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Understanding vasopressor intervention
and weaning: Risk prediction in a public
heterogeneous clinical time series database
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ABSTRACT
....................................................................................................................................................

Background The widespread adoption of electronic health records allows us to ask evidence-based questions about the need for and benefits of
specific clinical interventions in critical-care settings across large populations.
Objective We investigated the prediction of vasopressor administration and weaning in the intensive care unit. Vasopressors are commonly used
to control hypotension, and changes in timing and dosage can have a large impact on patient outcomes.
Materials and Methods We considered a cohort of 15 695 intensive care unit patients without orders for reduced care who were alive 30 days
post-discharge. A switching-state autoregressive model (SSAM) was trained to predict the multidimensional physiological time series of patients
before, during, and after vasopressor administration. The latent states from the SSAM were used as predictors of vasopressor administration and
weaning.
Results The unsupervised SSAM features were able to predict patient vasopressor administration and successful patient weaning. Features de-
rived from the SSAM achieved areas under the receiver operating curve of 0.92, 0.88, and 0.71 for predicting ungapped vasopressor administra-
tion, gapped vasopressor administration, and vasopressor weaning, respectively. We also demonstrated many cases where our model predicted
weaning well in advance of a successful wean.
Conclusion Models that used SSAM features increased performance on both predictive tasks. These improvements may reflect an underlying,
and ultimately predictive, latent state detectable from the physiological time series.

....................................................................................................................................................
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BACKGROUND AND SIGNIFICANCE
Decision-making in the intensive care unit (ICU) requires quick re-
sponse to rapidly changing situations as patients respond to treatment
and develop secondary conditions. Treatment decisions are made
based on clinicians’ understanding of patients and their own prior ex-
perience. However, the efficacy of many interventions remains
unquantified,1,2 and some interventions have even been shown to be
ineffective or harmful.3

The widespread adoption of electronic health records allows us to
ask evidence-based questions about the need for and benefits of spe-
cific interventions in critical-care settings across large populations.
Importantly, the vast amounts of data that are collected in ICUs – vital
signs, clinical notes, fluids, medications – suggest an opportunity for
more data-driven decision-making. Whereas clinicians may struggle
to track multiple signals from multiple, rapidly evolving patients at
once, algorithms excel at processing large streams of data.
Computational tools that summarize relevant parts of these data
streams could allow clinicians to focus on decision-making rather than
just keeping up with the data.

Open databases such as Multiparameter Intelligent Monitoring in
Intensive Care (MIMIC) II,4 with information on 26 870 adult hospital
admissions, provide an unprecedented opportunity for researchers to
build these computational tools. To date, most works have used ICU
measurements to predict the mortality of patients in particular disease
subgroups.5–8 However, such risk scores are of limited value to clini-
cians, who must make decisions on how and when to treat patients
regardless of their underlying acuity.

This work takes an important step toward actionable use of ICU
data by modeling ICU interventions. We focus on vasopressors, used
to elevate mean arterial blood pressure. While vasopressors are com-
monly used in the ICU, few studies have documented improved out-
comes from their use,9 and they may even be harmful in some
populations.10 We consider 2 questions regarding vasopressor admin-
istration. First, we ask when a patient will require a vasopressor.
Knowing who will need a vasopressor even a few hours in advance
can help clinical staff plan and execute interventions in a more effi-
cient manner. Second, we ask whether a patient currently on a vaso-
pressor is ready to be weaned from it. Anecdotally, clinicians report
being conservative about estimating when the patient is ready for
weaning and leaving patients on interventions longer than necessary
because they are attending to other patients. However, extended inter-
ventions are both costly and detrimental to patient health.10

Unfortunately, making decisions from data generated in the ICU is
challenging: clinical signals are irregularly sampled and are contami-
nated by interference and human error. Strong modeling assumptions
are typically used to clean and impute the signals,11,12 which intro-
duce their own bias13 and often ignore the highly dependent temporal
nature of the data.14–16 Dynamical system models, which impute data
by building a model of how the data evolve, provide an alternative to
interpolation-based imputation techniques. In this work, we focus on
switching-state autoregressive models (SSAMs), which have previ-
ously been used to impute signals, identify artifacts, and discover
physiological states in a variety of critical settings.17,18 SSAMs are at-
tractive models for modeling physiologic signals, because they
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express the notion that the dynamics of the physiologic signal will
change depending on some internal patient health state; given the pa-
tient’s health state, the set of physiological signals the next time de-
pends only on the current signals. This assumption considerably
simplifies training of the model, resulting in a more robust predictor.
Interpreting SSAMs is also relatively simple, because each time a pa-
tient is assigned to exactly 1 discrete hidden state, rather than a more
complex embedding.

Unlike prior work, we focus on actionable predictions regarding in-
terventions rather than mortality. We also consider a high-dimensional
space of physiological signals and make use of signal discretization to
improve performance on downstream tasks.19,20

Specifically, we

• define 3 clinically actionable prediction tasks: immediate need
for an intervention, need for an intervention in the near future,
and when a patient is ready to be weaned from an intervention;

• achieve state-of-the-art predictions for intervention-onset tasks
using only physiological signals in a large, public ICU dataset;
and

• quantify unnecessary extra intervention time.

To our knowledge, ours is the first study to use predictive models
to address this question.

MATERIALS AND METHODS
Data
The MIMIC II 2.6 database (MIMIC-III was released after this work be-
gan and contains more data for future use) includes retrospective
electronic medical records for 26 870 adult hospital admissions re-
corded between 2001 and 2008.4 Creation and use of the MIMIC data-
base was approved by the Institutional Review Boards of both Beth
Israel Deaconess Medical Center and the Massachusetts Institute of
Technology (IRB Protocol 2001-P- 001699/3). Many ICU patients have
a limited chance of survival, regardless of clinical intervention.
Therefore, our cohort contains only adult patients on their first ICU stay
without orders for reduced care (eg, “comfort measures only,” “do not
resuscitate,” “do not intubate,” or “CPR not indicated”). Following
prior work by Hug and Szolovits,23 we also excluded patients with
<12 hours of data or >96 hours of data to avoid a group of funda-
mentally sicker patients. These criteria allowed us to focus on situa-
tions in which clinical decisions might have a positive effect, rather
than penalizing a classifier for situations where a patient is taken off
life support. Applying these filters resulted in an initial cohort of
15 695 patients: 4331 were administered vasopressors (positive class)
and 11 364 were not (control class). We extracted the 10 dynamic var-
iables (vital signs and lab results) with the fewest missing entries as
well as variables corresponding to vasopressor administration.

Predictive tasks
We considered 3 tasks: predicting imminent vasopressor need, short-
term vasopressor need, and wean readiness (see Figure 1 for an
illustration).

Task 1: Imminent vasopressor need. We defined imminent vaso-
pressor need as requiring a vasopressor within the next 2 hours. For
each patient, we made predictions every hour until the first vasopres-
sor administration or the end of stay. We only predicted first vasopres-
sor administration because patients with multiple vasopressors are
likely to be in fundamentally different physiological situations.

Task 2: Short-term vasopressor need. We defined short-term need
as the patient being stable enough not to require vasopressor adminis-
tration for the next 4 hours but requiring it in the following 2 hours.
Predicting who will require vasopressors in the near future, but not
now, can help manage ICU logistics and ensure that the patient is
ready for the intervention. We made hourly predictions until the first
vasopressor administration or the end of stay.

Task 3: Wean readiness. Vasopressors are administered via IV,
and patients are weaned by gradually reducing the dose. We defined
wean readiness as being able to stop administration completely within
2 hours, and a successful wean as not requiring vasopressors again
within 4 hours.

Preprocessing
Numeric trends are generally produced by bedside monitors once per
second, but often stored only once every 5–60 minutes. In this work
we used nurse-validated vital sign trends from the clinical information
system, which are sampled hourly. Variables were discretized using
the mean and standard deviation from the training set. As employed in
other work, we rounded the resulting z-scores to integer values in
�4:419,20; we added an extra value for missing values, so each new
physiological variable took on 10 discrete values. This discretization
procedure helps the model avoid fitting to small variations in the phys-
iological signal and identify global structure in the data. Vasopressor
administration variables were post-processed to recover continuous
segments of administration; complete data processing details are
given in the Supplementary Materials, and cohort characteristics are
given in Table 1.

Feature construction
For each task being evaluated at hour t of patient n, we considered 3
types of input features: raw, SSAM, and combined. The raw features
are the previous 4 hours of multidimensional z-scored physiological
data at hour t of patient n, appended with the 7 static admissions fea-
tures. We learned the SSAM features in an unsupervised fashion using
the raw features. The combined features were obtained by
concatenating the raw and SSAM feature vectors.

We now briefly describe the SSAM (see Supplementary Materials
for details). The physiological signals (raw features) xnt of a patient n
at time t is a vector in RD of D measurements, some of which may be
missing. For each patient n, we observe a sequence {xn1, xn2, xn3,. . .
xnTn} of length Tn. We train an SSAM to learn a hidden sequence of
discrete variables {y1n,y2n,y3n,. . .yTn} that determine the transition dy-
namics of the observed variables xnt. These variables ytn can be inter-
preted as the physiological state of the patient. Given the physiological
state sequence, the observations are generated by an autoregressive
model indexed by the hidden state ytn for each dimension d.
Importantly, we assume that each dimension d has its own transition
function because we expect different variable types to have different
dynamics. We compare two classifiers for the autoregressive transition
model fx: random forests (RF) and Gaussian Naive Bayes (NB). The
random forests maps categorical values to the next set of categorical
values directly. The Gaussian NB treats the inputs as continuous varia-
bles and the outputs as categorical, closer to reflecting their values
before the discretization in the preprocessing. The Gaussian NB was
included because while prior work has shown benefits to discretization
(Joshi et al.), others have found continuous normalization strategies
most beneficial (Che et al.). The Gaussian NB was a simple way to
incorporate the ordered nature of the inputs. Our inference alternates
between updating 2 sets of latent variables: the hidden physiological
state sequences for each patient {y1n, y2n, y3n,. . .} and the transition
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parameters for each measurement dimension d and physiological
state k.

For each task (administration and weaning), we trained the
SSAM on the patients from the positive class only. For vasopressor
administration, we used all time points up to vasopressor adminis-
tration. For weaning, we only considered data immediately after
starting administration (negative class) and immediately before
weaning (positive class). At time t we computed the probabilities of
being in each SSAM state over the last 4 hours for all patients and
all times in our cohort and used those as input features. Because
there are k states every hour, 4 hours of previous data creates 4k
SSAM features.

Each feature was tested with 3 different classifiers: a linear-kernel
support vector machine (SVM), naive Bayes (NB), and L2-regularized

logistic regression (LR). Standard packages and settings were used for the
SVM, NB, and LR classifiers. All analysis was performed in Python 2.7.

RESULTS
We ultimately included 19 variables from the MIMIC II database: 6
nurse-verified vital signs: heart-rate (HR), mean arterial blood pressure
(MeanBP), blood oxygenation level (SPO2), temperature (TEMP), spon-
taneous respiration rate (RESP), and urine output (URINE); 4 laboratory
measurements: hematocrit (HCT), bicarbonate (BICAR), potassium (K),
and glucose (GLU); and 7 static variables: admitting age, gender, first
simplified acute physiology score (SAPS I),21 first sequential organ fail-
ure assessment (SOFA) score,22 first weight, use of pacemaker, and
whether the patient was noted to be at risk for falls (Table 1).

Figure 1. A subset of physiological time series with prediction windows highlighted. Predicting imminent vasopressor need (Task 1) eval-
uates features from window a on vasopressor need in window b. Predicting short-term vasopressor need (Task 2) evaluates features
from window a on vasopressor need in window c. Predicting wean readiness (Task 3) evaluates features from window d on the success-
ful weaning of vasopressors in window e.
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Predicting vasopressor administration improved by SSAM features
Table 2 compares the performance of all feature sets on Tasks 1 and
2 (imminent and short-term administration prediction) using L2-
regularized logistic regression averaged over 5 repetitions. The LR
classifiers tended to have the best prediction performance across

feature sets; the results with all classification methods can be found in
the Supplementary Materials.

Simply using the global SSAM features gives an AUC of 0.87
(60.009) for imminent need prediction and 0.83 (60.008) for short-
term need prediction. The combined features achieve the best results,

Table 1: Average population statistics of the cohort

Variable Type Feature Pre-Intervention V- During Intervention Vþ Controls (C)

Population distribution In-Hospital Mortality (%) 5.165 – 2.687

ICU LoS (days) 1.974 – 1.708

MICU (%) 15 – 44

SICU (%) 10 – 30

CCU (%) 13 – 16

CSRU (%) 62 – 10

Static data on admission Age 65.812 – 60.787

% Male 66 – 56

Weight 82.229 – 81.767

SOFA 7.844 – 3.251

SAPS-I 15.889 – 10.722

% Pacemaker use 63 – 58

% ROF 60 – 6

Dynamic data over hospital stay Mean BP 76.235 74.68 82.12

TEMP 97.865 98.562 98.371

HR 83.979 85.251 83.682

SPO2 97.716 97.283 97.244

FIO2 0.736 0.53 0.516

RESP 16.094 18.056 18.286

GLU 150.657 134.618 138.732

BICAR 25.09 24.023 24.866

HCT 29.031 29.903 31.457

K 4.531 4.244 4.078

Abbreviations: ICU LoS, ICU length of stay in days; MICU, medical care unit; SICU, surgical care unit; CCU, cardiac care unit; CSRU, cardiac-surgery
recovery unit. ROF, risk of falls; Mean BP, mean arterial blood pressure; BMI, body mass index; HR, heart rate; SPO2, peripheral capillary oxygen
saturation; TEMP, temperature; FIO2, fraction of inspired oxygen; RESP, spontaneous respiration rate; HCT, hematocrit; BICAR, bicarbonate; K,
potassium; GLU, glucose. SAPS-I and SOFA are clinical acuity scores calculated at admission.

Table 2: Performance of features in vasopressor need tasks using logistic regression classifier

Features Used Imminent Need Prediction (AUC) Short-term Need Prediction (AUC)

RAW 0.89 (61.1e-16) 0.83 (6 0.0040)

SSAM (RF) 0.81 (60.0584) 0.66 (6 0.0046)

SSAM (NB) 0.87 (60.0090) 0.83 (6 0.0076)

COMBINED: RAWþ SSAM (RF) 0.92 (60.0008) 0.86 (6 0.0032)

COMBINED: RAWþ SSAM (NB) 0.92 (60.0016) 0.88 (6 0.0061)
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and consistently improve AUCs over using only the raw features: AUCs
of 0.92 (60.002) and 0.88 (60.006) for imminent need and short-
term need prediction, respectively.

Imminent need predictions are inherently easier, as the data im-
mediately prior to onset are available. Short-term need predictions are
more challenging because they enforce a time gap between observed
data and onset of intervention. In general, SSAM features learned with
naı̈ve Bayes performed as well as the raw data, and the combination
of SSAM features and raw data did better than either alone. In our
classification tasks, the latent features learned with NB gave improved
performance. This result suggests that discretizatized values may ben-
efit from the use of an ordinal classifier, or that other normalization
strategies may be more appropriate for capturing the variations in pre-
and post-vasopressor patients.

Predicting vasopressor weaning
Following the best results from administration prediction, we trained a
classifier for Task 3 to predict successful weaning on those patients
who were alive 30 days post-discharge. The raw features obtained an
AUC of 0.67 (60.008); SSAM (NB) features were AUC 0.63 (60.021);
and rawþ SSAM (NB) features were AUC 0.71 (60.005).

Quantifying unnecessary intervention time prior to a wean
Our quantitative results above discriminate situations in which clini-
cians may have attempted to wean too early, causing the wean to be
unsuccessful. However, clinicians report that patients are often left on
interventions for much longer than necessary. We focused on the first
time that our classifier predicted a successful wean for each patient in
Task 3, and examined the difference in time between the predicted
and actual weaning times. As shown in Figure 2, a significant number
of patients were successfully weaned at the right time, but the heavy
tail depicted suggests that many patients suffered from extended
interventions.

We chose 3 patients from different points in the histogram in
Figure 2 and examined their medical notes for correspondence to our
wean probabilities.

Case 1: Figure 3 shows our probability of a successful wean for a
72-year-old man with coronary artery disease who was put on me-
chanical ventilation and vasopressors while in the ICU. The probability
of a successful wean is low while the patient fails mechanical ventila-
tion weaning early on in his stay and immediately post-extubation. It is
explicitly noted in his record at the point of lowest probability of wean
that he is dependent on vasopressors. The patient stabilizes as the
probability of wean success climbs, and the clinical staff actually begin
to wean him near the highest predicted success in our estimates.

Case 2: Figure 4 shows a similar plot for a 62-year-old male patient
with a cardiac catheterization. The probability of successful wean remains
low while patient is given a course of treatment and fluids, but he struggles
with a low central venous pressure and increasing hematocrit. When the
nursing staff notes an increasing need for vasopressors, the corresponding
probability of a wean dips further. During recovery, our model’s wean suc-
cess matches the nurse’s note that the patient should be weaned the fol-
lowing day. In this case, the wean happened almost 10 hours after our
model predicted it could be done. However, this was likely due to clinical
staff schedules, which vary widely in the ICU. For legal and ethical reasons,
there is also a bias toward maintaining interventions in ICU patients rather
than withdraw too early, even if a patient seems to be stable.

Case 3: Finally, we show a 65-year-old man (Figure 5) who under-
went mitral valve replacement and coronary artery bypass graft. The pa-
tient tolerated the procedures well and was transferred to the cardiac
surgery recovery unit for monitoring, where he maintained a stable con-
dition. Based on the numeric data available, we were unable to find any
indication that the patient was weaned, and thus we labeled this case
an unsuccessful wean. However, the clinical notes indicate that the pa-
tient was successfully weaned from sedation on the same day of his op-
eration. In this case, we correctly predicted that the patient could be
successfully weaned (or could be weaned early without any label) prior
to his actual weaning, despite an incorrectly labeled example.

Clinical relevance of discovered states
The previous sections show that our SSAM features improved our abil-
ity to predict vasopressor administration and weaning. We theorize

Figure 2. Histogram of excess time for which patients could have been successfully weaned according to the classifier.
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that this quantitative evidence is due to physiological models that are
capturing physiological characteristics relevant to interventions and in-
tervention outcomes but not captured by raw physiological variables.

To investigate this hypothesis, we investigated whether the odds
ratios associated with the latent variables were on par with those
given to the raw features. In each of the tasks, latent state features
were some of the most heavily weighted for logistic regression (see
Supplementary Materials). To identify which states were associated
with high and low probabilities in weaning prediction, we counted the
frequency with which any particular model was associated with cor-
rectly predicting successful or unsuccessful weans. Specifically, we
looked at which SSAM states generated the highest 1% of successful

wean probabilities in cases that were successful weans, and which
states generated the lowest 1% of probabilities in unsuccessful cases.

As shown in Figure 6, we see an increase in SSAM states 5 and 6 in
those patients who had a high probability of a successful wean. On the
other hand, data with a low probability of successful weaning in those pa-
tients who were not successful came more often from SSAM states 1
and 3.

We then investigated the physiological variables that corresponded
to these states by examining the transition probabilities for observed
values in SSAM states 3 and 5 (recall that the state of the SSAM gov-
erns the dynamics of the observed physiological variables). There are
several interesting differences in these probabilities. In SSAM state 5,

Figure 3. Probabilities of successful weaning and state over time for patient 10 387.
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transition probabilities for blood hematocrit values tended to stabilize
from large abnormal values toward normalcy more often (8% vs 5%).
This could be indicative of patients who were healthy enough to re-
move fluid resuscitation, so their hematocrit responded with de-
creased blood viscosity. In SSAM state 3, we observed that respiration
rate tended to stabilize from low values toward normalcy more often
(13% vs 11%). This could indicate that state 3 represents patients

who eventually require some form of mechanical ventilation, which
can cause more unsuccessful weaning patterns.

DISCUSSION
Much literature in clinical prediction has focused on using large num-
bers of manually defined aggregate features as inputs to a classifier

Figure 4. Probabilities of successful weaning and state over time for patient 11 315.
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that will predict the risk of clinically significant events.19,23,24

Switching dynamical systems models have been used to impute sig-
nals, identify artifacts, and discover physiological states in a variety of
critical settings.8,17,18 Most of these works have focused on develop-
ing models for densely sampled, often one-dimensional data. Our
work is distinct in that we consider higher-dimensional data and use
discretization and binning to find relevant signals over longer time
scales. Other work has applied unsupervised methods to discretized
time series to discover anomalies and patient similarities, but without

a latent variable representation.25,26 Time series symbolization creates
many opportunities to analyze physiological data with the rich litera-
ture of techniques developed for discrete sequences27; our data-
processing approach also makes it natural for us to consider rich, non-
linear transition models, such as random forests, rather than the linear
dynamical systems approach of the work above.

The most recent prior work on vasopressor prediction used a subset
of the MIMIC II patients receiving fluid resuscitation (2944 adult ICU pa-
tients), and attempted to predict subsequent vasopressor administration

Figure 5. Probabilities of successful weaning and state over time for patient 3194.
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within 2 hours using a general model and 2 disease-based models.28 The
general patient model achieved an AUC of 0.79 6 0.02, and the disease
models had AUCs of 0.82 6 0.02 for pneumonia and 0.83 6 0.03 for
pancreatitis. Our model used a similar short-term prediction approach in
the general ICU population and achieved an AUC of 0.88 (60.0061). To
our knowledge, we have the highest reported results for predicting vaso-
pressor administration. These results suggest that the latent states dis-
covered by the SSAM is an effective summary statistic for making
predictions about future intervention needs; an increased AUC of 0.05
could affect the treatment of thousands of patients annually in large ICUs.

Predicting weaning success is harder than predicting intervention
onset. There is fundamental uncertainty about the right time to wean a
patient, and the decision may depend on staffing considerations, clini-
cal judgment, or lack of familial support for intervention removal. In
addition, unlike onset, time of weaning is often indicated only in the
patient note and not in any structured data source. The most relevant
predictive work on vasopressor weaning specifically was done using
clinically guided feature engineering over sliding windows of data.23 In
particular, they selected 32 variables from a manually defined set over
438 clinically guided features. They then classified patient segments
that preceded successful vasopressor weaning by 1–12 hours
(AUC¼ 0.81) and segments by 6–12 hours (AUC¼ 0.76). This was
improved by looking only at those patients who survived their hospital
admission to AUCs of 0.82 and of 0.825, respectively. While our AUCs
are lower (0.71 6 0.005), our approach did not use the large set of
hand-engineered features; seeing whether our unsupervised physio-
logical features improve prediction accuracy when combined with
these engineered features will be an interesting future direction.

Limitations
Our study has several limitations. The greatest is that our data are retro-
spective, which prevents us from evaluating causality and answering
counterfactual questions such as how a patient might have fared if

weaned earlier. While we have some evidence for unnecessary interven-
tion time in our cohort, such a claim must be evaluated in a prospective
study. Validating our findings in other ICU databases will help to address
the robustness of our methods for different clinical cohorts. Our study
also does not consider the dose or duration of vasopressor administration,
and our models control for demographics and health state in relatively
simple ways (eg, by including SAPS I and SOFA score features). Finally,
many of our variables, such as time on vasopressor, were constructed
based on both the recorded events in ICU data and input from domain ex-
perts on how to process the data correctly. This process could create mis-
labeled data (eg, an incorrect wean), which would change our results.

Future work
Our predictions of when patients are ready to wean are among several
actionable predictions in the area of vasopressor administration.
Another important step would be to consider the drug and dosage
used for the vasopressor. A multicenter randomized trial comparing
the use of dopamine or norepinephrine as first-line vasopressor ther-
apy in 1679 patients with shock found that patients treated with dopa-
mine had significantly more arrhythmic events.29 We could also
improve the prediction quality of our model with additional features,
such as those used to predict sepsis (sepsis is often preceded by epi-
sodes of hypotension, so an early predictor of sepsis could also en-
compass many of the states that might require vasopressor use).30

Another interesting direction for future work would be to test whether
these features assist in stratifying risk for a variety of interventions
and intermediate outcomes, such as mechanical ventilation31,32 and
sepsis,30 which, to date, have relied on hand-engineered features.

SSAMs have demonstrated value in detecting physiological states that
influence the evolution of clinical measurements along time, and our over-
all methodology could be used to answer many other clinical questions. In
the specific context of vasopressor weaning readiness, the ability to display
the probability of a patient’s possible need for an intervention, and the

Figure 6. Histograms of the states across patients at time points of high (left) and low (right) probabilities of successful weans.
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potential for weaning success, are important pieces of information that en-
able clinicians to view predictions across entire ICU populations, updated
on an hourly basis. This information could be further operationalized to cre-
ate a clinical environment where potential therapies can be evaluated
based on their prior performance in diverse populations and settings.

CONCLUSION
We obtained AUCs of 0.92, 0.88, and 0.71 for predicting ungapped
vasopressor administration, gapped vasopressor administration, and
vasopressor weaning, respectively. Our results for vasopressor use
are, to our knowledge, the best achieved, and better results on va-
sopressor weaning were obtained with feature engineering on a
smaller dataset. An important property of our approach is that our
SSAM was trained in a completely unsupervised manner, specifi-
cally without knowing what the downstream prediction task was to
be, and without hand-specification of important features. Our goal
in training the SSAM was to model the evolution of symbolized
physiological time series, capturing global trends in the dynamics of
the measurements that could be interpreted as physiological states.
The features derived from our SSAM resulted in improved perfor-
mance regarding whether a patient would receive a vasopressor
(0.79 AUC vs our 0.88 AUC for gapped prediction); we also discov-
ered several features associated with successful weaning from va-
sopressors, and, to our knowledge, made the first attempt to
quantify anecdotal claims about unnecessary intervention time. In
summary, our work takes an important step away from hand-
engineered, task-specific features and toward features that capture
key information about patient health.

FUNDING
This work was supported by the Intel Science and Technology Center for Big

Data, the National Library of Medicine Biomedical Informatics Research

Training grant (NIH/NLM 2T15 LM007092-22), and National Science

Foundation ACI-1544628.

COMPETING INTERESTS
The authors have no competing interests to declare.

CONTRIBUTORS
MG and FD designed the experiments and wrote the paper. MW wrote the code for all

experiments. MF performed initial data investigation. PS and LC provided clinical and

technical expertise in problem and modeling definitions.

SUPPLEMENTARY MATERIAL
Supplementary material is available online at http://jamia.oxfordjournals.org/.

REFERENCES
1. Vincent J-L. Critical care: where have we been and where are we going?

Crit Care 2013;17:S2.
2. Vincent J-L, Singer M. Critical care: advances and future perspectives.

Lancet 2010;376:1354–61.
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