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Abstract: Online reinforcement learning (RL) algorithms are increasingly used to personalize digital
interventions in the fields of mobile health and online education. Common challenges in designing
and testing an RL algorithm in these settings include ensuring the RL algorithm can learn and run
stably under real-time constraints, and accounting for the complexity of the environment, e.g., a lack
of accurate mechanistic models for the user dynamics. To guide how one can tackle these challenges,
we extend the PCS (predictability, computability, stability) framework, a data science framework that
incorporates best practices from machine learning and statistics in supervised learning to the design
of RL algorithms for the digital interventions setting. Furthermore, we provide guidelines on how to
design simulation environments, a crucial tool for evaluating RL candidate algorithms using the PCS
framework. We show how we used the PCS framework to design an RL algorithm for Oralytics, a
mobile health study aiming to improve users’ tooth-brushing behaviors through the personalized
delivery of intervention messages. Oralytics will go into the field in late 2022.

Keywords: reinforcement learning (RL); online learning; mobile health; algorithm design; algorithm
evaluation

1. Introduction

There is growing interest in using online reinforcement learning (RL) to optimize the
delivery of messages or other forms of prompts in digital interventions. In mobile health,
RL algorithms have been used to increase the effectiveness of the content and timing of
intervention messages designed to promote physical activity [1,2] and to manage weight
loss [3]. In other areas, including the social sciences and education, RL algorithms are used
to provide pretrial nudges to encourage court hearing attendance [4], to personalize math
explanations [5], and to deliver quiz questions during lecture videos [6]. Unlike games
and work in some areas of robotics, digital intervention studies can be extremely costly
to run. Furthermore, when the study is a preregistered clinical trial, once initiated, the
trial protocol (including any online algorithms) cannot be altered without jeopardizing
trial validity. Thus, design decisions are a “one-way door” [7]; once we commit to a set of
design decisions, they are irreversible for the duration of the trial. To prevent poor design
decisions that could be detrimental to the effectiveness and the validity of study results, RL
algorithms must undergo a thorough design and testing process before deployment.

The development of an RL algorithm for digital interventions requires a multitude of
design decisions. These decisions include how best to accommodate the lack of mechanis-
tic models for dynamic human responses to digital interventions and how to ensure the
robustness of the algorithm to potentially nonstationary/non-Markovian outcome distri-
butions. Furthermore, one must ensure not only that the RL algorithm learns and quickly
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optimizes interventions but also that the algorithm runs stably and autonomously online
within constrained amounts of time. One must also ensure that the RL algorithm can obtain
data in a timely manner. Time and budgetary considerations may restrict the complexity of
the RL algorithm that can be implemented. Furthermore, it is important to ensure the data
collected by the RL algorithm can be used to inform future studies and address scientific,
causal inference questions. Addressing these challenges in a reproducible, replicable manner
is critical if RL algorithms are to play a role in optimizing digital interventions. Therefore,
we need a framework for making design decisions for RL algorithms intended to optimize
digital interventions.

The primary contributions of this work are twofold:

1. Framework for Guiding Design Decisions in RL Algorithms for Digital Interven-
tions: We provide a framework for evaluating the design of an online RL algorithm to increase
confidence that the RL algorithm will improve the digital intervention’s effectiveness in real-life
implementation and maintain the intervention’s reproducibility and replicability. Specifically,
we extend the PCS (predictability, computability, stability) data science framework of
Yu [8] to address specific challenges in the development and evaluation of online RL
algorithms for personalizing digital interventions.

2. Case Study: This case study concerns the development of an RL algorithm for Oralyt-
ics, a mobile health intervention study designed to encourage oral self-care behaviors.
The study is planned to go into the field in late 2022. This case study provides a concrete
example of implementing the PCS framework to inform the design of an online RL algorithm.

2. Review of Online Reinforcement Learning Algorithms

Reinforcement learning (RL) [9,10] is the area of machine learning that is concerned
with learning how to best make a sequence of decisions. In digital intervention settings, the
sequence of decisions concerns which treatment (e.g., motivational messages, reminders,
types of feedback, etc.) to provide given the user’s current state and history. Definitions of
decision times, state, action, reward, and update times are provided below. The decision
times and actions for the RL algorithm for Oralytics are provided in Figure 1.
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Figure 1. Decision times and actions for the RL algorithm in the Oralytics study. There will be
two decision times per day (one in the morning and one in the evening); in total, each user will
have 140 decision times, which we index by t. At a given decision time t, the RL algorithm receives
state information for each user Si,t (this will include information on whether it is a morning or
evening decision time and whether it is a weekday or weekend, as well as information on the user’s
previous day brushing). Given the state, the RL algorithm decides whether or not to send the user
an engagement message (selects action Ai,t ∈ {0, 1}). After an action is taken, the RL algorithm
receives reward Ri,t, which is the user’s subsequent brushing duration in seconds during the brushing
window following the decision time. See Section 5 for a discussion on the challenges of designing an
RL algorithm for Oralytics.
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2.1. Decision Times

These are the times, indexed by t, at which the RL algorithm may deliver a treatment
(via a smart device such as a desktop computer, smartwatch, smartphone, smart speaker,
wearable, etc.). The cadence of the decision times (minute level, hourly, daily, etc.) depends
on the type of digital intervention. For example, in Oralytics, we have two decision times
per day, namely, one hour prior to the set morning and evening brushing windows specified
by the user.

2.2. State

Si,t ∈ Rd represents the ith user’s state at decision time t. d is the number of features
describing the user’s state (e.g., current location, recent adherence to medication, current
social setting, recent engagement with the intervention application, etc.). See Section 5.2 for
the state definition for Oralytics.

2.3. Action

Ai,t ∈ A represents the decision made by the RL algorithm for the ith user at decision
time t. Treatment actions in digital interventions frequently include the action of not
delivering any treatment at time t. For Oralytics, the action space is A := {0, 1}, where
Ai,t = 1 represents sending the user an engagement message and Ai,t = 0 represents not
sending an engagement message. See Section 5.1 for descriptions of the types of messages
that can be sent in Oralytics.

2.4. Reward

Ri,t ∈ R is the reward for the ith user at decision time t observed after taking action Ai,t.
The definition of the reward depends on the type of digital intervention. Examples include
successfully completing a math problem, taking a medication, and increasing physical
activity. In Oralytics, the reward is the subsequent brushing duration; see Section 5.2 for
further discussion of the reward in Oralytics.

2.5. Online RL Algorithms

Generally, online RL algorithms are composed of two parts: (a) fitting a model of the
user and (b) an action selection strategy. The simplest type of user model is a model for
the reward function, E[Ri,t|Si,t, Ai,t]. In more general cases, a model for the sum of future
rewards, conditional on the current state, Si,t, and action, Ai,t, is also learned. The action
selection strategy of the RL algorithm uses the user’s current state Si,t, along with the
learned user model and outputs the treatment action Ai,t at each decision time t.

2.6. Update Times

These are the times at which the RL algorithm is updated. Updating typically includes
updating a model of the user (e.g., a model of the user’s reward function). The RL algorithm
updates using user i’s current history of past states, actions, and rewards up to time t,
denoted by Hi,t−1 = {Si,s, Ai,s, Ri,s}t−1

s=1. If the algorithm pools data across users, then the
history of other users in the study, Hj,t−1 for i 6= j, is used to update the model for user
i. These updates can occur after each decision time or at longer time scales. For example,
in [1], the decision times are 5 times per day, but the update times are only nightly. For
Oralytics, the update cadence is once a week.

An online RL algorithm should quickly learn which action to deliver in which states for
each user. One of the most widely used and simplest RL algorithms is a contextual bandit
algorithm [11–13]. As data accrues, a contextual bandit algorithm incrementally learns
which action will lead to maximal reward in each state. The online algorithm sequentially
updates its estimate of the reward function (the mean of the reward conditional on state
and action) and selects actions. The performance of the algorithm is often measured by the
sum of rewards—the faster the algorithm learns, the greater the sum.
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3. PCS Framework for Designing RL Algorithms for Digital
Intervention Development

The PCS Framework [8] incorporates best practices from machine learning and applied
statistics to provide a set of guidelines for assessing the quality of a prediction algorithm
when used to address problems in real life. The goal is to enhance the scientific community’s
confidence in the prediction algorithm’s performance in terms of predictability of results,
computability in the implementation of the algorithm, and stability in the performance
results of the learning algorithm across perturbations. PCS has been adopted and extended
to other domains; see Section 4.3 for further discussion.

As in the prediction setting, there are a variety of design decisions one needs to make
before deploying an RL algorithm, e.g., choosing the model class to use to approximate the
reward function. While many of the original PCS principles can be used in the development
and evaluation of RL algorithms, RL algorithm development also introduces new challenges
for the PCS framework, particularly in the online digital intervention setting. First, the
main task is not prediction, but rather in RL, the main goal is to select intervention actions
so that average rewards across time are maximized for each user. We call this the goal of
personalization [14]. We generalize the PCS framework to include an evaluation of the
ability of an online RL algorithm to personalize. Second, in digital intervention settings, it is
important to evaluate the ability of the online RL algorithm to maximize rewards under real-
world constraints. For example, there are often time constraints on computations, budgetary
constraints on software engineering development, and constraints on the algorithm in terms
of obtaining data in real time. Furthermore, the algorithm must run stably online without
constant human monitoring and adjustment. The current PCS framework does not provide
evaluation tools that deal with the above needs. We extend the PCS framework to the
context of designing and evaluating online RL algorithms. Our extended framework focuses
on providing confidence that the online RL algorithm will lead to greater effectiveness
under real-world constraints and with stability.

3.1. Personalization (P)

The original PCS Framework uses predictability (P) to ensure that models used in data
science have good predictive accuracy on both seen and unseen data. Predictive accuracy
is a simple, commonly used metric for evaluating such models, but in some cases, multiple
evaluation metrics or domain-specific metrics are more appropriate. In our setting, the
main task is personalization. Namely, the online RL algorithm should learn to select actions
to maximize each user’s average rewards. Instead of a predictive accuracy metric, we want
a metric to validate the extent of personalization. For example, when choosing a metric to
evaluate RL algorithms for multiple users, one may be interested not just in the average
over the users’ sums of rewards but in other metrics that capture the variation in the sum
of rewards across users. Let N be the total number of users with T total decision times. We
suggest the following metrics:

• Average of Users’ Average (Across Time) Rewards: This metric is the average of all
N users’ rewards averaged across all T decision times, defined as 1

N ∑N
i=1
( 1

T ∑T
t=1 Ri,t

)
.

The metric serves as a global measure of the RL algorithm’s performance.
• The 25th Percentile of Users’ Average (Across Time) Rewards: To compute this

metric, first compute the average reward across time for each user, 1
T ∑T

t=1 Ri,t for each
i = 1, 2, . . . , N; this metric is the lower 25th percentile of these average rewards across
the N users. The metric shows how well an RL algorithm performs for the worst-off
users, namely users in the lower quartile of average rewards across time.

• Average Reward For Multiple Time Points: This metric is the average users’ rewards
across time for multiple time points t0 = 1, 2, ..., T, defined as 1

N ∑N
i=1
( 1

t0
∑t0

t=1 Ri,t
)

for each t0. These metrics can be used to assess the speed at which the RL algorithm
learns across weeks in the trial.
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3.2. Computability (C)

Computability has to do with the efficiency and scalability of algorithms, decisions,
and processes. While the original PCS framework focused on the computability of training
and evaluating models, we also consider computability to include the ability to implement
the algorithm within the constraints of the study. In the online RL setting, computability
encompasses all issues related to ensuring that the RL algorithm can select actions and
update in a timely manner while running online. The performance of the online RL
algorithm must be evaluated under the constraints of the study; key RL algorithm design
constraints that could arise include:

• Timely Access to Reward and State Information: The investigators may have an
ideal definition of the reward or state features for the algorithm; however, due to delays
in communication between sensors, the digital application, and the cloud storage,
the investigators’ first choice may not be reliably available. Since RL algorithms for
digital interventions must make decisions online, the development team must choose
state features that will be reliably available to the algorithm at each decision time.
Additionally, the team must also choose rewards that are reliably available to the
algorithm at update times.

• Engineering Budget: One should consider the engineering budget, supporting soft-
ware needed, and time available to deliver a production-ready algorithm. If there are
significant constraints, a simpler algorithm may be preferred over a sophisticated one
because it is easier to implement, test, and set up monitoring systems for.

• Off-Policy Evaluation and Causal Inference Considerations: The investigative team
often not only cares about the RL algorithm’s ability to learn but also about being
able to use data collected by the RL algorithm to answer scientific questions after
the study is over. These scientific questions can include topics such as off-policy
evaluation [15,16] and causal inference [17,18]. Thus, the algorithm may be constrained
to select actions probabilistically with probabilities that are bounded away from zero
and one. This enhances the ability of investigators to use the resulting data to address
scientific questions with sufficient power [19].

3.3. Stability (S)

Stability concerns how an RL algorithm’s results change with minor perturbations
and the documentation and reproducibility of results. In online RL, stability plays two
roles. First, the RL algorithm must run stably and automatically without the need for
constant human monitoring and adjustment. This is particularly critical as users abandon
digital interventions that have inconsistent functionality (unstable RL algorithm) [20,21].
Second, the RL algorithm should perform well across a variety of potential real-world
environments. A critical tool in assessing stability to perturbations of the environment
is the use of simulation test beds. Test beds include a variety of plausible environmental
variants, each of which encodes different concerns of the investigative team. The following
are challenging attributes of probable environments in digital intervention problems that
one could design test beds for:

• User Heterogeneity: There is likely some amount of user heterogeneity in response
to actions, even when users are in the same context. User heterogeneity can be
partially due to unobserved user traits (e.g., factors that are stable or change slowly
over time, like family composition or personality type). The amount of between-user
heterogeneity impacts whether an RL algorithm that pools data (partially or using
clusters) across users to select actions will lead to improved rewards.

• Non-Stationarity: Unobserved factors common to all users such as societal changes
(e.g., a new wave of the pandemic), and time-varying unobserved treatment burden
(e.g., a user’s response to a digital intervention may depend on how many days the
user has experienced the intervention) may make the distribution of the reward appear
to vary with time, i.e., non-stationary.
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• High-Noise Environments: Digital interventions typically deliver treatments to users
in highly noisy environments. This is in part because digital interventions deliver
treatments to users in daily life, where many unobserved factors (e.g., social context,
mood, or stress) can affect a user’s responsiveness to an intervention. If unobserved,
these factors produce noise. Moreover, the effect of digital prompts on a near-term
reward tends to be small due to the nature of the intervention. Therefore, it is important
to evaluate the algorithm’s ability to personalize even in highly noisy, low signal-to-
noise ratio environments.

3.4. Simulation Environments for PCS Evaluation

To utilize the PCS framework, we advocate for using a simulation environment for de-
signing and evaluating RL algorithms. We aim to compare RL algorithm candidates under
real-world constraints (computability). Thus, we build multiple variants of the simulation
environment, each reflecting plausible user dynamics (i.e., state transitions and reward
distributions) (stability). We then simulate digital intervention studies for each simulation
environment variant and RL algorithm candidate pairing. Finally, we use multiple metrics
to evaluate the performance of the RL algorithm candidates (personalization).

In the case of digital interventions, there is often no mechanistic model or physical pro-
cess for user behavioral dynamics, which makes it difficult to accurately model transitions
(e.g., modeling a user’s future level of physical activity as a function of their past physical
activity, location, local weather). Note that the goal of developing the simulators is not to
conduct model-based RL [22]. Rather, here, the simulators represent a variety of plausible
environments to facilitate the evaluation of the performance of potential RL algorithms in
terms of personalization, computability, and stability across these environments. Existing
data and domain expertise is most naturally used to construct the simulation environments.
However, as is the case for Oralytics, the previously collected data may be scarce, i.e., we
have few data points per user. Moreover, the data may only be partially informative, e.g.,
the data was collected under only a subset of the actions. Next, we provide guidelines for
how to build an environment simulator in such challenging settings.

Base Environment Simulator: To have the best chance possible of accurately eval-
uating how well different RL candidates will perform, we recommend first building a
base environment simulator that mimics the existing data to the greatest extent possible.
This involves carefully choosing a set of time-varying features and reward-generating
model class that will be expressive enough to model the true reward distribution well. To
check how well the simulated data generated by the model of the environment mimics the
observed data, we recommend a variety of ways to compare distributions. This includes
visual comparisons such as plotting histograms; comparing measures of the real data such
as mean reward, between-user variance, and within-user variance to the same measures of
the simulated data; and measuring how well the base model captured the variance in the
data. Examples of these checks done for Oralytics are in Appendix A.4.

Variant Environment Simulators: We recommend considering many variants or per-
turbed simulation environments to evaluate the stability of RL algorithms across multiple
plausible environments. These variants can be used to address the concerns of the inves-
tigative team. For example, if the base simulator generates stationary rewards and the
investigative team is concerned that the real reward distribution may not be stationary, a
variant could incorporate nonstationarity into the environment dynamics.

If the previously collected data does not include particular actions, as was the case
for Oralytics, we recommend consulting domain experts for a range of potential realistic
effect sizes (differences in mean reward under the new action versus a baseline action). For
example, in Oralytics, we only have data under no intervention and do not have data on
rewards under the intervention. Thus, using the input of the domain experts on the team,
we imputed several plausible treatment effects (varying by certain state features and the
amount of heterogeneity in treatment effects across users).
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4. Related Works
4.1. Digital Intervention Case Studies

Liao et al. [1] describes the development of an online RL algorithm for HeartSteps
V2, a physical activity mobile health application. The authors highlight how their design
decisions address specific challenges in designing RL algorithms by, for example, adjusting
for longer-term effects of the current action and accommodating noisy data. However, they
do not provide general guidelines for making design decisions for RL algorithms in digital
intervention development.

Another related work is that of Figueroa et al. [23], which provides an in-depth case
study of the design decisions, and the associated challenges and considerations, for an
RL algorithm for text messaging in a physical activity mobile application serving patients
with diabetes and depression. This case study provides guidelines to others developing
RL algorithms for mobile health applications. Specifically, the authors first categorize
the challenges they faced into 3 major themes: (1) choosing a model for decision making,
(2) data handling, and (3) weighing algorithm performance versus effectiveness in the
real world. They describe how they dealt with each challenge in the design process of
their RL algorithm. In contrast, by expanding the PCS framework, this work introduces
general guidelines for comprehensively evaluating RL algorithms. Moreover, we make
recommendations for how to design a variety of simulation test beds even using only
sparse and partially informative existing data, in service of PCS. The generality of the
PCS framework makes it more widely applicable. For example, Figueroa et al. [23] has
an existing dataset for all actions, which makes its recommendations less applicable to
those designing algorithms with existing data only under a subset of actions. The PCS
framework allows us to move beyond suggesting solutions to a specific set of challenges for
a particular study by offering holistic guidelines for addressing challenges in developing
simulation environments and evaluating algorithms.

4.2. Simulation Environments in Reinforcement Learning

In RL, simulators (generative models) may be used to derive a policy from the genera-
tive model underlying the simulator (model-based learning). Agarwal et al. [22] uses simu-
lation as an intermediate step to learn personalized policies in a data-sparse regime with
heterogeneous users, where they only observe a single trajectory per user. Wei et al. [24]
proposes a framework for simulating in a data-sparse setting by using imitation learning to
better interpolate traffic trajectories in an autonomous driving setting. In contrast, in PCS,
the simulator is used as a crucial tool for using the framework to design, compare, and
evaluate RL algorithm candidates for use in a particular problem setting.

There exist many resources aiming to improve the design and evaluation of RL algo-
rithms through simulation; however, in contrast to this work, they do not provide guidelines
for designing plausible simulation environments using existing data. RecSim [25] gives
a general framework but does not advise on the quality of the environment nor on how
to make critical design decisions such as reward construction, defining the state space,
simulating unobserved actions, etc. MARS-Gym [26] provides a full end-to-end pipeline
process (data processing, model design, optimization, evaluation) and open-source code
for a simulation environment for marketplace recommender systems. OpenAI Gym [27] is
a collection of benchmark environments in classical control, games, and robotics where the
public can run and compare the performance of RL algorithms.

There are also a handful of papers that build simulation environment test beds using
real data. Wang et al. [28] evaluates their algorithm for promoting running activity with
a simulation environment built using two datasets. Singh et al. [29] develops a simu-
lation environment using movie recommendations to evaluate their safe RL approach.
Korzepa et al. [30] uses a simulation environment to guide the design of personalized algo-
rithms that optimize hearing aid settings. Hassouni et al. [31,32] fits a realistic simulation
environment using the U.S. timekeeping research project data. Their simulation environ-
ment creates daily schedules of activities for each user (i.e., sleep, work, workout, etc.)
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where each user is one of many different user profiles (i.e., workaholic, athlete, retiree) for
the task of improving physical activity.

4.3. PCS Framework Extensions

The PCS framework has been extended to other learning domains such as causal infer-
ence [33], network analysis [34], and algorithm interpretability [35]. Despite the variety of
these tasks, they can all be framed as supervised learning problems in batch data settings
that can be evaluated in terms of prediction accuracy on a hold-out dataset. PCS has not
been extended to provide guidelines for developing an online decision-making algorithm.
This extension is needed because of the additional considerations, discussed above, present
in a real-world RL setting. Additionally, while these papers focus on evaluating how well
a model accurately predicts the outcome on training and hold-out datasets, we extend the
framework to evaluate how well an algorithm personalizes to each user. Dwivedi et al. and
Ward et al. [33,34] implement the original computability principle by considering algorithm
and process efficiency and scalability. Margot et al. [35] provides a new principle, simplicity,
which is based on the sum of the lengths of generated rules. We extend computability to
include the constraints of the study. Finally, these papers consider the stability of results across
different changes to the data (e.g., bootstrapping or cross-validation) or design decisions (e.g.,
choice of representation space or the embedding dimension). Our framework focuses on how
stable an algorithm is in plausible real-world environments that may be complex (e.g., due to
user heterogeneity, nonstationary, high noise).

5. Case Study: Oral Health

In this case study, we demonstrate the use of PCS principles in designing an RL
algorithm for Oralytics. Two main challenges are (1) we do not have timely access to many
features and the reward is relatively noisy and (2) we have sparse, partially informative
data to inform the construction of our simulation environment test bed. In addition, there
are several study constraints.

1. Once the study is initiated, the trial protocol and algorithm cannot be altered without
jeopardizing trial validity.

2. We are using an online algorithm, so we may not have timely access to certain desirable
state features or rewards.

3. We have a limited engineering budget.
4. We must answer post-study scientific questions that require causal inference or off-

policy evaluation.

We highlight how we handle these challenges by using the PCS framework, despite
being in a highly constrained setting. The case study is organized as follows. In Section 5.1,
we give background context and motivation for the Oralytics study. In Section 5.2, we
explain the Oralytics sequential decision-making problem. In Section 5.3, we describe
our process for designing RL algorithm candidates that can stably learn despite having a
severely constrained features space and noisy rewards. Finally, in Section 5.4, we describe
how we designed the simulation environment variants to evaluate the RL algorithm
candidates; throughout, we offer recommendations for designing realistic environment
variants and for constructing such environments using data for only a subset of actions.

5.1. Oralytics

Oralytics is a digital intervention for improving oral health. Each user is provided
a commercially available electric toothbrush with integrated sensors and Bluetooth con-
nectivity as well as the Oralytics mobile application for their smartphone. There are two
decision times per day (prior to the user’s morning and evening brushing windows) when
a message may or may not be delivered to the user via their smartphone. The types of
messages focus on winning a gift for oneself, winning a gift for one’s favorite charity,
feedback on prior brushing, and educational information. Once a message is delivered to
the user, the app records it so that a user is highly unlikely to receive the same message
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twice. Oralytics will be implemented with approximately 70 users in a clinical trial where
the participant duration is 10 weeks; this means each user has T = 140 decision times. The
study duration is 2 years and the expected weekly incremental recruitment rate is around
4 users. The Oralytics mobile app will use an online RL algorithm to optimize message
delivery (i.e., treatment actions) to maximize an oral health-related reward (see below).
To inform the RL algorithm design, we have access to data from a prior oral health study,
ROBAS 2 [36], and input from experts in oral and behavioral health. The ROBAS 2 study
used earlier versions of both the electric toothbrush and the Oralytics application to track
the brushing behaviors of 32 users over 28 days. Importantly, in ROBAS 2, no intervention
messages were sent to the users.

5.2. The Oralytics Sequential Decision-Making Problem

We now discuss how we designed the state space and rewards for our RL problem
in collaboration with domain experts and the software team while considering various
constraints. These decisions must be communicated and agreed upon with the software
development team because they build the systems that provide the RL algorithm with
the necessary data at decision and update times and execute actions selected by the
RL algorithm.

1. Choice of Decision Times: We chose the decision times to be prior to each user’s
specified morning and evening brushing windows, as the scientific team thought this
would be the best time to influence users’ brushing behavior.

2. Choice of Reward: The research team’s first choice of reward was a measure of
brushing quality derived from the toothbrush sensor data from each brushing episode.
However, the brushing quality outcome is often not reliably obtainable because it requires
(1) that the toothbrush dock be plugged in and (2) that the user be standing within a few
feet of the toothbrush dock when brushing their teeth. Users may fail to meet these two
requirements for a variety of reasons, e.g., the user brushes their teeth in a shared bathroom
where they cannot conveniently leave the dock plugged in. Thus, we selected brushing
duration in seconds as the reward (personalization) since 120 s is the dentist-recommended
brushing duration and brushing duration is a necessary factor in calculating the brushing
quality score. Additionally, brushing duration is expected to be reliably obtainable even
when the user is far from the toothbrush dock when brushing (computability). Note that in
Figure 2, a small number of user-brushing episodes have durations over the recommended
120 s. Hence, we truncate the brushing time to avoid optimizing for overbrushing. Let Di,t
denote the user’s brushing duration. The reward is defined as Ri,t := min(Di,t, 180).

3. Choice of State Features At Decision Time: To provide the best personalization, an
RL algorithm ideally has access to as many relevant state features as possible to inform a
decision, e.g., recent brushing, location, user’s schedule, etc. However, our choice of the
state space is constrained by the need to get features reliably before decision and update
times, as well as by our limited engineering budget. For example, we originally wanted
a feature for the evening decision time to be the morning’s brushing outcome; however,
this feature may not be accessible in a timely manner. This is because in order for the
algorithm to receive the morning brushing data, the Oralytics smartphone app requires the
user to open the app and we do not expect most users to reliably open the app after every
morning brush time before the evening brushing window. Further discussion of our choice
of decision time state features can be found in Appendix B.1.

4. Choice of Algorithm Update Times: In our simulations, we update the algorithm
weekly. In terms of speed of learning (at least in idealized settings), it is best to update
the algorithm after each decision time. However, due to computability considerations, we
chose a slower update cadence. Specifically, for the Oralytics app, the consideration was
that we can only update the policy used to select actions when the user opens the app. If
the user did not open the app for many days, we would be unable to update the app after
each decision time. Users may well fail to open the app for a few days at a time, so we
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chose weekly updates. In the future, we will explore other update cadences as well, e.g.,
once a day.
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Figure 2. Histogram of brushing durations in seconds for all user brushing sessions in ROBAS 2. The
ROBAS 2 study had 32 users total and each user had 56 brushing windows (2 brushing windows
per day for 28 days). If a user did not brush during a brushing window, their brushing duration is
recorded as zero seconds. Note in the figure above that across all users and brushing windows, about
40% of brushing sessions had no brushing, that is, a brushing duration of zero seconds. The ROBAS 2
brushing durations are highly zero-inflated.

5.3. Designing the RL Algorithm Candidates

Here, we discuss our use of the PCS framework to guide and evaluate the following
design decisions for the RL algorithm candidates. There are some decisions that we have
already made and other decisions that we encode as axes for our algorithm candidates to
test in the simulation environment. See Appendix B for further details regarding the RL
algorithm candidates.

1. Choice of using a Contextual Bandit Algorithm Framework: We understand that
actions will likely affect a user’s future states and rewards, e.g., sending an intervention
message the previous day may affect how receptive a user is to an intervention message
today. This suggests that an RL algorithm that models a full Markov decision process
(MDP) may be more suitable than a contextual bandit algorithm. However, the highly noisy
environment and the limited data to learn from (140 decision times per user total) make
it difficult for the RL algorithm to accurately model state transitions. Due to errors in the
state transition model, the estimates of the delayed effects of actions used in MDP-based RL
algorithms can often be highly noisy or inaccurate. This issue is exacerbated by our severely
constrained state space (i.e., we have few features and the features we get are relatively
noisy). As a result, an RL algorithm that fits a full MDP model may not learn much during
the study, which could compromise personalization and offer a poor user experience. To
mitigate these issues, we use contextual bandit algorithms, which fit a simpler model of the
environment. Using a lower discount factor (a form of regularization) has been shown to
lead to learning a better policy than using the true discount factor, especially in data-scarce
settings [37]. Thus, a contextual bandit algorithm can be interpreted as an extreme form
of this regularization where the discount factor is zero. Finally, contextual bandits are the
simplest algorithm for sequential decision making (computability) and have been used to
personalize digital interventions in a variety of areas [1,2,5,23].

2. Choice of a Bayesian Framework: We consider contextual bandit algorithms that
use a Bayesian framework, specifically posterior (Thompson) sampling algorithms [38].
Posterior sampling involves placing a prior on the parameters of the reward approximating
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function and updating the posterior distribution of the reward function parameters at each
algorithm update time. This allows us to incorporate prior data and domain expertise into
the initialization of the algorithm parameters. In addition, Thompson sampling algorithms
are stochastic (action selections are a not deterministic function of the data), which better
facilitate causal inference analyses later on using the data collected in the study.

3. Choice of Constrained Action Selection Probabilities: We constrain the action
selection probabilities to be bounded away from zero and one in order to facilitate off-
policy and causal inference analyses once the study is over (computability). With help
from the domain experts, we decided to constrain the action selection probabilities of the
algorithm to be in the interval [0.35, 0.75].

The following are decisions we will test using the simulation environment.
4. Choice of the Reward Approximating Function: An important decision in designing

the contextual bandit algorithm is how to approximate the reward function. We consider
two types of approximations, a Bayesian linear regression model (BLR) and a Bayesian
zero-inflated Poisson regression model (ZIP), which are both relatively simple, well studied,
and well understood. For BLR, we implement action centering in the linear model [1]. The
linear model for the reward function is easily interpretable by domain experts and allows
them to critique and inform the model. We consider the ZIP because of the zero-inflated
nature of brushing durations in our existing dataset ROBAS 2; see Figure 2. We expect the
ZIP to provide a better fit to the reward function by the contextual bandit and thus lead to
increased average rewards. Formal specifications for BLR and ZIP as reward functions can
be found in Appendix B.2.1 and Appendix B.2.2, respectively.

To perform posterior sampling, both the BLR and ZIP models are Bayesian with
uninformative priors. From the perspective of computability and stability, the posterior for
the BLR has a closed form, which makes it easier to write software that performs efficient
and stable updates. In contrast, for the ZIP, the posterior distribution must be approximated
and the approach used to approximate the posterior is another aspect of the algorithm
design that the scientific team needs to consider. See Appendix C for further discussion on
how to update the RL algorithm candidates.

5. Choice of Cluster Size: We consider clustering users with cluster sizes K = 1 (no
pooling), K = 4 (partial pooling), and K = N = 72 (full pooling) to determine whether
clustering in our setting will lead to higher sums of rewards (personalization). Note that
72 is the approximate expected sample size for the Oralytics study. Clustering-based
algorithms pool data from multiple users to learn an algorithm per cluster (i.e., at update
times, the algorithm uses Hi,t−1 for all users i in the same cluster, and at decision times,
the same algorithm is used to select actions for all users in the cluster). Clustering-based
algorithms have been empirically shown to perform well when users within a cluster
are similar [39,40]. In addition, we believe that clustering will facilitate learning within
environments that have noisy within-user rewards [41,42]. There is a trade-off between no
pooling and full pooling. No pooling may learn a policy more specific to the user later on
in the study but may not learn as well earlier in the study when there is not a lot of data for
that user. Full pooling may learn well earlier in the study because it can take advantage
of all users’ data but may not personalize as well as a no-pooling algorithm, especially if
users are heterogeneous. We consider K = 4 for the balance partial pooling offers between
the advantages and disadvantages between no pooling and full pooling. Moreover, four is
the study’s expected weekly recruitment rate and the update cadence is also weekly. We
consider the two extremes and partial pooling as a way to explore this trade-off. A further
discussion on choices of cluster size can be found in Appendix B.3.

5.4. Designing the Simulation Environment

We build a simulator that considers multiple variants for the environment, each
encoding a concern by the research team. The simulator allows us to evaluate the stability
of results for each RL algorithm across the environmental variants (stability).
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Fitting Base Models: Recall that the ROBAS 2 study did not involve intervention
messages. However, we can still use the ROBAS 2 dataset to fit the base model for the
simulation environment, i.e., a model for the reward (brushing duration in seconds) under
no action. Two main approaches for fitting zero-inflated data are the zero-inflated model
and the hurdle model [43]. Both the zero-inflated model and the hurdle model have (i) a
Bernoulli component and (ii) a nonzero component. The zero-inflated model’s Bernoulli
component is latent and represents the user’s intention to brush, while the hurdle model’s
Bernoulli component is observed and represents whether the user brushed or not. Therefore,
the zero-inflated model’s nonzero component models the user’s brushing duration when
the user intends to brush, and the hurdle model’s nonzero component models the user’s
brushing duration conditional on whether the user brushed or not. Throughout the model
fitting process, we performed various checks on the quality of the model to determine
whether the fitted model was sufficient (Appendix A.4). This included checking whether
the percentage of zero brush times simulated by our model was comparable to that of
the original ROBAS 2 dataset. Additionally, we checked whether the model accurately
captured the mean and variance of the nonzero brushing durations across users.

The first approach we took was to choose one model class (zero-inflated Poisson)
and fit a single population-level model for all users in the ROBAS 2 study. However, a
single population-level model was insufficient for fitting all users due to the high level
of user heterogeneity (i.e., the between-user and within-user variance of the simulated
brushing durations from the fitted model was smaller than the between-user and within-
user variance of brushing durations in the ROBAS 2 data). Thus, next, we decided to
maintain one model class, but fit one model per user for all users. However, when we fit a
zero-inflated Poisson to each user, we found that the model provided an adequate fit for
some users but not for users who showed more variability in their brushing durations. The
within-user variance simulated rewards from the model fit on those users was still lower
than the within-user variance of the ROBAS 2 user data used to fit the model. Therefore,
we considered a hurdle model [43] because it is more flexible than the zero-inflated Poisson.
For Poisson distributions, the mean and variance are equal, whereas the hurdle model does
not conflate the mean and variance.

Ultimately, for each user, we considered three model classes: (1) a zero-inflated Poisson,
(2) a hurdle model with a square root transform, and (3) a hurdle model with a log transform,
and chose one of these model classes for each user (Appendix A.2). Specifically, to select the
model class for user i, we fit all three model classes using each user’s data from ROBAS 2.
Then, we chose the model class that had the lowest root mean squared error (RMSE)
(Appendix A.3). Additionally, along with the base model that generates stationary rewards,
we include an environmental variant with a nonstationary reward function; here, “day in
study” is used as a feature in the environment’s reward generating model (Appendix A.1).

Imputing Treatment Effect Sizes: To construct a model of rewards for when an inter-
vention message is sent (a case for which we have no data), we impute plausible treatment
effects with the interdisciplinary team and modify the fitted base model with these effects.
Specifically, we impute treatment effects on the Bernoulli component and the nonzero
component. We impute both types of treatment effects because the investigative team’s
intervention messages were developed to encourage users to brush more frequently and
to brush for the recommended duration. Furthermore, because the research team be-
lieves that the users may respond differently to the engagement messages depending
on the context and depending on the user, we included context-aware, population-level,
and user-heterogeneous effects of the engagement messages as environmental variants
(Appendix A.5).

We use the following guidelines to guide the design of the effect sizes:

1. In general, for mobile health digital interventions, we expect the effect (magnitude of
weight) of actions to be smaller than (or on the order of) the effect for baseline features,
which include time of day and the user’s previous day brushing duration (all features
are specified in Appendix A.1).
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2. The variance in treatment effects (weights representing the effect of actions) across
users should be on the order of the variance in the effect of features across users (i.e.,
variance in parameters of fitted user-specific models).

Following guideline 1 above, to set the population level effect size, we take the absolute
value of the weights (excluding that for the intercept term) of the base models fitted for each
ROBAS 2 user and the average across users and features (e.g., the average absolute value
of weight for time of day and previous day brushing duration). For the heterogeneous
(user-specific) effect sizes, for each user, we draw a value from a normal centered at the
population effect sizes. Following guideline 2, the variance of the normal distributions
is found by again taking the absolute value of the weights of the base models fitted for
each user, averaging the weights across features, and taking the empirical variance across
users. In total, there are eight environment variants, which are summarized in Table 1. See
Appendix A for further details regarding the development of the simulation environments.

Table 1. Four Environment Variants. We consider two environment base models (stationary and
nonstationary) and two effect sizes (population effect size, heterogeneous effect size).

S_Pop: Stationary Base Model, Popula-
tion Effect Size

NS_Pop: Nonstationary Base Model, Popu-
lation Effect Sizes

S_Het: Stationary Base Model, Heteroge-
neous Effect Size

NS_Het: Nonstationary Base Model, Het-
erogeneous Effect Sizes

6. Experiment and Results

We evaluate the RL algorithm candidates in each of the environment variants (stabil-
ity). Specifically, the RL algorithm candidates will be comprised of a posterior sampling
algorithm with two different reward models: (i) a Bayesian linear regression model (BLR)
and (ii) a zero-inflated Poisson regression model (ZIP); see Appendices B and C for more
discussion of these algorithms. Additionally, for each of these two reward approximating
functions, we will consider different cluster sizes (with k = 1, 4, N users). Each cluster will
have one RL algorithm instantiation per cluster (no data shared across clusters). We cluster
users by their entry date into the study (e.g., the first k users are in the first cluster, the
next k users are in the second cluster, and so on). Since for the real Oralytics study we will
incrementally recruit users into the study at a rate of about four users per week, for our
experiments, we also simulate four users entering the study every week. To simulate a
study, we draw N = 72 users (approximately the expected sample size for the Oralytics
study) with replacement and cluster them by their entry date into the simulated study. The
algorithms for each cluster are updated weekly with the first update taking place after one
week (at decision time t = 14 for each cluster).

To evaluate personalization, we use the following metrics to compare algorithms:
average rewards (average across users and time) and the 25th percentile of average rewards
(averaged over time) across users. The purpose of looking at the 25th percentile of average
rewards across users is to evaluate how well the algorithms perform on the worst off users
(i.e., users who have a lower average reward than the average user). We ran 100 Monte
Carlo trials for each environmental variant and algorithm candidate pairing. Table 2 shows
the average and the 25th percentile of users’ average (across time) rewards. Figure 3 shows
the average reward over time.

We highlight the following takeaways from our experiments:

1. BLR vs. ZIP: We prefer BLR to ZIP. BLR with cluster size k = N results in higher
user rewards than all other RL algorithm candidates in all environments in terms of
average reward and 25th percentile reward (Table 2) and for average reward across
all user decision times (Figure 3). It is interesting to note that BLR with cluster size
k = 4 performs comparably to ZIP for all cluster sizes k (Table 2, Figure 3). Originally,
we hypothesized that ZIP would perform better than BLR because the ZIP-based
algorithms can better model the zero-inflated nature of the rewards. We believe that
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the ZIP-based algorithms suffered in performance because they require fitting more
parameters and thus require more data to learn effectively. On the other hand, the
BLR model trades off bias and variance more effectively in our data-sparse settings.
Beyond considerations of their ability to personalize, we also prefer the BLR-based
RL algorithms because they have an easy-to-compute closed-form posterior update
(computability and stability). The ZIP-based algorithms involve using approximate
posterior sampling, which is more computationally intensive and numerically unsta-
ble. In addition, BLR with action centering is robust, namely, it is guaranteed to be
unbiased even when the baseline reward model is incorrect [1]. BLR with action cen-
tering specifically does not require the knowledge of the baseline features at decision
time (See Appendix C.1.1). This means that baseline features only need to be available
at update time and we can incorporate more features that were not available in real
time at the decision time.

Table 2. Average and 25th Percentile Rewards. Average and 25th percentile rewards are defined in
Section 3.1. The naming convention for environment variants is found in Table 1. “k” refers to the
cluster size. Average rewards are averaged across time, users, and 100 trials. For the 25th percentile
rewards, we average rewards for each user across time, find the lower 25th percentile across N = 72
users, and then average that across 100 trials. The value in the parenthesis is the standard error of the
mean. The best performing algorithm candidate in each environment variant is bolded. BLR (k = N)
performs better than other algorithm candidates across all simulated environments. Notice that the
average rewards are lower than the 120-s dentist-recommended brushing duration. This is because of
the zero-inflated nature of our setting (i.e., the user does not brush).

RL Algorithm Candidates

Average Rewards

RL Algorithm S_Het NS_Het S_Pop NS_Pop

ZIP k = 1 100.038 (0.597) 102.566 (0.526) 107.184 (0.626) 109.379 (0.552)
ZIP k = 4 100.463 (0.586) 103.035 (0.539) 108.217 (0.609) 110.242 (0.562)
ZIP k = N 100.791 (0.596) 103.391 (0.546) 108.410 (0.617) 110.542 (0.554)
BLR k = 1 97.196 (0.585) 99.691 (0.527) 103.692 (0.615) 105.590 (0.546)
BLR k = 4 99.772 (0.590) 102.310 (0.547) 107.568 (0.619) 109.454 (0.547)
BLR k = N 101.267 (0.590) 104.024 (0.542) 108.974 (0.610) 111.201 (0.546)

25th Percentile Rewards

RL Algorithm S_Het NS_Het S_Pop NS_Pop

ZIP k = 1 67.907 (1.150) 73.830 (0.403) 74.898 (1.016) 78.651 (0.556)
ZIP k = 4 68.865 (1.067) 73.836 (0.464) 75.933 (1.114) 80.413 (0.629)
ZIP k = N 69.448 (1.201) 74.580 (0.475) 76.312 (1.122) 80.424 (0.648)
BLR k = 1 65.600 (1.139) 70.703 (0.457) 70.915 (1.024) 74.782 (0.596)
BLR k = 4 68.045 (1.122) 73.322 (0.505) 75.766 (1.097) 79.809 (0.622)
BLR k = N 69.757 (1.171) 75.393 (0.427) 77.272 (1.096) 81.675 (0.583)
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Figure 3. Average User Rewards Over Time. Above, we show simulation results of the six can-
didate algorithms (BLR and ZIP respectively for different cluster sizes k) across the four simula-
tion environments. The y-axis is the mean and ±1.96 · standard error of the average user rewards
(R̄ = 1

72 ∑72
i=1

1
t0

∑t0
s=1 Ri,s) for decision times t0 ∈ [20, 40, 60, 80, 100, 120, 140] across 100 Monte Carlo

simulated trials. Standard error is σ̂√
100

where σ̂ is the sample variance of the 100 R̄s. (a) Stationary
Base Model and Heterogeneous Effect Size; (b) Nonstationary Base Model and Heterogeneous Ef-
fect Size; (c) Stationary Base Model and Population Effect Size; (d) Nonstationary Base Model and
Population Effect Size.

2. Cluster Size: RL algorithms with larger cluster sizes k perform better overall, espe-
cially for simulation environments with population-level treatment effects (rather than
heterogeneous treatment effects). At first glance, one might think that algorithms with
smaller cluster sizes may perform better because they can learn more personalized
policies for users (especially in environments with heterogeneous treatment effects).
Interestingly, though, the algorithms with larger cluster sizes performed better across
all environments in terms of average reward (average across users and time) and the
25th-percentile of the average reward (average over time) across users (Table 2); this
means that the RL algorithm candidates with larger cluster sizes performed better
for both the average user and for the worst off users. The better performance of algo-
rithms with larger cluster sizes is likely due to their ability to reduce noise and learn
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faster by leveraging the data of multiple users to learn. Even though the algorithms
with larger cluster sizes are less able to model and learn the heterogeneity across users,
this is outweighed by the immense benefit of sharing data across users to learn faster
and reduce noise.

There are some limitations to these experiments.
Fixed Reward Noise Variance for BLR: The BLR algorithm includes a noise variance

hyperparameter (η2 in Equation (A3)). In our experiments, we set η2 to the reward variance
observed in the ROBAS 2 data set. Assuming that η2 is known is unrealistic; in the future,
we plan to learn η2 along with other BLR algorithm parameters in the real study. The
known value of η2 could be a reason that BLR performed comparably to ZIP.

More Distinct and Complex Simulation Environments: We may not be looking widely
enough across environment variants to find settings where these algorithms perform
differently. With sufficient data per user in a highly heterogeneous user environment,
we expect cluster size k = 1 to do the best. In future work, we aim to add simulation
environments with greater heterogeneity and less noise to see if large cluster sizes still
perform well, and we aim to create more complex simulation environment variants that are
more distinct (e.g., environments where users may differ by heterogeneous demographic
features like age and gender). Additionally, we want to impute state features of interest in
the real study that were not present in the data set, such as phone engagement.

Additional RL Algorithm Candidate Considerations. We also aim to consider other
axes for algorithm candidates such as algorithms with other update cadences (e.g., every
night or biweekly) and algorithms with an informative prior. In initial simulations using
algorithms with informative priors, we found that since the same (limited amount) of
ROBAS 2 data was used to build both the simulation environment and the prior, the
algorithms did not need to learn much to perform well. An open question is how to
develop both simulation environments and informative priors in a realistic way using a
limited amount of data. Finally, we will also explore additional design decisions such as
how to carefully design the feature space for the RL algorithm.

These investigations will determine the final algorithm that goes into the actual study.

7. Discussion and Future Work

In this paper, we present the first extension of the PCS framework for designing RL
algorithms in digital intervention settings. The case study demonstrates how to use the
PCS framework to make design decisions and highlights our ongoing work in designing
the Oralytics RL algorithm. This work helps fellow researchers understand and balance
the benefits and drawbacks of certain aspects of the RL algorithm they use for their digital
intervention studies.
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Appendix A. Simulation Environments

Appendix A.1. Baseline Feature Space of the Environment Base Models

The ROBAS 2 dataset has a variety of features that we anticipate to be associated
with brushing duration. These include the time of day (morning vs. evening), weekday
vs. weekend, and summaries of the user’s past brushing behavior. Together with domain
experts in behavioral health and dentistry, we chose the following features to use to fit
a model of the reward. Recall that the ROBAS 2 dataset only includes data under no
intervention, so for now we are only fitting a model for the baseline reward model (i.e.,
the brushing duration under action Ai,t = 0). In Appendix A.5 we discuss how to model
brushing duration under action 1.

1. Bias/Intercept Term ∈ R
2. Time of Day (Morning/Evening) ∈ {0, 1}
3. Prior Day Total Brushing Duration (Normalized) ∈ R
4. Weekend Indicator (Weekday/Weekend) ∈ {0, 1}
5. Proportion of Nonzero Brushing Sessions Over Past 7 Days ∈ [0, 1]
6. Day in Study (Normalized) ∈ [−1, 1]

We use these features to generate two types of base reward environments (Stationary
and Non-Stationary). The Stationary model of the base environment uses the state function
g(Si,t) ∈ R5 that only includes the first five features above. The Non-Stationary model of
the base environment uses state g(Si,t) ∈ R6 that corresponds to all of the above features.

Normalization of State Features

We normalize features to ensure that state features are all in a similar range. The Prior
Day Total Brushing Duration feature is normalized using z-score normalization (subtract
mean and divide by standard deviation) and the Day in Study feature (originally in the
range [1, 28] since the study length of ROBAS 2 is 28) is normalized to be between [−1, 1].
Note that when generating rewards, Day in Study was normalized based on Oralytics’
anticipated 10-week study length (range is still [−1, 1]).

https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/ROBAS-UCLA/ROBAS.2/blob/master/inst/extdata/robas_2_data.csv
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl
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Normalized Total Brushing Duration in Seconds = (Brushing Duration− 172)/118

Normalized Day in Study When Fitting Model = (Day− 14.5)/13.5

Normalized Day in Study When Generating Rewards = (Day− 35.5)/34.5

Appendix A.2. Environment Base Model

We consider three model classes: (1) a zero-inflated Poisson, (2) a hurdle model
with a square root transform, and (3) a hurdle model with a log transform, and choose
one out of these three model classes for each user. We define these three model classes
below. Additionally, below g(S) is the baseline feature vector of the current state defined
in Appendix A.1, wi,b, wi,p, wi,µ are user-specific weight vectors, σ2

i,u is the user-specific
variance for the normal component, and sigmoid(x) = 1

1+e−x is the sigmoid function.

(1) Zero-Inflated Poisson Model for Brushing Duration

Z ∼ Bernoulli
(

1− sigmoid(g(S)Twi,b)
)

Y ∼ Poisson
(

exp
(

g(S)Twi,p

))
Brushing Duration in Seconds : D = ZY

(2) Hurdle Model with Square Root Transform for Brushing Duration

Z ∼ Bernoulli
(

1− sigmoid
(

g(S)Twi,b

))
Y ∼ N

(
g(S)Twi,µ, σ2

i,u

)
Brushing Duration in Seconds : D = ZY2

Note that the nonzero component of this model, Y2, can also be represented as a
constant times a noncentral chi-squared, where the noncentrality parameter is the square
of the mean of the normal distribution.

(3) Hurdle Model with Log Transform for Brushing Duration

Z ∼ Bernoulli
(

1− σ
(

g(S)Twi,b

))
Y ∼ Lognormal

(
g(S)Twi,µ, σ2

i,u

)
Brushing Duration in Seconds : D = ZY

Since we want to simulate brushing duration in seconds, we also round outputs of
the hurdle models to the nearest whole integer. Notice that the zero-inflated Poisson
model is a mixture model with a latent state. The Bernoulli draw Z is latent and repre-
sents the user’s intention to brush, and the Poisson models the user’s brushing duration
when they intend to brush (this is because the brush time can still be zero when the user
intends to brush). On the other hand, the hurdle model provides a model for brushing
duration conditional on whether the user brushed or not. The Bernoulli draw Z in the
hurdle model is observed.

Note that the hurdle model is used for the simulation environment only and not the RL
algorithm. The hurdle model conditions on a collider (e.g., whether the person brushes their
teeth), thus potentially leading to causal bias [44,45]. For example, consider an unobserved
cause U, intervention A, whether the user brushed or not Z, brushing duration D, and a
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directed acyclic graph with A → Z, U → Z, U → D, and Z → D. Then conditioning on
collider Z of treatment opens a pathway from A to D through U [46]. Suppose in reality
A only impacts whether the user brushes their teeth but not the duration. Then, if we
condition on Z to evaluate the impact of A on D, we may erroneously learn that A impacts
the duration of brushing. This makes the hurdle unsuitable as a model for an RL algorithm
that aims to learn causal effects.

Appendix A.3. Fitting the Environment Base Models

We use ROBAS 2 data to fit the brushing duration model under action 0 (no message).
For all model classes, we fit one model per user. All models were fit using MAP with a
prior wi,b, wi,p, wi,µ ∼ N (0, I) as a form of regularization because we have sparse data for
each user. Weights were chosen by running random restarts and selecting the weights with
the highest log posterior density.

Fitting Hurdle Models: For fitting hurdle models for user i, we fit the Bernoulli
component and the nonzero brushing duration component separately. We use Di,t to
denote the ith ROBAS 2 user’s brushing duration in seconds at the t time point. Set Zi,t = 1
if the original observation Di,t > 0 and 0 otherwise. We fit a model for this Bernoulli
component. We then fit a model for the normal component to either the square root
transform Yi,t =

√
Di,t or to inverse-log transform Yi,t = exp(Di,t) of the ith user’s nonzero

brushing duration.
Fitting Zero-Inflated Poisson Models: For the zero-inflated Poisson model, we jointly

fit parameters for both the Bernoulli and the Poisson components. Since the brushing
durations in the ROBAS 2 data were integer values, we did not have to transform the
observation to fit the zero-inflated Poisson model.

The fitted parameters for the environment base models can be accessed at: https://
github.com/StatisticalReinforcementLearningLab/pcs-for-rl/tree/main/sim_env_data (ac-
cessed on 1 June 2022).

Selecting the Model Class for Each User

To select the model class for user i, we fit all three model classes using user i’s data
from ROBAS 2. We then chose the model class that had the RMSE. Namely, we choose the
model class with the lowest Li, where:

Li :=

√√√√ T

∑
t=1

(Di,t − Ê[Di,t|Si,t])2

Recall that Di,t is the brush time in seconds for user i at decision time t. Definitions of
Ê[Di,t|Si,t] for each model class are specified below in Table A1.

Table A1. Definitions of Ê[Di,t|Si,t] for each model class. Ê[Di,t|Si,t] is the mean of user model i fitted
using data {(Si,t, Di,t)}T

t=1.

Model Class Ê[Di,t|Si,t]

Zero-Inflated Poisson
[
1− sigmoid

(
g(Si,t)

Twi,b
)]
· exp

(
g(Si,t)

Twi,p

)
Hurdle (Square Root)

[
1− sigmoid

(
g(Si,t)

Twi,b
)]
·
[
σ2

i,u + (g(Si,t)
Twi,µ)

2
]

Hurdle (Log) [
1− sigmoid(g(Si,t)

Twi,b)
]
· exp

(
g(Si,t)

Twi,µ +
σ2

i,u
2

)

https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl/tree/main/sim_env_data
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl/tree/main/sim_env_data
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Table A2. Definitions of Ê[Di,t|Si,t, Di,t > 0] and V̂ar[Di,t|Si,t, Di,t > 0] for each model class.
Ê[Di,t|Si,t, Di,t > 0] and V̂ar[Di,t|Si,t, Di,t > 0] is the mean and variance of the nonzero component of
user model i fitted using data {(Si,t, Di,t)}T

t=1.

Model Class Ê[Di,t|Si,t, Di,t > 0]

Hurdle (Square Root) σ2
i,u + (g(Si,t)

Twi,µ)
2

Hurdle (Log) exp(g(Si,t)
Twi,µ +

σ2
i,u
2 )

Zero-Inflated Poisson exp(g(Si,t)
T wi,p) exp(exp(g(Si,t)

T wi,p))
exp(exp(g(Si,t)T wi,p))−1

V̂ar[Di,t|Si,t, Di,t > 0]

Hurdle (Square Root) g(Si,t)
Tw4

i,µ + 3σ4
i,u + 6σ2

i,u(g(Si,t)
Twi,µ)

2 − Ê[Ri,t|Si,t, Ri,t > 0]2

Hurdle (Log) (exp(σ2
i,u)− 1) · exp(2g(Si,t)

Twi,µ + σ2
i,u)

Zero-Inflated Poisson Ê[Di,t|Si,t, Di,t > 0] · (1 + exp(g(Si,t)
Twi,p)− Ê[Di,t|Si,t, Di,t > 0])

Table A3 lists the number of model classes for all users in the ROBAS 2 study that we
obtained after the procedure was run.

Table A3. Number of selected model classes for the Stationary and Non-Stationary environments.

Model Class Stationary Non-Stationary

Hurdle with Square Root
Transform 9 7

Hurdle with Log Transform 9 8
Zero-Inflated Poisson 14 17

Appendix A.4. Checking the Quality of the Simulation Environment Base Model

Appendix A.4.1. Checking Moments

Using the chosen user-specific models, we simulate 100 trials. In each trial, for each
user in ROBAS 2, we use their respective model to generate a data trajectory (Si,t, Ri,t)

56
t=1

(note that the ROBAS 2 study had two brushing windows per day for 28 days for a total of
56 brushing windows). We then compute the following metrics for each of the trials and
averaged across trials:

1. Proportion of Missed Brushing Windows:

1
N

N

∑
i=1

1
T

T

∑
t=1

I[Di,t = 0]

2. Average Nonzero Brushing Duration:

1
N

N

∑
i=1

1

∑T
t=1 I[Di,t > 0]

T

∑
t=1

I[Di,t > 0]Di,t

3. Variance of Nonzero Brushing Durations:
Let V̂ar({Xk}K

k=1) represent the empirical variance of X1, X2, ..., XK.

V̂ar
({

Di,t : t ∈ [1 : T], Di,t > 0
}N

i=1

)
4. Variance of Average User Brushing Durations:

This metric measures the degree of between-user variance in average brushing.

V̂ar
({

1
T

T

∑
t=1

Di,t

}N

i=1

)
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5. Average of Variances of Within-User Brushing Durations:
This metric measures the average amount of within-user variance.

1
N

N

∑
i=1

V̂ar
(
{Di,t}T

t=1
)

The base models slightly overestimate the proportion of missed brushing windows in
the ROBAS 2 data set. Our base models also slightly underestimate the average brushing
duration. Our base models also for the most part slightly overestimate the between-user
and within-user variance of rewards.

Table A4. Comparing Moments Between Base Models and ROBAS 2 Data Set. Above, we use BDs
to abbreviate Brushing Durations. Values for the Stationary and Nonstationary base models are
averaged across 100 trials.

Metrics ROBAS 2 Stationary Non-Stationary

Proportion of Missed Brushing Windows 0.376674 0.403114 0.397812
Average Nonzero BDs 137.768129 131.308445 134.676955
Variance of Nonzero BDs 2326.518304 2392.955018 2253.177853
Variance of Average User BDs 1415.920148 1699.126897 1399.615330
Average of Variances of Within-User BDs 1160.723506 1405.944459 1473.239769

Appendix A.4.2. Measuring If a Base Model Captures the Variance in the Data

We measure how well the fitted base models captured (1) whether or not the user
brushed and (2) the variance of the brush time when the users did brush. To measure point
(1) for each user model i, we calculate the statistic:

Ui :=
1
T

T

∑
t=1

(
I[Di,t > 0]− Ê[I[Di,t > 0]|Si,t]

V̂ar[I[Di,t > 0]|Si,t]

)2

(A1)

where Ê[I[Di,t > 0]|Si,t] = 1 − sigmoid(ST
i,twi,b) and V̂ar[I[Di,t > 0]|Si,t] = Ê[I[Di,t >

0]|Si,t] · sigmoid(ST
i,twi,b).

To measure point (2) for each user model i, we calculate the statistic:

Ui :=
1

∑T
t=1 I[Di,t > 0]

T

∑
t=1

I[Di,t > 0]
(

Di,t − Ê[Di,t|Si,t, Di,t > 0]

V̂ar[Di,t|Si,t, Di,t > 0]

)2

(A2)

Definitions of Ê[Di,t|Si,t, Di,t > 0] and V̂ar[Di,t|Si,t, Di,t > 0] for the nonzero compo-
nent of each model class are specified in Table A2. For a user model to capture the variance
in the data, Ui should be close to 1. We calculate the empirical mean U = 1

N ∑N
i=1 Ui

and standard deviation σU = std(Ui), and the approximate 95% confidence interval is
U ± 1.96× σU√

N
.

Results are in Table A5. We can see that after computing the statistic for each user,
the confidence interval is close to 1. We understand that the confidence intervals do not
contain 1, which implies that we are overestimating the amount of variance in I[D > 0] and
underestimating the amount of variance in D|D > 0. In the future, we hope to improve
upon this statistic by considering nonlinear components in our base models.
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Table A5. Statistic Ui for Capturing Variance in the Data. Values are rounded to the nearest 3 decimal
places.

Metric Stationary Non-Stationary

Equation (A1) U 0.811 0.792
Equation (A1) σU 0.146 0.150
Equation (A1) Confidence Interval (0.760, 0.861) (0.739, 0.844)
Equation (A2) U 3.579 3.493
Equation (A2) σU 4.861 4.876
Equation (A2) Confidence Interval (1.895, 5.263) (1.803, 5.182)

Appendix A.5. Imputing Treatment Effect Sizes for Simulation Environments

Recall that the ROBAS 2 dataset does not have any data under action 1 (send a
message). Thus, to model the reward under action 1, we must impute.

Appendix A.5.1. Treatment Effect Feature Space

The following choice of the treatment effect (advantage) feature space was made
after discussion with domain experts of which features are most likely to interact with
the intervention (action). The Stationary model uses state h(S) ∈ R4 corresponding to the
following features:

1. Bias/Intercept Term ∈ R
2. Time of Day (Morning/Evening) ∈ {0, 1}
3. Prior Day Total Brushing Duration (Normalized) ∈ R
4. Weekend Indicator (Weekday/Weekend) ∈ {0, 1}

The Non-Stationary model uses state h(S) ∈ R5 corresponding to all of the above
features as well as the following:

5. Day in Study (Normalized) ∈ R

Appendix A.5.2. Imputation Approach

For the zero-inflated Poisson model, we impute treatment effects on both the user’s
intent to brush (Bernoulli component) and the user’s brushing duration when they intend
to brush (Poisson component). Similarly, for the hurdle models, we impute treatment
effects on both whether the user’s brushing duration is zero (Bernoulli component) and the
user’s brushing duration when the duration is nonzero.

After incorporating effect sizes, brushing duration under action A in state S is D where:

Z ∼ Bernoulli(1− sigmoid(g(S)Twi,b + A× h(S)T∆i,B))

D =


ZY2, Y ∼ N (g(x)Twi,µ + A× h(x)T∆i,N , σ2

u) for hurdle square root
Z exp(Y), Y ∼ N (g(x)Twi,µ + A× h(x)T∆i,N , σ2

i,u) for hurdle log normal
ZY, Y ∼ Poisson(exp(g(x)Twi,p + A× h(x)T∆i,N)) for zero-inflated Poisson

∆i,B, ∆i,N are user-specific effect sizes; we will also consider population-level effect
sizes (same across all users), which we denote as ∆B, ∆N . g(S) is the baseline feature vector
as described in Appendix A.1, and h(S) is the feature vector that interacts with the effect
size as specified above.
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Appendix A.5.3. Heterogeneous versus Population-Level Effect Size

We consider realistic heterogeneous effect sizes (each user has a unique effect size)
and a realistic population-level effect size (all users who share the same base model class
also share the same effect size).

Population-Level Effect Sizes: Recall that for the stationary base model we fit models
for Y and Z, and get user-specific parameters wi,b, wi,p ∈ R5 (zero-inflated Poisson model)
and parameters wi,b, wi,µ ∈ R5 (hurdle models). Values of the fitted parameters can be
accessed at: https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl/tree/
main/sim_env_data (accessed on 1 June 2022). We use these parameters to form the
population effect sizes as follows:

Zero-Inflated Models’ Effect Sizes:

• ∆B = µB,avg where µB,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,b |.

• ∆N = µN,avg where µN,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,p |.

Hurdle Models’ Effect Sizes:

• ∆B = µB,avg where µB,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,b |.

• ∆N = µN,avg where µN,avg = 1
4 ∑d∈[2 : 5]

1
N ∑N

i=1 |w
(d)
i,µ |.

We use w(d)
i,b , w(d)

i,p , w(d)
i,u to denote the dth dimension of the vector wi,b, wi,p, wi,u respec-

tively; we take the minimum over all dimensions excluding d = 1, which represents the
weight for the bias/intercept term.

Heterogeneous Effect Sizes: To calculate the heterogeneous effect sizes, we again group
users by their chosen base model (zero-inflated, hurdle square-root, hurdle log). We then
draw effect sizes for each user from a normal distribution specific to their base model:

∆i,B ∼ N (∆B, σ2
B)

∆i,N ∼ N (∆N , σ2
N)

∆B, ∆N are set to the population-level effect sizes for that base model class as described
above. To set σ2

B, σ2
N , we do the following:

Zero-Inflated Models:

• σB is the empirical standard deviation over {µi,B}N
i=1 where µi,B = 1

4 ∑d∈[2 : 5] |w
(d)
i,b |.

• σN is the empirical standard deviation over {µi,N}N
i=1 where µi,N = 1

4 ∑d∈[2 : 5] |w
(d)
i,p |.

Hurdle Models:

• σB is the empirical standard deviation over {µi,B}N
i=1 where µi,B = 1

4 ∑d∈[2 : 5] |w
(d)
i,b |.

• σN is the empirical standard deviation over {µi,N}N
i=1 where µi,N = 1

4 ∑d∈[2 : 5] |w
(d)
i,µ |.

After the procedure described above, we set σB = 0.192 for the hurdle models,
σB = 0.193 for the zero-inflated model, σN = 0.576 for the hurdle square-root model,
σN = 0.173 for the hurdle log model, and σN = 0.163 for the zero-inflated model (values
are rounded to the nearest 3 decimal places). Histograms of ∆i,B, ∆i,N and values of µB, µN
for each base model class are specified in Figure A1.

https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl/tree/main/sim_env_data
https://github.com/StatisticalReinforcementLearningLab/pcs-for-rl/tree/main/sim_env_data
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Figure A1. Effect sizes ∆i,B’s, ∆i,N ’s, µB, µN for each base model class. The effect sizes are used to
generate rewards under action A = 1 for the simulation environment. (a) Bernoulli component
(hurdle); (b) Nonzero component (square root); (c) Nonzero component (log); (d) Bernoulli component
(ZIP); (e) Poisson component (ZIP).
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Appendix B. RL Algorithm Candidates

Appendix B.1. Feature Space for the RL Algorithm Candidates

We use f (S) ∈ R3 to denote the feature space used by our RL algorithm candidates to
predict the advantage (i.e., the immediate treatment effect). f (S) contains the following
features:

1. Bias/Intercept Term ∈ R
2. Time of Day (Morning/Evening) ∈ {0, 1}
3. Prior Day Total Brushing Duration (Normalized) ∈ R

The normalization procedure for Prior Day Brushing Duration is the same as the one
described in Appendix A.1.

We use m(S) ∈ R4 to denote the feature space used by the RL algorithm candidates to
approximate the baseline reward function. m(S) contains all the above features as well as
the following:

4. Weekend Indicator (Weekday/Weekend) ∈ {0, 1}
Note that the feature space used by the RL algorithm candidates is different than

the feature space used to model the reward in the simulation environments, specified in
Appendices A.1 and A.5; this means that the RL algorithms will have a misspecified reward
model. Namely, the baseline feature space for the simulation environment has an additional
Proportion of Nonzero Brushing Sessions Over Past 7 Days feature and the non-stationary
variant has the Day in Study (Normalized) feature. The treatment effect feature space for
the simulation environment has an additional Weekend Indicator (Weekday/Weekend)
and the non-stationary variant has the Day in Study (Normalized) feature.

The rationale for not including the Day in Study (Normalized) feature is although
we wanted to capture potential non-stationarity in brushing outcomes in order to create
a realistic simulation environment, our RL algorithm candidates do not have reward
functions that vary arbitrarily over time. We do not include Proportion of Nonzero Brushing
Sessions Over Past 7 Days and Weekend Indicator (Weekday/Weekend) to detect the
robustness of RL algorithm candidates to a misspecified reward model.

Appendix B.2. Decision 1: Reward Approximating Function

The first decision in designing the RL algorithm is the choice between using a linear
model or a zero-inflated Poisson model as the reward approximating function used by the
posterior sampler (note that this is separate from the reward model used to generate the
environment). More information on how the posterior sampling algorithm performs action
selection can be found in Appendix C.2. Appendix C.1 provides information about how
the algorithm updates at update times.

Note that the function m for the RL algorithm’s baseline reward model is only used
at update times. The function f for the RL algorithm’s advantage model is used at both
decision and update times.

Appendix B.2.1. Bayesian Linear Regression Model

The first candidate is to use the following reward generating model with action
centering used in [1] for the posterior sampler:

Ri,t = m(Si,t)
Tαi,0 + πi,t f (Si,t)

Tαi,1 + (Ai,t − πi,t) f (Si,t)
T βi + εi,t (A3)

where αi,0 ∈ R4 and αi,1, βi ∈ R3. πi,t is the probability that action Ai,t = 1 is selected by
the RL algorithm for user i in state Si,t; we discuss how to compute this probability in
Appendix C.2. The RL algorithm models εi,t as being drawn from N (0, η2) (the choice of
η2 is informed by the ROBAS 2 dataset). Additionally, we put uninformative normal priors
on the parameters: αi,0 ∼ N (0, σprior I4), αi,1 ∼ N (0, σprior I3), βi ∼ N (0, σprior I3), where
σprior = 5.
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Appendix B.2.2. Zero-Inflated Poisson Regression Model

The second candidate is to use the zero-inflated reward generating model for the
posterior sampler:

Zi,t ∼ Bernoulli
(

1− sigmoid(m(Si,t)
Tαi,b + Ai,t · f (Si,t)

T βi,b)
)

Yi,t ∼ Poisson
(

exp
(

m(Si,t)
Tαi,p + Ai,t · f (Si,t)

T βi,p

))
Ri,t = Zi,tYi,t

(A4)

The above model closely resembles the zero-inflated Poisson model class used to
develop the simulation environment in Appendix A.2; however, recall that the feature
space used by the RL algorithm and the model to generate the environment is different.
Additionally, here, we directly model the reward, rather than the raw brushing duration.

Additionally, the posterior sampling algorithm will put the following uninformative
normal priors on the parameters: αi,b, αi,p ∼ N (0, σprior I4) and βi,b, βi,p ∼ N (0, σprior I3),
where σprior = 5.

Appendix B.3. Decision 2: Cluster Size

Clustering involves grouping k users together and pooling all their data together for
the RL algorithm. This gives us one RL algorithm instantiation per cluster (no data shared
across clusters). For our experiments, we draw N = 72 simulated users (the expected
sample size for the Oralytics study) with replacement and cluster these users at random
(every possible cluster is equally likely). We then keep these cluster assignments fixed
across the trials.

For simplicity in running our experiments, we consider randomly formed clusters, but
we are thinking of clustering by entry date in the real study. Recall that we want to cluster
users who are similar to each other. A natural approach is to cluster users by a baseline
feature, but we cannot predict how many users who share the same baseline feature will
join within a relatively short period of time (e.g., we cannot depend on there being four
females within the first two weeks). Entry date is a reasonable clustering criterion because
domain experts believe that users who enter the study around the same time will be similar.
Users who enter near the end of the study may be very different from users who enter
near the beginning because of societal factors (e.g., pandemic restrictions being lifted),
seasonal influences (e.g., differences in a user’s mood in spring and midwinter), and fidelity
(e.g., quality of onboarding procedures and staff experience may improve over time). One
natural approach is to cluster by baseline features, but that is not feasible for a study with a
slow recruitment rate, like Oralytics.

Appendix C. RL Algorithm Posterior Updates and Posterior Sampling Action Selection

Appendix C.1. Posterior Updates to the RL Algorithm at Update Time

During the update step, the reward approximating function will update the posterior
with newly collected data. Additionally, we make M draws of the parameters from the
updated posterior and use them for all decision times until the next update time. Here are
the procedures for how the Bayesian linear regression model and the zero-inflated Poisson
model perform posterior updating.

Appendix C.1.1. Bayesian Linear Regression Model

Suppose we are selecting actions for decision time t. Let φ(Si,t, Ai,t) = [m(Si,t),
πi,t f (Si,t), (Ai,t − πi,t) f (Si,t)] be the joint feature vector and θi = [αi,0, αi,1, βi] be the
joint weight vector. Notice that Equation (A3) can be vectorized in the form: Ri,t =
φ(Si,t, Ai,t)

Tθi + εi,t. Now let Φi,1:t−1 be the matrix of all stacked vectors {φ(Si,s, Ai,s)}t−1
s=1,

and Ri,1:t−1 be a vector of stacked rewards {Ri,s}t−1
s=1, where we have batch data of the t− 1

decision times before the current update time.
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Recall that we have normal priors on θi where θi ∼ N (µprior, Σprior), where µprior =

0 ∈ R3+3+4 and Σprior = diag(σ2
prior I3, σ2

prior I3, σ2
prior I4). The posterior distribution of the

weights given current history Hi,t−1, p(θi|Hi,t−1) is conjugate and is also normal.

θi|Hi,t−1 ∼ N (µ
posterior
i,t−1 , Σposterior

i,t−1 )

Σposterior
i,t−1 =

(
1
η2 ΦT

i,1:t−1Φi,1:t−1 + Σ−1
prior

)−1

µ
posterior
i,t−1 = Σposterior

i,t−1

(
1
η2 ΦT

i,1:t−1Ri,1:t−1 + Σ−1
priorµprior

)
Note that we fit η2 to the ROBAS 2 dataset and fixed it for all of our experiments. For

the real study, we are considering assigning a conjugate prior on η2 and updating it at
update times.

Appendix C.1.2. Zero-Inflated Poisson Regression Model

For the zero-inflated Poisson regression model, the posterior distribution of the weights
θi = {αi,b, βi,b, αi,p, βi,p} given data Hi,t−1, p(θi|Hi,t−1) does not have a closed form. There-
fore, we use Metropolis-Hastings (MH) with a normal proposal distribution as an approxi-
mate posterior sampling method.

Posterior Density:

The log-likelihood of the zero-inflated Poisson regression model is:

log f (Ri,t|Si,t, Ai,t; θi) =

{
log((1− p) + p exp(−λ)) R = 0
log p− λ + R log λ− log R! R = 1, 2, 3, ...

where p = 1− sigmoid
(
m(Si,t)

Tαi,b + Ai,t · f (Si,t)
T βi,b

)
is the probability of the user in-

tending to brush, and λ = exp
(
m(Si,t)

Tαi,p + Ai,t · f (Si,t)
T βi,p

)
is the expected Poisson

count.
Therefore, the log posterior density is:

log p(θi|Hi,t−1) ∝
N

∑
n=1

log f (Ri,t|Si,t, Ai,t; θi) + log p(θi)

Proposal Distribution:

We choose a normal distribution for our proposal distribution. At each step of MH,
we propose a new sample given the old sample, θk

prop ∼ N (θk
old, γ2 I), where θk denotes the

kth value of θ.

Metropolis-Hastings Acceptance Ratio:

The Metropolis-Hastings acceptance ratio given a proposed sample θprop and an old
sample θold is defined as:

α(θprop, θold) := min
(

1,
p(θprop)/q(θprop|θold)

p(θold)/q(θold|θprop)

)
Since our proposal distribution is symmetric, the log acceptance ratio becomes:

log α(θprop, θold) := min(0, log p(θprop)− log p(θold))
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Appendix C.2. Action Selection at Decision Time

Our action selection scheme at decision time selects action Ai,t ∼ Bern(πi,t) where
πi,t = clip(π̃i,t). clip is the clipping function defined in Appendix C.2.2 and π̃i,t is the
posterior probability that Ai,t = 1 is optimally defined in Appendix C.2.1.

Appendix C.2.1. Posterior Sampling

Bayesian Linear Regression Model: Based on the Bayesian linear regression model of
the reward, specified by Equation (A3):

π̃i,t = Pr
β̃∼N (µ

post
i,t−1,Σpost

i,t−1)

{
f (Si,t)

T β̃ > 0
∣∣Si,t, Hi,t−1

}
Note that the randomness in the probability above is only over the draw of β̃ from the
posterior distribution.

Zero-Inflated Poisson Model: Based on the zero-inflated Poisson model of the reward,
specified by Equation (A4):

π̃i,t = Prα̃i,b ,α̃i,p ,β̃i,b ,β̃i,p

{
Z̃i,tỸi,t > 0

∣∣Si,t, Hi,t−1
}

where Z̃i,t ∼ Bernoulli
(
1− sigmoid(m(Si,t)

T α̃i,b + Ai,t · f (Si,t)
T β̃i,b)

)
and Ỹi,t ∼

Poisson
(
exp

(
m(Si,t)

T α̃i,p + Ai,t · f (Si,t)
T β̃i,p

))
. Note that the randomness in the proba-

bility above is only over the draw of (α̃i,b, α̃i,p, β̃i,b, β̃i,p) from the posterior distribution.

Appendix C.2.2. Clipping to Form Action Selection Probabilities

Since we want to facilitate after-study analyses, we clip action selection probabilities
using the action clipping function for some πmin, πmax where 0 < πmin ≤ πmax < 1 is
chosen by the scientific team:

clip(π) = min(πmax, max(π, πmin)) ∈ [πmin, πmax] (A5)
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