The prediction problem is to predict if a customer is going
to accept a coupon for a particular venue, considering de-
mographic and contextual attributes. Answers that the user
will drive there ‘right away’ or ‘later before the coupon ex-
pires’ are labeled as ‘Y = 1’ and answers ‘no, I do not want
the coupon’ are labeled as ‘Y=0’. We are interested in inves-
tigating 5 types of coupons: bars, takeaway food restaurants,
coffee houses, cheap restaurants (average expense below $20
per person), expensive restaurants (average expense between
$20 to $50 per person). In the first part of the survey, we
asked users to provide their demographic information and
preferences, and in the second part, we described 20 dif-
ferent driving scenarios to each user along with additional
context information and coupon information. We then asked
the user if s/he will use the coupon. In the appendix we pro-
vided samples of two coupons with their contexts shown to
the Turkers.

The attributes of this data set include:

1. User attributes

• Gender: male, female

• Age: below 21, 21 to 25, 26 to 30, etc.

• Marital Status: single, married partner, unmar-
ried partner, or widowed

• Number of children: 0, 1, or more than 1

• Education: high school, bachelors degree, asso-
ciates degree, or graduate degree

• Occupation: architecture & engineering, business
& financial, etc.

• Annual income: less than $12500, $12500 - $24999,
$25000 - $37499,etc

• Number of times that he/she goes to a bar: never,
less than 1, 1-3, 4-8 or greater than 8

• Number of times that he/she buys takeaway food:
never, less than 1, 1-3, 4-8 or greater than 8

• Number of times that he/she goes to a coffee
house: never, less than 1, 1-3, 4-8 or greater than
8

• Number of times that he/she eats at a restaurant
with average expense less than $20 per person:
never, less than 1, 1-3, 4-8 or greater than 8

• Number of times that he/she goes to a bar: never,
less than 1, 1-3, 4-8 or greater than 8

2. Contextual attributes

• Driving destination: home, work, or no urgent
destination

• Location of user, coupon and destination: we pro-
vide a map to show the geographical location of
the user, destination, and the venue, and we mark

the distance between each two places with time
of driving. The user can clearly see whether the
venue is in the same direction as the destination.

• Weather: sunny, rainy, or snowy

• Temperature: 30Fo, 55Fo, or 80Fo

• Time: 10AM, 2PM, or 6PM

• Passenger: alone, partner, kid(s), or friend(s)

3. Coupon attributes

• time before it expires: 2 hours or one day

All coupons provide a 20% discount. The survey was divided
into different parts, so that Turkers without children would
never see a scenario where their “kids” were in the vehicle.

For categorical attributes, each attribute-value pair was
directly coded into an item. Using marital status as an
example, ‘marital status is single’ is converted into (Mar-
italStatus: Single), (MaritalStatus: Not Married partner),
and (MaritalStatus: Not Unmarried partner), (MaritalSta-
tus: Not Widowed). For discretized numerical attributes,
the levels are ordered, such as: age is ‘20 to 25’, or ‘26 to
30’, etc; each attribute-value pair was converted into two
items, each using one side of the range, For example, age is
‘20 to 25’ was converted into (Age:>=20) and (Age:<=25).
Then each item is a half-space defined by threshold values.

We will show that BOA does not lose too much accuracy
on the mobile advertisement data sets (with respect to the
highly complicated black box machine learning methods)
even though we restricted the lengths of pattern sets and
the number of patterns to yield interpretable models. We
compared with other classification algorithms C4.5, CART,
random forest, linear lasso, linear ridge, logistic lasso, logis-
tic ridge, and SVM, which span the space of widely used
methods that are known for interpretability and/or accu-
racy. The decision tree methods are representatives of the
class of greedy and heuristic methods (e.g., [11, 12, 19, 20,
32, 34, 36, 39, 44, 46, 59, 61]) that yield interpretable models
(though in many cases decision trees are often too large to
be interpretable). For all experiments, we measured out-of-
sample performance using AUC (the Area Under The ROC
Curve) from 5-fold testing where the MAP BOA from the
training data was used to predict on each test fold.2 We
used the RWeka package in R for the implementations of
the competing methods and tuned the hyperparameters us-
ing grid search in nested cross validation. Our experimental
setup for BOA is as follows, which was not altered through-
out the full set of experiments. For rule mining, we set the
minimum support to be 5% and set the maximum length
of patterns to be 3. We used information gain to select the
best 5000 patterns to use in our Bayesian model. We ran
simulated annealing for 50000 iterations to obtain a pattern
set.

6.1 Interpretability of results
Our first set of experimental results consider five separate

coupon prediction problems, for different types of coupons.
The AUC’s for BOA and baseline methods for all five prob-
lems are reported in Table 1. The BOA classifier, while re-
stricted to produce interpretable models, tends to perform

2We do not perform hypothesis tests, as it is now known
that they are not valid due to reuse of data over folds.



Bar Takeaway Food Coffee House
Restaurant

(<$20)
Restaurant
($20 to $50)

BOA 0.777 (0.010) 0.700 (0.045) 0.786 (0.019) 0.729 (0.014) 0.687 (0.014)
C4.5 0.757 (0.015) 0.602 (0.051) 0.751 (0.018) 0.692 (0.033) 0.639 (0.027)
CART 0.772 (0.019) 0.615 (0.035) 0.758 (0.013) 0.732 (0.018) 0.657 (0.010)
Random Forest 0.798 (0.016) 0.640 (0.036) 0.815 (0.010) 0.700 (0.022) 0.689 (0.010)
Linear Lasso 0.795 (0.014) 0.673 (0.042) 0.786 (0.011) 0.769 (0.024) 0.706 (0.017)
Linear Ridge 0.795 (0.018) 0.671 (0.043) 0.784 (0.012) 0.769 (0.020) 0.706 (0.020)
Logistic Lasso 0.796 (0.014) 0.673 (0.042) 0.787 (0.011) 0.767 (0.024) 0.706 (0.016)
Logistic Ridge 0.793 (0.018) 0.670 (0.042) 0.783 (0.011) 0.768 (0.021) 0.705 (0.020)
SVM 0.842 (0.018) 0.735 (0.031) 0.845 (0.007) 0.799 (0.022) 0.736 (0.022)

Table 1: AUC comparison for mobile advertisement data set, means and standard deviations over folds are
reported.

Figure 7: ROC for dataset of coupons for bars

almost as well as the black box machine learning methods,
and outperforms the decision tree algorithms. In practice,
for this particular application, the benefits of interpretabil-
ity far outweigh small improvements in accuracy. An inter-
pretable model can be useful to a vender choosing whether
to provide a coupon and what type of coupon to provide,
it can be useful to users of the recommender system, and it
can be useful to the designers of the recommender system
to understand the population of users and correlations with
successful use of the system.

We show several classifiers produced by BOA in Figure 7
and Figure 8. We varied the hyperparameters α+, β+, α−, β−
to obtain different sets of patterns, and plotted correspond-
ing points on the curve. Example pattern sets are listed in
each box along the curve. For instance, the classifier near
the middle of the curve in Figure 7 has one pattern, and
reads “If a person visits a bar at least once per month, is
not traveling with kids, and their occupation is not farm-
ing/fishing/forestry, then predict the person will use the
coupon for a bar before it expires”. For another example
in Figure 8, the classifier in the middle has two patterns:
“If a person visits a coffee house more than once per month,
and has no urgent destination to go, and does not have kids,
or s/he visits a coffee house more than once per month and

Figure 8: ROC for dataset of coupons for coffee
houses

the coupon expires in one day, then we predict the person
will use the coupon.” In these examples (and generally), we
see that a user’s general interest in a coupon’s venue (bar,
coffee shop, etc.) is the most relevant attribute to the clas-
sification outcome; it appears in every pattern in the two
figures.

We generated 30 pattern sets for each coupon prediction
problem by varying hyperparameters αl, βl, and thus we ob-
tained 150 BOA models. In Figure 9 we show a histogram
of the mean length of pattern sets in the 150 BOA models,
and a histogram of the number of patterns in these 150 BOA
models.

6.2 Performance without contextual attributes
In order to determine whether contextual information is

useful in a online in-vehicle advertisement system, we ran
BOA with and without the contextual attributes listed above
and compared performance, for all five coupon prediction
problems. Results for the 5 types of coupon prediction prob-
lems are in Figure 10, showing that the ROC curve for pre-
diction with contextual information completely dominates
the ROC curve for prediction without contextual informa-
tion, illustrating the benefit of using contextual information
in collecting data about the user’s context for an in-vehicle



Figure 10: ROC for BOA on data with and without contextual information

Figure 9: Size of pattern sets and mean length of
patterns

recommender system.

7. EXPERIMENTS WITH UCI DATA SETS
We tested BOA on several datasets from the UCI machine

learning repository [5], along with baseline algorithms, and
Table 2 displays the results. We observed that BOA achieves
the best performance on each of the data sets we used. This
is not a surprise: most these data sets have an underlying
true set of conditions that greedy methods would have diffi-
culty recovering. For example in the tic-tac-toe data set, the
positive class can be classified using exactly 8 conditions.
BOA has the capability to exactly learn these conditions,
whereas the greedy methods that are pervasive throughout
the data mining literature (e.g., CART, C4.5) and convexi-

fied approximate methods (e.g., SVM) have substantial dif-
ficulty with this.

We also added 30% noise to the tic-tac-toe training set
and BOA was still able to achieve perfect performance while
other methods’ performance suffered.

We illustrate BOA’s output on the breast cancer dataset.
BOA took exactly 2 minutes on a laptop to generate the fol-
lowing pattern set:

if X satisfies (Marginal Adhesion ≥ 3 AND Uniformity
of Cell Shape ≥ 3)
OR (Clump Thickness ≥ 7)
OR (Bland Chromatin ≥ 4 AND Uniformity of Cell Size
≥ 1 AND Clump Thickness ≥ 2) then

Predict the tumor is malignant
else

Predict the tumor is benign.
end if

The out-of-sample accuracy of this model was 0.952, with
true positive rate 0.974, and false positive rate 0.060. Or-of-
and models could potentially be ideal for medical applica-
tions, since they could characterize simple sets of conditions
that would place a patient in a high risk category; this may
be more useful in some cases than the typical scoring system
used in medical calculators.3

8. CONCLUSION
We presented an algorithm that produces sparse disjunc-

tions of conjunctions. This method has major benefits over
other predictive modeling methods: It is not a black box
method, and produces classifiers of a form that is known to
be interpretable to human experts. Further, it arises from a
principled generative modeling approach. It is not a heuris-
tic or greedy method, like the vast majority of decision tree
algorithms and associative classification algorithms, which
avoid computationally hard problems by making severe greedy
approximations. It does not have problems with robustness
to outliers or missing data like the convexified methods (lo-

3See mdcalc.com for a list of medical calculators.



Monk 1 Mushroom Breast Cancer Connect4 Tic-tac-toe
Tic-tac-toe
(30% noise)

BOA 1.000 (0.000) 1.000 (0.000) 0.990 (0.003) 0.926 (0.002) 1.000 (0.000) 1.000 (0.000)
C4.5 0.906 (0.067) 1.000 (0.000) 0.873 (0.017) 0.867 (0.002) 0.949 (0.016) 0.942 (0.022)
CART 0.826 (0.061) 1.000 (0.000) 0.978 (0.010) 0.703 (0.003) 0.966 (0.011) 0.962 (0.014)
Random Forest 1.000 (0.000) 1.000 (0.000) 0.970 (0.016) 0.940 (0.002) 0.991 (0.003) 0.989 (0.006)
Linear Lasso 0.556 (0.061) 0.995 (0.002) 0.985 (0.005) 0.858 (0.002) 0.986 (0.002) 0.854 (0.019)
Linear Ridge 0.560 (0.078) 0.999 (0.000) 0.987 (0.003) 0.857 (0.002) 0.931 (0.017) 0.820 (0.033)
Logistic Lasso 0.666 (0.084) 0.989 (0.002) 0.988 (0.003) 0.859 (0.002) 0.988 (0.002) 0.860 (0.029)
Logistic Ridge 0.686 (0.103) 0.999 (0.000) 0.988 (0.003) 0.857 (0.002) 0.869 (0.025) 0.805 (0.032)
SVM 0.957 (0.034) 0.999 (0.000) 0.986 (0.005) 0.924 (0.002) 0.993 (0.001) 0.992 (0.002)

Table 2: AUC comparison for some UCI data sets

gistic regression, SVM, Lasso). We used this method in
a knowledge discovery framework for investigating the po-
tential usefulness of an in-vehicle recommender system, as
part of the connected vehicle effort. We applied our machine
learning techniques to Mechanical Turk survey data gener-
ated by several hundred individuals, and showed that simple
patterns based on a user’s context can be directly useful in
predicting the user’s response.
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APPENDIX
A. EXAMPLES OF SCENARIOS IN THE SURVEY

Figure 11: Example 1 of scenario in the survey

Figure 12: Example 2 of scenario in the survey
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