
Policy Optimization with Sparse Global Contrastive Explanations

Jiayu Yao 1 Sonali Parbhoo 1 2 Weiwei Pan 1 Finale Doshi-Velez 1

Abstract
We develop a Reinforcement Learning (RL)
framework for improving an existing behavior
policy via sparse, user-interpretable changes. Our
goal is to make minimal changes while gaining
as much benefit as possible. We define a mini-
mal change as having a sparse, global contrastive
explanation between the original and proposed
policy. We improve the current policy with the
constraint of keeping that global contrastive expla-
nation short. We demonstrate our framework with
a discrete MDP and a continuous 2D navigation
domain.

1. Introduction
Human-understandable descriptions of an RL agent’s policy
are important for human oversight, especially in safety-
critical settings (Rudin et al., 2021). Contrastive explana-
tions are known to be effective in helping people understand
machine learning models (Jacovi et al., 2021; Rathi, 2019;
van der Waa et al., 2018a;b). In the context of RL, con-
trastive explanations describe the differences in outcomes
between the current policy and an alternate one (Puiutta &
Veith, 2020). By leveraging the context of the current policy,
the outputs of contrastive explanations are often sparser and
thus less cognitively demanding than a complete explana-
tion of the new policy (Miller, 2019; Du et al., 2019). When
the new policy is very different from the current one, the
contrastive explanations can still be dense. Existing works
show that in this case, we still want contrastive explanations
to be sparse, which are more understandable and executable
for humans (Du et al., 2019).

In this work, we build a framework that finds an optimal
set of improvements to the current policy (with which the
user is already familiar) such that the contrastive explana-
tion given the current and improved policy remains sparse.
Our framework consists of two parts: (1) an explanation-

1SEAS, Harvard University 2Imperial College London. Corre-
spondence to: Jiayu Yao <jiy328@g.harvard.edu>.

Workshop on Interpretable ML in Healthcare at International Con-
ference on Machine Learning (ICML). Copyright 2022 by the
author(s).

generator that creates global contrastive explanations for
two RL policies—to our knowledge, this is the first com-
prehensive contrastive explanation system for RL—and (2)
an optimization procedure for improving the current policy
while explicitly constraining the length of the associated
explanation (given by the explanation-generator).

Framework Part I: Explanation Generation We con-
sider contrastive explanations of the form:

“Given the current state, doing action A1 instead of B1

when you reach state 1, then doing action A2 instead of
B2 when you reach state 2, . . . , then finally doing Am
instead of Bm when you reach state m, will lead to better
/ worse / unknown differences in outcomes.”

(1)

For example, imagine a mobile fitness app that helps users
build workout routines. We might explain a new workout
plan with “If you mostly do cardio [current state], then
after cardio [state 1], doing weightlifting [A1] instead of
stretching [B1] will improve fat loss [outcome difference]”—
this can be more effective than simply describing the new
policy, especially if the new policy overlaps significantly
with the old policy. While other works have considered
contrastive explanations in RL (van der Waa et al., 2018a;
Sukkerd et al.), to our knowledge, ours is the first to lay
out a complete contrast definition that includes the series of
relevant states and decisions as well as expected changes to
future outcomes.

Contribution 1: A method to generate usable con-
trastive explanations, taking into account scalability,
the space of relevant outcomes, and off-policy outcome
estimation.

Scalability. Large, continuous domains are common in real
life. For example, a fitness app may collect users’ demo-
graphical information, vital signs, sleeping schedules, etc.
This creates two challenges for generating global contrastive
explanations: (1) it is computationally expensive to compare
policies on all states; (2) it is impractical to explain each
and every state to users. To scale the explanation-generator
to large, continuous domains, we develop an approach to
perform efficient state exploration and appropriate state
abstractions (Section 4.1 & 4.2).

Relevant outcomes. Current interpretable RL works tend
to focus on explaining the optimized outcome (such as the
reward function or the Q-value) (Verma et al., 2018; Liu

ar
X

iv
:2

20
7.

06
26

9v
1

 [
cs

.L
G

]
 1

3
Ju

l 2
02

2

Policy Optimization with Sparse Global Contrastive Explanations

Figure 1: Our explanation-generator takes in two policies,
compares two policies in terms of their decisions and ex-
pected outcomes, and finally creates a global contrastive
explanation by combining the behavioral and the outcome
differences.

et al., 2018; Rodriguez et al., 2019; Yau et al., 2020). But
in the real world, humans care about multiple outcomes,
some of which are often not explicitly considered in the
optimization and thus not explained (Doshi-Velez & Kim,
2017; Došilović et al., 2018). For example, an algorithm
may aim to increase users’ physical activity overall, while
users may have more specific goals such as reducing body
fat and improving cardiovascular health. To make the expla-
nations more relevant to users, we allow users to specify a
customized set of outcomes (Section 4.3).

Off-policy outcome estimation. In the setting where only
batch data is given, we must be sensitive to two consider-
ations. First, without further interaction with the environ-
ment, it is hard to compute the outcomes of the contrasting
policy. For example, when proposing a new workout rou-
tine, we only have access to the user’s past data. Until
the new routine is tried out, we will not know the actual
fat reduction and cardiovascular health improvement rates.
Furthermore, in cases where available data is scarce, it is
important to communicate that the model is unsure of the
outcomes (Kompa et al., 2021). In batch settings, we use
off-policy evaluation (Hanna et al., 2017) to estimate the
outcome of the contrasting policy and report confidence
intervals. (Section 4.3).

Complete Explanation Generator. We build an explanation-
generator that includes all the above key features. The
complete procedure is illustrated in Figure 1. The generator
takes in two policies, either in the batch form or the func-
tional form. It combines the appropriate state abstractions
and the estimated outcomes to generate a global contrastive
explanation of two given policies (Section 4.4).

Framework Part II: Explanation-Sparsity-Constrained
Optimization The explanation-generator in Part I provides
us with a way to compactly explain a new policy in terms
of changes to the current one. However, if the two policies
differ greatly, the explanation in Form 1 will be long. In
real life, users often prefer sparse explanations because: (1)

sparsity lessens cognitive demand; (2) users prefer making
minimal changes to their current routine while maximizing
benefit gain. Thus, when we solve for an optimal new policy,
we want to constrain our choices to policies that generate
sparse contrastive explanations given our current policy.

Contribution 2: An optimization procedure for improv-
ing the current policy that keeps contrastive explana-
tions sparse. We recast policy optimization as the problem
of learning how to modify the current policy: we associate
a cost to each change to the current policy and find a set of
changes that optimizes a single objective, while keeping the
total cost within a fixed budget (thus capping the complexity
of the associated contrastive explanation). We formalize
this optimization as a Constrained Markov Decision Pro-
cess problem. Note that here, the objective being optimized
may or may not be one of the user-defined outcomes in
Framework Part I: Explanation Generation.

Empirical Results We demonstrate the efficacy of our
framework on two domains: a discrete toy domain, a con-
tinuous 2D navigation domain. We show that for explana-
tion generation, our approach generates explanations that
are more concise, complete and interpretable comparing to
other contrastive explanation forms; for optimization, our
optimization converges to policies with sparser contrastive
explanations compared to naive policy optimization meth-
ods such as policy iteration.

2. Related Work
Interpretable RL. There is a large body of works focusing
on learning interpretable policies and explaining the agents’
action at a specific decision point (Verma et al., 2018; Liu
et al., 2018; Rodriguez et al., 2019; Yau et al., 2020). We
consider the task of explaining the difference between two
policies instead of explaining each policy individually.

We also note that contrastive explanations are different from
counterfactual explanations. Counterfactual explanations
ask how to alter the past to realize the changes in the out-
come, while contrastive explanations ask why one outcome
occurs instead of the other (McGill & Klein, 1993).

Contrastive Explanations for non-RL tasks. Several re-
cent works focus on generating contrastive explanations for
a specific input (local explanations) in single-step decision-
making tasks(van der Waa et al., 2018a; Jacovi et al., 2021).
Unlike these methods, we focus on sequential decision-
making tasks where multiple differences might be encoun-
tered in one trajectory. We aim to generate a global summary
of how two policies differ across the entire state space.

Contrastive Explanations for RL tasks. A number of
works have explored contrastive explanations for RL. For
example, in van der Waa et al., explanations enumerate all

Policy Optimization with Sparse Global Contrastive Explanations

states that appear in the trajectory generated by one policy
but not in the trajectory generated by the other. In contrast,
we only focus on states where the two policies behave differ-
ently, for more concise explanations. Furthermore, van der
Waa et al. focus on immediate outcomes while we focus
on long-term outcomes. As another example, Sukkerd et al.
study a multi-objective setting and help users understand
the specific trade-offs between competing objectives of two
policies. However, they don’t explain why objectives are dif-
ferent. In contrast, our explanations are both more complete
and compact.

Sparsity in RL Optimization. There is a body of
works focusing on generating sparse counterfactual expla-
nations (Wachter et al., 2017; Karimi et al., 2020; Spangher
et al., 2018) by either minimizing the distance between the
current instance and the counterfactual instance or associat-
ing costs to changes of actions. To our knowledge, we are
the first to consider performing optimization with respect to
the contrastive explanations in an RL setting. That is, we
optimize a policy to be minimally different from an existing
policy. Similar to prior works, we also associate penalties
to changes to the current policy.

3. Notation & Background
Markov Decision Processes. In RL, an agent learns to
maximize a reward signal through interactions with the en-
vironment (Sutton & Barto, 2018). An RL problem can be
formalized as a Markov Decision Process (MDP) – defined
as a tuple (S,A, T ,R), where S is the state space, A is
the action space that we assume to be discrete, T (s′|s, a) is
the transition dynamics denoting the probability of reach-
ing state s′ by taking action a in state s, and R(s, a) is
the reward function that returns the immediate reward of
performing action a in state s. We assume the initial state
s0 is drawn from a distribution p0(s) and there exists a set
of absorbing states sT ∈ ST with R(sT , ·) = 0. A policy
π(a|s) defines a distribution over actions given state s.

During optimization, we maximize a single objective – the
expected undiscounted return, defined as:

Jπ = Eπ

[∞∑
t=0

R(st, at)

]
. (2)

User Defined Outcomes. Users may also want to know
how a policy affects other outcomes. For example, while a
clinician may be mainly interested in developing a policy
for treating hypotension, they may also be interested in how
that policy affects the patient’s respiration, mobility, etc.

We denote the user-defined outcomes as a set consist-
ing of M functions of the current state-action pair, g =
[g(0)(s, a), . . . , g(M−1)(s, a)]ᵀ with g(m)(sT , ·) = 0. The

expected outcomes for policy π is denoted as Gπ =

[G
(0)
π , . . . , G

(M−1)
π]ᵀ where

G(m)
π = Eπ

[
∞∑
t=0

g(m)(st, at)

]
∀m ∈ {0, . . . ,M − 1} (3)

We emphasize that the expected outcomes Gπ may be inde-
pendent of the objective Jπ that the RL agent is optimizing.

In an online RL setting, both the expected return Jπ and
the expected outcomes Gπ can be computed by rolling out
trajectories following the policy π. In a batch setting, where
we only have access to a batch of data Db collected with
the current policy πb, both terms can be estimated using off-
policy evaluation. We denote the estimator of the expected
return as Ĵπ and the estimator of the expected outcomes as
Ĝπ . We assume that the biases of the estimators Ĝπ , Ĵπ are
sufficiently small so that they do not affect the quality of the
contrastive explanations and the optimization performance.

Constrained MDPs. In this work, we study planning un-
der interpretability constraints. That is, we seek optimal
changes to our current policy that correspond to sparse con-
trastive explanations. In Section 5, we will formalize this
process as planning under a constrained MDP (CMDP).

In an unconstrained MDP setting, the goal is to find a policy
π∗ that maximizes the expected return Jπ in Equation 2:

π∗ = argmax
π
Jπ

In addition to the standard MDP tuple, a CMDP contains
a cost function C(s, a) with C(sT , ·) = 0 and a threshold
κ (in our context, the cost C will be a penalty for modify-
ing the current policy and the threshold κ will control the
sparsity of the corresponding explanation). Now, our goal
is to maximize Equation 2 while constraining the expected
undiscounted costs:

Eπ

[∞∑
t=0

C(st, at)

]
≤ κ. (4)

For a discrete CMDP, the above problem can be written as
a finite set of linear inequalities which can be solved using
Linear Programming (LP) (Altman, 1999).

The standard CMDP formulation may result in stochastic
policies, which are harder to interpret and implement. Thus,
we shall use the formulation of Dolgov & Durfee (2005) to
obtain deterministic policy solutions to the CMDP, which

Policy Optimization with Sparse Global Contrastive Explanations

(a) Toy Domain MDP (b) Current Policy πb (c) New πe

Figure 2: Discrete MDP: (a) Definition of the discrete MDP (b) Current Policy πb with actions highlighted by red arrows (c)
New Policy πe to which we want to compare with actions highlighted by blue arrows.

solves a a mixed integer LP (MILP) as follows:

argmaxx

∑
s,a

x(s, a)R(s, a)

subject to
∑
a

x(s
′
, a)−

∑
a,s

x(s, a)T (s
′|s, a) = p0(s

′
),∀s′ ∈ S \ ST∑

a,s

x(s, a)C(s, a) ≤ κ∑
a

4(s, a) ≤ 1

x(s, a)/M ≤ 4(s, a), ∀s ∈ S, a ∈ A
x(s, a) ≥ 0, ∀s ∈ S, a ∈ A

(5)

In the above, x is the dual variable that can be interpreted
as the occupancy measure, which counts the expected dis-
counted number of taking action a in state s. M is a constant
to force 0 ≤ x(s, a)/M ≤ 1, which can be set to the maxi-
mum of the expected return in Equation 2 withR = 1 (i.e.
the maximal number of visits to a state). 4s,a ∈ {0, 1} is a
binary variable and the last three inequalities in Equation 5
ensure a unique selection of the action a.

The optimal policy can be calculated by:

π(s, a) =

{
x(s, a)/

∑
s x(s, a) if

∑
s x(s, a) > 0

arbitrary if
∑
s x(s, a) = 0

4. Framework Part I: Explanation
Generation

Our first contribution is a complete, global contrastive ex-
planation generator for RL tasks given the current policy πb
and the new policy πe. In this section, we introduce each
module of our explanation-generator with an illustrative
toy example, shown in Figure 2 (details in Appendix A.1).
Figure 2a depicts the toy MDP while 2b and 2c highlight
the actions of the current policy πb and the new policy πe,
respectively. We set πb and πe to be deterministic for peda-
gogical purposes.

In Section 4.1, we first formalize how to compare two poli-
cies in terms of their behaviors. We define a diverging
state, at which we observe behavioral differences between
πb and πe. In Section 4.2, we abstract diverging states into
human-interpretable regions (sets of states) over which the
behaviors of πb and πe differ. Then, in Section 4.3, we
show how to compare policies πb and πe in terms of their
expected outcomes. Finally, in Section 4.4, we combine the
comparison in terms of behaviors and expected outcomes to

generate the global contrastive explanation in Form 1.

4.1. Diverging State Identification

To compare πb and πe in terms of behaviors, we first identify
states at which the two policies take different actions that
lead to different next states. We call such states diverging
states. Because the policies and the environment can be
stochastic, comparing πb and πe involves comparing corre-
sponding distributions over actions and next states. In this
work, we make a heuristic approximation of the stochastic
policies and the environment by focusing on events that
occur with high probability. While there are many ways to
compare two distributions (e.g. hypothesis testing or diver-
gence measures), we choose this heuristic because policies
in real life are frequently nearly deterministic.

Specifically, we denote the most probable action proposed
by policies πb and πe, in state s, as ab and ae, respectively:

ab = argmax
a∈A

πb(a|s), ae = argmax
a∈A

πe(a|s).

We denote the most probable next state under πb and πe as
s′b and s′e, respectively:

s′b = argmax
s′∈S
T (s′|s, πb), s′e = argmax

s′∈S
T (s′|s, πe).

Given any state s, we define a function hid : S −→ {0, 1}
mapping a state s to a label 1 (i.e. s is a diverging state) if it
satisfies both of the following conditions:{

ab 6= ae or |πb(ab|s)− πe(ae|s)| > κπ

s′b 6= s′e or |T (sb|s, πb)− T (se|s, πe)| > κT
(6)

where κπ, κT are domain-dependent constants. The first
condition states that the policies πb and πe are different
when they take different actions in state s with high proba-
bility. That is, either: (a) the most probable actions under
πb and πe are different, or (b) the most probable actions are
identical, but with very different associated probabilities.
The second condition ensures that even if the policies take
different actions with high probability, the agent should not
end in the identical next state with high probability. For
example, in the toy example, state s1, s5 are diverging states
while s0 is not a diverging state, as s0 fails to satisfy the
second condition (others states fail to satisfy the first one).

Policy Optimization with Sparse Global Contrastive Explanations

Application to Continuous Domains. In a large or contin-
uous domain, computing hid(s) for a representative number
of states can be computationally expensive. Even if we use
sampling, collecting enough samples to cover the state space
S to approximate the function hid(s) may be prohibitive.

We get around this issue by computing hid only for states
that are probable under our policies. To do this, we gener-
ate trajectories using the recursive Algorithm 1, in which
whenever encountering a divergence state, we split the cur-
rent trajectory into two by rolling out πb and πe separately.
By rolling out trajectories switching between policies, the
algorithm ignores states that cannot be reached by either
policy. Note that we split the trajectory whenever we see
policies are different, since we expect earlier differences in
the trajectory to have more effect on the expected outcomes.

Algorithm 1 includes a hyper-parameter dmax that controls
the number of times we are allowed to split. This allows the
user to trade-off between exploration of the state space at an
early state and the computational complexity of the roll-out
(which grows exponentially with the number of splits). In
practice, we find that a small dmax often covers a sufficient
amount of diverging states for later tasks in our framework.

Algorithm 1 Diverging State Collection (π1, π2, s, d, dmax)
1: InitializeD = (S,Y), I = {},k = 1
2: if d ≥ dmax then
3: returnD
4: end if
5: while s /∈ ST do
6: Observe the current state s
7: a1 = argmaxπ1(a|s), a2 = argmaxπ2(a|s)
8: if hid(s, π1, π2) = 1 then
9: D′ = Diverging State Collection (π1, π2, s, d+ 1, dmax)

10: D′ −→ D
11: if key (a1, a2) /∈ I then
12: add key: I[(a1, a2)] = k, k = k + 1
13: end if
14: (s, I[(a1, a2)]) −→ D
15: else
16: (s, 0) −→ D
17: end if
18: Perform action a1
19: end while
20: returnD

In the batch setting, we identify the diverging states by
calculating hid(s) for every state in the batch data using a
similar algorithm (Appendix B.1).

4.2. Diverging State Aggregation

After labeling the state space (Section 4.1), we may have
identified a large number of diverging states. As such, a
complete enumeration of the diverging states is unlikely to
be useful to end-users. Thus, to summarize the difference be-
tween diverging and non-diverging states, we aggregate the
diverging states into diverging regions and extract general
descriptions of these regions.

To perform state aggregation, we train an interpretable, rule-

based classifier to predict the behavioral difference between
πb and πe given a diverging state s. The split rules of this
classifier correspond to our diverging regions.

Specifically, Algorithm 1 will return a dataset with N
samples {(sn, yn)}Nn=1, where sn ∈ S and labels yn ∈
{0, . . . ,K}. We set yn = 0 if sn is not a diverging state
and yn = k otherwise, with each k ∈ {1, . . . ,K} repre-
senting a unique action pair (ab, ae). Let the state space S
be partitioned into

⋃K
k=0 Sk where Sk contains the samples

with labels yn = k. We learn an interpretable classifier
haggr : S −→ Y that takes the states sn as input and predicts
the label yn. From the classifier haggr, we extract rules for
describing each partition Sk.

We have many choices of interpretable classifiers to par-
tition the space of diverging regions. In this work, we
adapt Boolean Decision Rules via Column Generation
(BDCG) (Dash et al., 2018) to generate rule-based expla-
nations for diverging regions (Appendix B.2), as this is a
simple interpretable model with desirable regularization
properties. Other interpretable classifiers may involve de-
veloping self-explanatory models (Quinlan, 1987; Zhang
et al., 2018; Sabour et al., 2017) or provide other forms of
global insights for pre-trained models (Altmann et al., 2010;
Karpathy et al., 2015). We encourage the developers to use
any interpretable classifier appropriate for their tasks.

4.3. Expected outcome estimation

In the previous section, we describe how policies πb and
πe differ in terms of actions. In this section, we quantify
the difference between policies in terms of the expected
outcomes for a set of user defined functions (Equation 3).

In practice, we usually have enough data for a good es-
timate of the expected outcomes of πb, Ĝπb

: we either
have access to the environment T in the online setting or
enough data collected from πb in the batch setting. But we
may not have enough information to obtain a good estimate
of the expected outcomes of πe, Ĝπe

. In these situations,
it is important to inform the end-users of our uncertainty
over the estimated expected outcomes in addition to the
estimates themselves. Thus, when comparing the expected
outcomes Ĝπb

and Ĝπe
, we incorporate the confidence in-

terval [l(Gπe
), u(Gπe

)] into our estimate Ĝπe
.

In particular, given an initial state s0, we compute the dif-
ference in expected outcomes hoc = [h

(0)
oc), . . . , h

(M−1)
oc)]ᵀ

as:

h(m)
oc) =


1 if Ĝ(m)

πb < l(G
(m)
πe)(πe is better)

−1 if Ĝ(m)
πb > u(G

(m)
πb)(πb is better)

0 otherwise (unknown difference)

Given the transition dynamics T , the expected outcomes es-

Policy Optimization with Sparse Global Contrastive Explanations

Figure 3: The true outcomes Gπb
,Gπe and the estimated

outcomes Ĝπb
, Ĝπe

of discrete MDP: Black markers repre-
sent true outcomes while red ones represent estimates. The
estimates are accurate as black and red markers overlap.

timates Ĝπb
and the confidence intervals [l(Gπe), u(Gπe)]

can be obtained using Monte Carlo roll-outs. In the batch
setting, those terms can be estimated using off policy eval-
uation methods such as importance sampling (Thomas &
Brunskill, 2016) or fitted-Q evaluation (Hao et al., 2021).
We choose model-based Bootstrapping (Hanna et al., 2017),
since for our simple domains, we can assume enough data
to learn a good transition dynamics estimate, T̂ .

For example, in the toy domain (Figure 2), we are interested
in: (1) the number of times we visit the desired states (state
s2, s6) and (2) the trajectory length. From Figure 3, we
see that given the initial states s0 · · · s5, policy πe visits the
desired states more times (while yielding a longer trajectory)
than policy πb. But given the initial states s6 · · · s10, we are
unsure of the differences in outcomes of the two policies.

4.4. Global Contrastive Explanation Generation

Thus far, we have haggr that aggregates the diverging states
into human-interpretable regions, and hoc that computes the
differences between the expected outcomes of policies πb
and πe. We are now ready to generate a global contrastive
explanation for πb and πe in the format of Form 1, summa-
rizing the behavioral and outcome differences between the
two.

The detailed procedure is as follows (Algorithm 2):

1. Given an initial state s0, we perform a roll-out follow-
ing πe. Here, we can use the true environment T , or the
estimate T̂ . We track the set of diverging regions vis-
ited in our roll-out and define the trajectory of visited
regions as the diverging path: P(s0) = {sk1 , sk2 , · · · },
where ski ∈ Sk is defined in Section 4.2.

2. We compute the difference in the expected outcomes
of πb and πe using hoc from Section 4.3.

3. Different initial states may result in different diverging
paths and outcome differences. To make the expla-
nation more compact, we further aggregate the initial
states by training an interpretable classifier (the adapted

BDCG) that maps the initial state s0 to the tuple of the
diverging path P(s0) and outcome difference hoc(s0).

4. We extract the interpretable rules of the classifier from
Step 3, which describes the relationship between an ini-
tial state and the resulting combination of the diverging
path and outcome differences.

Algorithm 2 Generate Explanations(haggr, hoc, πb, πe)

1: InitializeD = (S,Y), I = {}, z = 0, episode length L
2: for s0 ∼ p0 do
3: Initialize P(s0) = []
4: while s /∈ TT do
5: Observe the current state s
6: if haggr(s) 6= 0 then
7: s −→ P(s0)
8: end if
9: Perform a ∼ πe

10: end while
11: if key (P(s0),hoc(s0)) /∈ I then
12: add key: I[(P(s0),hoc(s0))] = z, z = z + 1
13: end if
14: (s0, I[(P(s0),hoc(s0))]) −→ D
15: end for
16: Train a classifier hexp : S −→ Y

For the toy domain (Figure 2), we identify states s1, s5 as
the diverging states (also as diverging regions because the
MDP is discrete). We also compute the difference of the
expected outcomes in Section 4.3. Together, this yields the
following global contrastive explanation:

Starting from initial region s0, in region
s1, doing action 1 instead of action 0 and
then in region s5, doing action 1 instead
of action 0 will lead to longer trajectory
but more visits to desired states;

Starting from initial region s1, in region
s1, doing action 1 instead of action 0 and
then in region s5, doing action 1 instead
of action 0 will lead to longer trajectory
but more visits to desired states;

Starting from initial region s2, in region
s5, doing action 1 instead of action 0 will
lead to longer trajectory and more number
of visits to desired states;

Starting from initial region s3, in region
s5, doing action 1 instead of action 0 will
lead to longer trajectory and more number
of visits to desired states;

Starting from initial region s4, in region
s5, doing action 1 instead of action 0 will
lead to longer trajectory and more number
of visits to desired states;

Starting from initial region s5, in region
s5, doing action 1 instead of action 0 will
lead to longer trajectory and more number
of visits to desired states;

Policy Optimization with Sparse Global Contrastive Explanations

Starting from initial region s6 · · · s10, two
policies, πb and πe act the same.

5. Framework Part II: Policy Optimization
In Framework Part I, we describe a generator of complete,
contrastive explanations in the RL setting. Now, we use
these explanations to define interpretability constraints for
policy optimization. That is, we illustrate how to modify the
current policy πb such that (a) the improved policy πe in-
creases expected returns (Equation 2) and (b) the contrastive
explanation (as defined in Framework Part I) given πb and
πe will be sparse. We formalize this goal as a CMDP that
maximizes returns subject to a constraint on the number of
changes made to the current policy πb (which corresponds
to a sparse contrastive explanation).

5.1. CMDPs for Sparse Changes in Discrete Domains

In Section 3, we introduced background information on
CMDPs. Here, we recast our policy optimization problem
over discrete domains as a CMDP. Since we want to encour-
age sparse modifications, we define the constraint as

C(s, a) = 1{a 6=[argmaxa πb(a|s)]}, C(sT , ·) = 0.

That is, every modification to the current policy πb occurred
during a roll-out incurs a constant cost and we bound the
expected number of changes to the current policy πb. In
addition, we assume the new policy is deterministic as it is
more interpretable and executable. We can control the length
of the contrastive explanation by varying the threshold κ
(smaller κ implies a more similar policy to πb and a sparser
explanation, and vice versa).

5.2. Extensions to Continuous Domains

For continuous domains, we cannot rewrite the optimization
using the LP formulation in Equation 5, because now we
have an infinite number of dual variables x(s, a).

In this section, we show that, if we have a set of candidate
improved policies (produced by RL algorithms or provided
by experts), we can use this information to transform a
continuous-state MDP into a discrete one to which we can
apply the CMDP framework from Section 3. Assuming
a set of suggested policies is reasonable in our setting, as
we can run RL algorithms to identify possible new policies
that improves upon our current one. However, in this case,
we still want to choose a new policy πe that maximizes
expected returns with minimal changes to πb.

To find the optimal πe, we only need to study regions where
candidate and current policies disagree, that is, the diverging
regions defined in Section 4.2. Thus, we can recast the
optimization problem as one over the discrete state space
consisting of diverging regions.

Denote the set of candidate policies as {πej}Jj=1. For each
candidate policy πej , we compare πej to the current pol-
icy πb and obtain a set of diverging regions following Sec-
tion 4.1 and 4.2. We then collect all diverging regions,
{S1,S2, · · · ,SK}, and denote the set containing the ab-
sorbing state region as well as the diverging regions as
S ′ = ST

⋃
(
⋃K
k=1 Sk). We set S ′ as our new state space.

By construction, our new state space S ′ is finite (ruling out
severe pathology in πej) and hence discrete. The action
space remains the same. We define the transition dynamics
T ′(sk′ |sk, a) on the new discrete state space as the proba-
bility of transitioning from the region sk to the region sk′ by
taking action a. We define a new reward functionR′(sk, a)
by taking the average reward resulting from taking action a
in the region sk. Details of the construction and estimation
of the new discrete CMDP over diverging regions can be
found in Appendix C. Finally, we can recast the problem of
finding an optimal policy πe as solving the CMDP (Equa-
tion 5) defined by our discretized MDP – that is, we find
πe that differs from the currently policy πb over a minimal
set of diverging regions, and that attains the highest gain in
expected return (averaged over these regions).

6. Experiments & Results
Taken as a whole, our framework (explanation generation
and policy optimization) improves the current policy with
sparse and user-interpretable changes. We demonstrate our
framework on a toy domain (the discrete MDP in Figure 2)
and a continuous 2D navigation domain.

6.1. 2D Navigation Domain

We present a 2D domain (Figure 5) where the agent starts
from the initial region and aims to navigate to a goal re-
gion. The trajectories of the current policy πb are given
in Figure 8a. We are also given two proposed policies πe1
(Figure 8b) ,πe2 (Figure 8c). As users, we want to stay in
the desired region (0.2 ≤ y < 0.3) while collecting as much
reward as possible (Details of the domain in Section A.2).

6.2. Explanation Generation

We first show that our explanation-generator creates a com-
pact explanation given two policies. For the discrete MDP,
an example of the explanation is given in Section 4.4. For
the 2D domain, we generate a contrastive explanation given
the current policy πb and the optimal policy π∗ (Figure 5a)
without any sparsity constraints:

“Starting from the initial region, going north instead of east when
reaching region 0 ≤ x ≤ 0.1, 0.2 ≤ y ≤ 0.3, then going east
instead of south when reaching region 0.1 ≤ x ≤ 0.2, 0.3 ≤
y ≤ 0.4, then going east instead of south when reaching region
0.4 ≤ x ≤ 0.5, 0.3 ≤ y ≤ 0.4, will result in less stay in the
desired region (0.2 ≤ y < 0.3) but more collected rewards.

Policy Optimization with Sparse Global Contrastive Explanations

(a) Optimal policy with constraint κ = 2 (b) Optimal policy with constraint κ = 6 (c) Optimal policy with constraint κ = 8

Figure 4: Discrete MDP: Visualization of optimal deterministic policies when increasing κ. The purple number denotes the
immediate rewards. Red arrows highlight the current policy behavior while the blue ones represent the changed behavior.
The number of changes is aggregated over all initial states.

(a) Optimal policy without constraint (b) Optimal policy with constraint κ = 1 (c) Optimal policy with constraint κ = 2

Figure 5: 2D Navigation: Visualization of optimal policy trajectories when increasing κ. The rectangle with the black circle
represents the initial state region while the one with the star represents the absorbing state region. Each blue box represents
one diverging region while each red box represents regions with different rewards. Each step has a cost of −0.001.

6.3. Policy Optimization

(a) Discrete MDP (b) 2D Navigation

Figure 6: Policies found during optimization: x-axis denotes
the expected cost of the policy while y-axis denotes the
expected return. Red and blue lines represent our method
(CMDP) and naive method (PI), respectively. In general, the
expected return increases as the expected cost increases. We
see that PI can only find a subset of intermediate policies
while our method can find all.

We compare our sparse-explanation-constrained optimiza-
tion procedure in Section 5 to a naive method, Policy Itera-
tion (PI), in which we iteratively evaluate and improve the
current policy until convergence. During policy improve-
ment, we greedily choose the action with the largest gain.

In Figure 6, we see that our optimization procedure is able to
find all intermediate policies that improve upon the current
policy (in terms of reward) as well as the optimal solution
(Figure 4, 5). Comparing to us, PI can only find some of the
intermediate solutions. For 2D domain, PI can only find the
optimal solution. Although the optimal policy collects the
largest reward, the corresponding contrastive explanation
is long (Section 6.2) even for a simple domain like our 2D

navigation. Our method allows users to select the policy
based on their own preference for the interpretability of the
contrastive explanation as well as their considerations of
additional outcomes. For example, for the 2D Navigation,
the users may prefer the policy when κ = 2: although it
collects less rewards, it stays longer in the desired region,
0.2 ≤ y < 0.3 (Figure 5c).

7. Discussion and Conclusion
In this work, we build a framework that improves a current
policy (with which the user is already familiar) such that
the contrastive explanation given the current and improved
policy will be sparse and human interpretable. Our contri-
bution is two-fold: (1) we generate complete, user-friendly
global contrastive explanations for two RL policies and (2)
we optimize the current policy while explicitly constraining
the length of the resulting contrastive explanation.

Compared to existing methods for generating contrastive
explanations, our explanations are more complete while
still being compact. For example, in van der Waa et al., the
authors study the difference in the paths generated by rolling
out two policies and only explain short-term outcomes. On
our discrete MDP domain, their method would generate the
following explanation:

“Starting from the initial state s0, πe will reach state s1
and perform action 1, which visits the desired state s2 but
increases the trajectory length by 1. Then, πe will reach
state s5 and perform action 1, which visits the desired
state s6 but increases the trajectory length by 1.”

Policy Optimization with Sparse Global Contrastive Explanations

In Sukkerd et al., the authors explain the outcome difference
without telling users why the difference occurs:

“Starting from the initial state s0, we can visit the desired
states (s2, s6) more times by carrying out the alternate pol-
icy πe. However, this would make the trajectory longer.”

In contrast, our contrastive explanation is more compact and
complete (see Section 4.4) as we explain the global behav-
ioral differences of two policies and the resulting differences
in their long term outcomes.

Our sparse-explanation-constrained policy optimization pro-
cedure allows the end-users to explicitly control the trade-off
between improved returns, interpretability and other desir-
able outcomes. While sparse optimization has appeared
across counterfactual explanation literature, we are, to our
knowledge, first to consider sequential decision-making
tasks under sparsity constraints applied to explanations.

In future works, we plan to apply our framework to large
healthcare domains, with the potential of helping clinicians
understand new treatment plans and potentially improving
current plans.

8. Acknowledgement
JY and FDV acknowledge the support from NSF IIS-
2007076.

References
Altman, E. Constrained Markov decision processes:

stochastic modeling. Routledge, 1999.

Altmann, A., Toloşi, L., Sander, O., and Lengauer, T. Per-
mutation importance: a corrected feature importance mea-
sure. Bioinformatics, 26(10):1340–1347, 2010.

Dash, S., Günlük, O., and Wei, D. Boolean decision rules
via column generation. arXiv preprint arXiv:1805.09901,
2018.

Dolgov, D. A. and Durfee, E. H. Stationary determinis-
tic policies for constrained mdps with multiple rewards,
costs, and discount factors. In IJCAI, volume 19, pp.
1326–1331. Citeseer, 2005.

Doshi-Velez, F. and Kim, B. Towards a rigorous sci-
ence of interpretable machine learning. arXiv preprint
arXiv:1702.08608, 2017.

Došilović, F. K., Brčić, M., and Hlupić, N. Explainable arti-
ficial intelligence: A survey. In 2018 41st International
convention on information and communication technol-
ogy, electronics and microelectronics (MIPRO), pp. 0210–
0215. IEEE, 2018.

Du, M., Liu, N., and Hu, X. Techniques for interpretable
machine learning. Communications of the ACM, 63(1):
68–77, 2019.

Hanna, J. P., Stone, P., and Niekum, S. Bootstrapping with
models: Confidence intervals for off-policy evaluation. In
Thirty-First AAAI Conference on Artificial Intelligence,
2017.

Hao, B., Ji, X., Duan, Y., Lu, H., Szepesvari, C., and Wang,
M. Bootstrapping fitted q-evaluation for off-policy infer-
ence. In International Conference on Machine Learning,
pp. 4074–4084. PMLR, 2021.

Jacovi, A., Swayamdipta, S., Ravfogel, S., Elazar, Y., Choi,
Y., and Goldberg, Y. Contrastive explanations for model
interpretability. arXiv preprint arXiv:2103.01378, 2021.

Karimi, A.-H., Barthe, G., Balle, B., and Valera, I. Model-
agnostic counterfactual explanations for consequential
decisions. In International Conference on Artificial Intel-
ligence and Statistics, pp. 895–905. PMLR, 2020.

Karpathy, A., Johnson, J., and Fei-Fei, L. Visualizing
and understanding recurrent networks. arXiv preprint
arXiv:1506.02078, 2015.

Kompa, B., Snoek, J., and Beam, A. L. Second opinion
needed: communicating uncertainty in medical machine
learning. NPJ Digital Medicine, 4(1):1–6, 2021.

Liu, G., Schulte, O., Zhu, W., and Li, Q. Toward inter-
pretable deep reinforcement learning with linear model
u-trees. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pp. 414–429.
Springer, 2018.

McGill, A. L. and Klein, J. G. Contrastive and counterfac-
tual reasoning in causal judgment. Journal of Personality
and Social Psychology, 64(6):897, 1993.

Miller, T. Explanation in artificial intelligence: Insights
from the social sciences. Artificial intelligence, 267:1–38,
2019.

Puiutta, E. and Veith, E. Explainable reinforcement learning:
A survey. In International cross-domain conference for
machine learning and knowledge extraction, pp. 77–95.
Springer, 2020.

Quinlan, J. R. Simplifying decision trees. International
journal of man-machine studies, 27(3):221–234, 1987.

Rathi, S. Generating counterfactual and contrastive expla-
nations using shap. arXiv preprint arXiv:1906.09293,
2019.

Policy Optimization with Sparse Global Contrastive Explanations

Rodriguez, I. D. J., Killian, T. W., Son, S.-H., and Gombolay,
M. C. Interpretable reinforcement learning via differen-
tiable decision trees. CoRR, abs/1903.09338, 2019. URL
http://arxiv.org/abs/1903.09338.

Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L.,
and Zhong, C. Interpretable machine learning: Funda-
mental principles and 10 grand challenges. arXiv preprint
arXiv:2103.11251, 2021.

Sabour, S., Frosst, N., and Hinton, G. E. Dynamic rout-
ing between capsules. Advances in neural information
processing systems, 30, 2017.

Spangher, A., Ustun, B., and Liu, Y. Actionable recourse in
linear classification. In Proceedings of the 5th workshop
on fairness, accountability and transparency in machine
learning, 2018.

Sukkerd, R., Simmons, R., and Garlan, D. Tradeoff-focused
contrastive explanation for mdp planning. In 2020 29th
IEEE International Conference on Robot and Human
Interactive Communication (RO-MAN), pp. 1041–1048.
IEEE.

Sutton, R. S. and Barto, A. G. Reinforcement learning: An
introduction. MIT press, 2018.

Thomas, P. and Brunskill, E. Data-efficient off-policy policy
evaluation for reinforcement learning. In International
Conference on Machine Learning, pp. 2139–2148, 2016.

van der Waa, J., Robeer, M., van Diggelen, J., Brinkhuis,
M., and Neerincx, M. Contrastive explanations with local
foil trees, 2018a.

van der Waa, J., van Diggelen, J., Bosch, K. v. d., and Neer-
incx, M. Contrastive explanations for reinforcement learn-
ing in terms of expected consequences. arXiv preprint
arXiv:1807.08706, 2018b.

Verma, A., Murali, V., Singh, R., Kohli, P., and Chaudhuri,
S. Programmatically interpretable reinforcement learning.
In International Conference on Machine Learning, pp.
5045–5054. PMLR, 2018.

Wachter, S., Mittelstadt, B., and Russell, C. Counterfactual
explanations without opening the black box: Automated
decisions and the gdpr. Harv. JL & Tech., 31:841, 2017.

Yau, H., Russell, C., and Hadfield, S. What did you think
would happen? explaining agent behaviour through in-
tended outcomes. CoRR, abs/2011.05064, 2020. URL
https://arxiv.org/abs/2011.05064.

Zhang, Q., Wu, Y. N., and Zhu, S.-C. Interpretable con-
volutional neural networks. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 8827–8836, 2018.

http://arxiv.org/abs/1903.09338
https://arxiv.org/abs/2011.05064

Policy Optimization with Sparse Global Contrastive Explanations

A. Experiment Domain
A.1. Toy Discrete MDP

Figure 7: Discrete MDP Definition

The discrete MDP has 11 states and binary actions (|S| = 11, A ∈ {0, 1}). s11 is the absorbing state with the initial state
uniformly sampled from other states (p0(s) = Cat(1

10
~1)). The transition dynamics T is defined as in Figure 7.

During explanation generation, users are interested in (a) the trajectory length (2) the number of visits to the desired states
(s2, s6). During optimization, we aim to optimize the expected return with the reward function defined as

R(s, a) =


1 if s = s1, a = 1

3 if s = s5, a = 1

5 if s ∈ {s9, s10}, a = 0

−0.001 o.w.

A.2. 2D Navigation

(a) Current Policy πb (b) Proposed Policy πe1 (c) Proposed Policy πe2

Figure 8: 2D Navigation Domain: Visualization of behaviors of current policy πb and two proposed policies πe1 ,πe2 . The
blue boxes represent diverging regions with red boxes represent regions with positive rewards. πb and πe1 differ in region
S0 and S2. πb and πe2 differ in region S1 and S3.

In the continuous 2D Navigation domain, the state space is defined by the coordinates s = (x, y). The agent can either go
east (a = E), north (a = N) or south (a = S). The initial state is uniformly sampled (x ∼ Unif(0, 0.1), y ∼ Unif(0, 0.1))
and the agent aims to navigate to the goal region (x > 0.95). The transition dynamics is defined as

x′ = x+ 0.1 if a = E

y′ = y + 0.1 if a = N

y′ = y − 0.1 if a = S

The reward function is defined as

R =



4 if x ∈ [0.1, 0.2] and y ∈ [0, 0.1]

3 if x ∈ [0.2, 0.3] and y ∈ [0.1, 0.2]

5 if x ∈ [0, 0.1] and y ∈ [0.3, 0.4]

7 if x ∈ [0.5, 0.6] and y ∈ [0.3, 0.4]

10 if x > 0.95

−0.001 o.w.

The current policy πb and two proposed policies πe1 , πe2 (Figure 8) is defined as

Policy Optimization with Sparse Global Contrastive Explanations

πb(a|s) =


S if x ∈ [0.1, 0.2] ∪ [0.5, 0.6]

and y > 0.3

N else if y < 0.2

E o.w.
πe1(a|s) =



E if x ∈ [0, 0.1]

and y ∈ [0., 0.1]

E else if x ∈ [0.1, 0.2]

and y ∈ [0.1, 0.2]

S else if x ∈ [0.1, 0.2] ∪ [0.5, 0.6]

and y > 0.3

N if y < 0.2

E o.w.

πe2(a|s) =


N if x ∈ [0, 0.1] and y ∈ [0.2, 0.3]

N else if y < 0.2

E o.w.

B. Algorithms
B.1. Collect Diverging States (Batch)

Suppose we are given a batch of data Db, we collect the diverging state using the following algorithm

Algorithm 3 Batch Diverging State Collection (π1, π2, Db)
1: InitializeD, I = {},k = 1
2: for s ∈ Db do
3: a = π1(a|s), a2 = π2(a|s)
4: if f(s, π1, π2) = 1 then
5: if key (a1, a2) /∈ I then
6: add key: I[(a1, a2)] = k, k = k + 1
7: end if
8: (s, I[(a1, a2)]) −→ D
9: else

10: (s, 0) −→ D
11: end if
12: end for
13: return X , Y

B.2. Adapted Boolean Decision Rules via Column Generation (BDCG)

BDCG is a binary interpretable classifier that learns Boolean rules in either disjunctive normal form (DNF, OR-of-ANDs) or
conjunctive normal form (CNF, AND-of-ORs). We adapt BDCG so that it can be used for our multi-classification tasks.

Suppose we are given a data set consisting of N samples (xn, yn) with labels yn = 1, · · · ,K. Let the set {1, · · · , N} be
partitioned into

⋃K
k=1Zk where Zk contains the indices of samples with the label yn = k. Without loss of generality, we

sort Zk by the set size and assume that |Z1| ≤ |Z2| ≤ · · · ≤ |Zk|. The pseudo-code of the adapted BDCG is as follows

Algorithm 4 BDCG for Multi-classification (X ,Y,Z)
1: InitializeH = {}
2: for k = 1, · · · , k − 1 do
3: Recreate labels Y′ (yn = 0 if n ∈ Zk and yn = 1 otherwise)
4: hk =BDCG(X ,Y′)
5: hk −→ H
6: X = X\{xn : n ∈ Zk},Y = Y\{yn : n ∈ Zk}
7: end for
8: returnH

C. Construct a discrete MDP for continuous domains
Suppose we have collected K diverging regions and denote them as {S1,S2, · · · ,SK}. We construct a discrete MDP where
the state space is defined as (

⋃K
k=1 Sk)

⋃
ST (ST is the absorbing state region in the original MDP). The action space

remains the same as the original MDP. Recall that given an initial state s0, a diverging path is defined as the set of diverging
regions visited in a roll-out and is denoted as, P(s0) = {sk1 , sk2 , · · · , sT }.

Given a set of trajectories generated by following the current policy πb and the proposed policies {πej}Jj=1, we can estimate
the new transition dynamics as

T (sk′ |sk, a) =
∑

1{skt=sk,at=a,skt+1}=sk′}∑
1{skt=sk,at=a}

Policy Optimization with Sparse Global Contrastive Explanations

and the new reward function as

R(sk, a) =
∑
Rsk:,a∑

1{skt = sk, at = a}

where
∑
Rsk:,a denotes the total of the sequence of rewards collected starting from the diverging region sk until reaching

the next diverging region or the absorbing region.

