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Abstract

In the reinforcement learning literature, there are
many algorithms developed for either Contextual
Bandit (CB) or Markov Decision Processes (MDP)
environments. However, when deploying reinforce-
ment learning algorithms in the real world, even
with domain expertise, it is often difficult to know
whether it is appropriate to treat a sequential deci-
sion making problem as a CB or an MDP. In other
words, do actions affect future states, or only the
immediate rewards? Making the wrong assumption
regarding the nature of the environment can lead to
inefficient learning, or even prevent the algorithm
from ever learning an optimal policy, even with
infinite data. In this work we develop an online
algorithm that uses a Bayesian hypothesis testing
approach to learn the nature of the environment.
Our algorithm allows practitioners to incorporate
prior knowledge about whether the environment is
that of a CB or an MDP, and effectively interpolate
between classical CB and MDP-based algorithms
to mitigate against the effects of misspecifying the
environment. We perform simulations and demon-
strate that in CB settings our algorithm achieves
lower regret than MDP-based algorithms, while in
non-bandit MDP settings our algorithm is able to
learn the optimal policy, often achieving compara-
ble regret to MDP-based algorithms.

1 INTRODUCTION

Sequential decision making problems are commonly ana-
lyzed using two different frameworks: Contextual Bandits
(CB) and Markov Decision Processes (MDP). In contextual
bandit environments, it is assumed that states evolve inde-
pendently of actions selected by the algorithm, whereas for
MDP environments, action selections affect state transition

probabilities.1 As a consequence in MDP environments, ac-
tion selections may have long term effects on which states
are visited in the future; therefore an algorithm designed for
a bandit environment, which does not take such long term
effects into account, may never be able to learn an optimal
policy. On the other hand, if an environment is known satisfy
CB assumptions, this restriction of the problem can be lever-
aged for more efficient learning, and therefore algorithms
designed for bandit environments learn more effectively,
as long as the CB assumptions hold. To illustrate this, in
Figure 1 we compare the performance of CB and MDP
posterior sampling algorithms in both a contextual bandit
and an MDP setting, and demonstrate that each algorithm
significantly outperforms its competitor in the setting it was
designed for.

Reinforcement learning (RL) algorithms are typically de-
veloped assuming the environment falls strictly within one
of these two frameworks. However, when deploying RL
algorithms in the real world, it is often unknown which
one of these frameworks one should assume. For example,
consider a mobile health application aimed to help users
increase their step count [Liao et al., 2020]. A few times a
day, the app’s algorithm uses the user’s state information
(e.g. recent app engagement, local weather, time of day,
etc.) to decide whether or not to send the user a message
encouraging them to take a walk. It is not immediately clear
whether to use a contextual bandit or an MDP algorithm
in this problem setting. It may be that sending notification
strongly affects the future state of the user—for example,
notifications that annoy the user could lead them to disen-
gage; if this is a possibility, an MDP algorithm is favored,
because a CB algorithm will not be able to learn the optimal
policy. On the other hand, it may be that users’ states are
not greatly affected by notification—for example, users’ re-
sponsiveness may depend purely on factors such as weather
or their work schedule, and past messages do not play a role.
In this setting, a CB algorithm could perform better, and
making a general MDP assumption can lead to inefficient

1Note that CB environments is simply a special case of MDPs.
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Figure 1: Above we plot the cumulative regret of a contextual bandit posterior sampling algorithm and a MDP posterior sam-
pling algorithm in two environments (finite horizon 100, 6 states). The MDP environment is the river swim environment (see
Figure 2). The contextual bandit environment that is identical to the MDP environment, except the state transition
probabilities are uniform over all states. The error bars are standard errors for the estimates (100 repetitions).

learning and incurring greater regret.

In this work, we develop the Bayesian Hypothesis Test-
ing Reinforcement Learning (BHT-RL) algorithm, which is
an online algorithm for the finite-horizon episodic setting,
which utilizes Bayesian Hypothesis Testing to learn whether
the environment is that of a CB or a classical MDP. Prac-
titioners specify the prior probability on the environment
being a bandit, as well as choose two RL algorithms: one
CB algorithm and one MDP algorithm. At the start of each
episode, BHT-RL selects which algorithm to use, CB vs.
MDP, according to the posterior probability of the environ-
ment being a bandit. The choice of prior probability allows
the practitioner to choose the amount to “regularize” the
MDP algorithm through the amount of evidence needed
to favor using the MDP algorithm over the CB algorithm.
We empirically demonstrate that in terms of regret mini-
mization, BHT-RL outperforms CB and MDP algorithms in
their respective misspecified environments, and that BHT-
RL is often competitive with both CB and MDP algorithms
each in the environments they were designed for. Moreover,
BHT-RL results in significantly better regret minimization
empirically in both contextual bandit and MDP environ-
ments compared prior work on learning bandit structure
in MDPs [Zanette and Brunskill, 2018, 2019]. Addition-
ally, when posterior sampling algorithms are chosen for the
contextual bandit and MDP algorithms, then the BHT-RL
algorithm can be interpreted as posteroir sampling (PS) with
an additional prior that can up-weight the prior probabil-
ity that environment is a bandit; thus, the Bayesian regret
bounds for standard MDP-PS apply [Osband et al., 2013].

2 RELATED WORK

An open problem in RL theory is understanding how sam-
ple complexity depends on the planning horizon (in infinite

horizon problems, this is the discount factor) [Jiang and
Agarwal, 2018]. Jiang et al. [2015] showed that when learn-
ing the optimal policy from data in MDP problems, longer
planning horizons increase the size of the set of policies one
searches over. As a result, often when one has small amounts
of data it is better to use a smaller planning horizon than the
evaluation horizon as a method of regularization to prevent
overfitting to the data [Arumugam et al., 2018]. However,
using a shorter planning horizon can also prevent algorithms
from ever learning the optimal policy—for example, a CB
algorithm, which has a planning horizon of 1, will never be
able to learn the optimal policy in most MDP environments.
Since the BHT-RL algorithm interpolates between CB and
MDP algorithms, it can be viewed as a regularized version
of standard MDP algorithms which reduces the planning
horizon, i.e., using a CB algorithm, when the evidence that
the environment is an MDP is low.

There have been several works developing low regret al-
gorithms for both CB and MDP environments. Jiang et al.
[2017] develop the OLIVE algorithm and prove bounds for
it in a variety of sequential decision making problems when
the the Bellman rank is known. However, since the Bell-
man rank of problems is generally unknown in real world
problems, OLIVE cannot be used in practice. Zanette and
Brunskill [2018] develop the UBEV-S RL algorithm, which
they prove has near optimal regret in the MDP setting and
has regret that scales better than that of OLIVE in the CB
setting [Zanette and Brunskill, 2018]. Later, Zanette and
Brunskill [2019] developed the EULER algorithm, which
improves upon UBEV-S, and has optimal regret bounds
in both the contextual bandit and MDP settings [Zanette
and Brunskill, 2019]. Both UBEV-S and EULER are upper
confidence bound based methods that construct confidence
bounds for the next timestep reward and future value, and
then execute the most optimistic policy within those bounds.
Although there have only been Bayesian regret bounds (in



contrast to frequentist regret bounds) proven for posterior
sampling on MDPs [Osband et al., 2013], it has been shown
in previous work that posterior sampling RL algorithms
generally outperform confidence bound based algorithms
empirically [Osband et al., 2013, Osband and Van Roy,
2017, Russo and Van Roy, 2014], and in our experiment we
see that BHT-RL outperforms both UBEV-S and EULER.

For BHT-RL, we pool the state transition counts for different
actions in the same state together. Asmuth et al. [2009] call
this approach the tied Dirichlet model. However, they also
assume that the experimenter has apriori knowledge and
chooses before the study is run whether to assume the tied
or regular Dirichlet model on the transition probabilities.
In contrast, we will aim to learn whether in each state it is
better to use the tied Dirichlet model or the standard one.
To do this we will use Bayesian hypothesis testing [Berger,
2012]. Bayesian hypothesis testing is related to Bayesian
model selection because the posterior probabilities of the
null versus the alternative models are a function of the Bayes
factor, which is used in model selection to compare the
relative plausibilities of two different models or hypotheses.

3 BAYESIAN HYPOTHESIS TESTING RL

3.1 PROBLEM SETTING

We define random variables for the states St ∈ S, random
variables for action selections At ∈ A, and rewards Rt ∈ R.
We also define θ , which parameterizes the environment,
i.e., given θ we know the expected rewards Eθ [Rt |At =
a,St = s] and the transition probabilities Pθ (St+1 = s′|St =
s,At = a). We assume a finite-horizon episodic setting, so
the data collected is made up of episodes each of length
H. For example, for the kth episode, we have the data
(Atk+h,Stk+h,Rtk+h)

H
h=1, where tk := kH. We define Htk =

{(Stk+h,Atk+h,Rtk+h)
H
h=1}

k−1
k′=0 = {(At ,St ,Rt)}tk

t=1 to be his-
tory at time tk. Note that we define our policies to be πk
to be σ(Htk)-measurable functions from S × [1: H] to |A|-
dimensional simplex. So, our actions Atk+h ∼ πk(Stk+h,h)
are chosen according to the policy. Note that the policy
takes the time-step in the episode, h, as an input because
in the finite horizon setting the optimal policy can change
depending on the timestep in the episode.

3.2 ALGORITHM DEFINITION

For our Bayesian Hypothesis Testing method we define the
following null and alternative hypotheses. Throughout, we
focus on the discrete state setting, but these hypotheses and
the BHT-RL method could be generalized to continuous
states, when one has a model for the transition probabilities.

Null hypothesis H0: Action selections do not affect tran-
sition probabilities, i.e., for all a ∈ A, s,s′ ∈ S,

Pθ (St+1 = s′|St = s,At = a) = Pθ (St+1 = s′|St = s)

Under the null hypothesis we model our data as generated
by the following process:

• For each s ∈ S we draw θ̃s from a prior distribution
over the transitions. For example, we will use θ̃s ∼
Dirichlet(α) for some S-dimensional vector α with
positive entries in our derivations and simulations.

• For all t ∈ [1: T ] such that St = s, we have that St+1 ∼
Categorical(θ̃s).

Alternative hypothesis H1: Action selections do affect
transition probabilities, i.e., for some a,a′ ∈ A, s,s′ ∈ S,

Pθ (St+1 = s′|St = s,At = a) 6= Pθ (St+1 = s′|St = s,At = a′)

Under the alternative hypothesis we model our data as gen-
erated by the following process:

• For each s ∈ S and each a ∈ A we draw θ̃s,a from a
prior distribution over the transition probabilities. For
example, θ̃s,a ∼ Dirichlet(α).

• For all t ∈ [1: T ] such that St = s and At = a, we have
that St+1 ∼ Categorical(θ s,a).

BHT-RL, as defined in Algorithm 1, requires one to choose
a contextual bandit algorithm (denoted πCB), an MDP based
algorithm (denoted πMDP), a generative model for the tran-
sition probabilities under both hypotheses, and a prior prob-
ability over the hypotheses P(H0) and P(H1) = 1−P(H0).
At the start of each episode, BHT-RL selects which algo-
rithm to use, πCB vs. πMDP, according to the posterior prob-
ability of the null hypothesis. Note that if we set the prior
probability of the null P(H0) to 1 the BHT-RL algorithm is
equivalent to πCB and when setting P(H0) to 0 the BHT-RL
algorithm is equivalent to πMDP. Practically, for someone
utilizing the algorithm, the choice of P(H0) depend on how
likely they think that the environment is that of a bandit,
based on domain knowledge. Then given we have run k
episodes already we can compute the posterior probabilities
for the hypotheses, P(H0|Htk) and P(H1|Htk).

P(H0|Htk) =
P(H0,HT )

P(Htk)

=
P(Htk |H0)P(H0)

P(Htk |H0)P(H0)+P(Htk |H1)P(H1)

The term
P(Htk |H1)

P(Htk |H0)
above is the Bayes factor. See Appendix

A for how we compute the Bayes factor for Dirichlet transi-
tion priors.

Note that Bayesian Hypothesis testing approach can be
used with any choice of contextual bandit algorithm and



Algorithm 1: Bayesian Hypothesis Testing Reinforce-
ment Learning (BHT-RL)

Input: CB algorithm πCB; MDP algorithm πMDP; Prior
probability P(H0); Generative models for state
transitions under H0 and H1 respectively.

for episodes k = 0,1,2, ... do
Sample indicator of generative model
Bk ∼ Bernoulli

(
P(H0|Htk)

)
if Bk = 1 then

Let πk = πCB
k

else
Let πk = πMDP

k
for timesteps h = 1,2, ...,H do

Sample and apply action At ∼ πk(Stk+h,h)
Observe Rtk+h and Stk+h+1

end
Update both πCB

k and πMDP
k with data

{Stk+h,Atk+h,Rtk+h}H
h=1 observed in the episode.

end

MDP based algorithm; the generative model for transition
probabilities is only used to compute posterior probability
P(H0|Htk). If one chooses posterior sampling methods for
the CB and MDP algorithms, then BHT-RL can be inter-
preted as posterior sampling with a hierarchical prior. Under
posterior sampling, a prior is put on the parameters of the
environment θ . The policy for that episode is selected by
first sampling θ̃ ∼Q(·|Htk), where Q(·|Htk) is the posterior
distribution over θ . Then the policy for the episode πk is cho-
sen to be the optimal policy for environment θ̃ . When using
BHT-RL with posterior sampling CB and MDP algorithms,
we have that πCB

k is the optimal policy for θ̃ ∼Q(·|Htk ,H0),
the posterior distribution of Q given that the null hypoth-
esis H0 is true. Similarly, πMDP

k is the optimal policy for
θ̃ ∼ Q(·|Htk ,H1).

3.3 LEVERAGING ENDOGENOUS AND
EXOGENOUS FEATURES

In many sequential decision making problems, we may
know with certainty that the transition probabilities for some
state variables do not change depending on the choice of
action. This separation into endogenous and exogenous fea-
tures allows us to learn more efficiently by only testing the
null hypothesis for the features which may potentially be
affected by actions. For example, in a mobile health setting,
we may be uncertain as to whether or not sending a message
affects future user engagement, but we do not believe that
our messages can affect the future weather. Formally, we
assume that the state space S can be decomposed into two
parts: S = X ×Z , where X includes all known exogenous
variables and Z includes all potentially endogenous vari-
ables. We assume that St = [Xt ,Zt ] for Xt ∈ X and Zt ∈ Z

and that for all St ,St+1 and At ,

Pθ (St+1|St ,At) = Pθ (Xt+1,Zt+1|Xt ,Zt ,At)

= Pθ (Xt+1|Xt)Pθ (Zt+1|Zt ,At)

For the reward model, we assume that Eθ [Rt |St ,At ], the
expected reward in a given state and action, is affected
by both Xt and Zt . Note that our assumptions differ from
other recent works which decompose the state space into
endogenous and exogenous components, because we still
assume that the exogenous states Xt can affect the value of
the expected reward [Dietterich et al., 2018, Chitnis and
Lozano-Pérez, 2020].

Our BHT-RL approach takes advantage of this decompo-
sition to endogenous vs. exogenous feature decomposition
by only performing Bayesian hypothesis testing regarding
the transition probabilities of sub-states Zt , which are poten-
tially endogenous. Performing Bayesian hypothesis testing
only on the subset of potentially endogenous states leads
to more efficient learning of whether the environment is an
CB vs. MDP, compared to performing hypothesis testing
regarding the transition probabilities for the entire state St .
Moreover, this decomposition can allow BHT-RL to easily
scale to much large state spaces when a large number of
state features are already known to be exogenous.

3.4 REGRET GUARANTEES

We now define regret in the episodic setting. We first define
the value function, which is the expected value of following
some policy π during an episode:

V θ
π,h(s) = Eπ

[ H

∑
h′=h

R(Sh′ ,Ah′)

∣∣∣∣θ]
We define π∗(θ) to be the optimal policy for some MDP (or
contextual bandit) environment θ ; barring computational
issues, the optimal policy for a given MDP environment can
be solved for using dynamic programming.

The frequentist regret is defined as the difference in total
expected reward for the optimal policy versus the actual
policy used:

RK(π,θ) =
K

∑
k=0

∑
s∈S

ρ(s)
(
V θ

π∗,1(s)−V θ
πk,1(s)

)
Above ρ(s) represents the probability of starting the episode
in state s, so ∑s∈S ρ(s). For the Bayesian regret, we assume
the MDP environment θ is drawn from prior distribution Q.
The Bayesian regret is defined as follows:

BRK(π,θ) = Eθ∼Q[RK(π,θ)]

Note, frequentist regret bounds are automatically Bayesian
regret bounds, as they must hold for the worst case environ-
ment θ . Bayesian regret bounds generally assume that the
algorithm knows the prior on the environment Q.



Theorem 1 (Bayesian Regret Bound for MDP Posterior
Sampling). Let Q be the prior distribution over θ used by
the MDP posterior sampling algorithm. Let rewards Rt ∈
[0,C], for some constant 0 <C <∞. Then for T = (K+1)H,

BRK(π,θ) = Eθ∼Q[RK(π,θ)] = O(HS
√

AT log(SAT ))

Osband et al. [2013] prove that posterior sampling on MDPs
has Bayesian regret Õ(HS

√
AT ), as stated in Theorem 1

above. Since BHT-RL with posterior sampling contextual
bandit and MDP algorithms is simply posterior sampling
with a hierarchical prior, we can apply the regret bound of
Theorem 1. Thus, BHT-RL with posterior sampling CB and
MDP algorithms has Bayesian regret Õ(HS

√
AT ), as stated

in Corollary 1. In other words, Corollary 1 below follows
directly from Theorem 1 because BHT-RL with CB and
MDP algorithms is equivalent to posterior sampling with
prior distribution Q := P(H0)Q(·|H0)+P(H1)Q(·|H1).

Corollary 1 (Bayesian Regret Bound for BHT-RL with Pos-
terior Sampling). Suppose we use BHT-RL with posterior
sampling CB and MDP algorithms. Let P(H0) ∈ [0,1] be
the prior probability of null hypothesis. Let Q(·|H0) and
Q(·|H1) be the prior distribution over θ conditional on the
null and alternative hypotheses respectively. When rewards
Rt ∈ [0,C], for some constant 0 <C < ∞,

BRm(π,θ) = Eθ∼Q[Rm(π,θ)] = O(HS
√

AT log(SAT ))

where distribution Q over θ is defined as Q :=
P(H0)Q(·|H0)+P(H1)Q(·|H1).

4 EXPERIMENTS

We run experiments in simulation environments to demon-
strate the advantages of using BHT-RL when the nature of
the environment is unknown. On the environments—a toy
riverswim domain, randomly generated CBs / MDPs (see
Appendix B), and a model inspired by a real world mobile-
health application—we show that BHT-RL significantly
outperforms CB algorithms in MDP environments and vice
versa, while performing nearly as well as CB algorithms
in a bandit setting (and similarly for MDPs). Furthermore,
we show our methods compare favorably with upper-bound
based state of the arts methods aimed at adressing the same
problem.

Figure 2: River Swim. Figure from Osband et al. [2013].

4.1 ENVIRONMENTS

Riverswim. The first MDP environment we consider is
the river swim environment introduced in Osband et al.
[2013], and illustrated in Figure 2. The optimal policy in this
environment must take a series of optimal actions to reach
the high reward state on the right, and therefore a bandit
algorithm which does not consider the long term benefits of
actions will perform very poorly in it. In order to compare
with a similar bandit environment, we construct a “CB River
Swim environment” in which the the transition probability
between any two states is uniform and independent of the
action, while the rewards for each state are equivalent to
those of the original MDP.

To test the performance of different algorithms as a func-
tion of their “banditness”, we interpolate between the two
environments by constructing domains with the following
transition function:

Pλ = (1−λ )PCB +λPMDP, (1)

where PCB and PMDP are the transition functions for the CB
and MDP environments respectively. Thus, λ = 1 reduces
to the original MDP environment, and as λ → 0, the envi-
ronment resembles more and more a CB, as the effect of
actions on the transition probabilities diminishes.

Mobile Health Physical Activity Suggestions Environ-
ment. We consider a more realistic simulation environ-
ment, which is motivated by the mobile health problem of
learning when to send activity suggestions to users. Highly
sedentary lifestyles are associated with increased rates of
many diseases including cardiovascular disease and diabetes
[Hu, 2003, Biswas et al., 2015]. Health apps, through no-
tifications delivered to mobile phones, smart watches and
other wearable devices, have increasingly been used to re-
mind users to take walks in order to encourage physical
activity. RL is particularly important for learning when to
send activity suggestions to users because of the high rate at
which users stop using mobile health applications [Eysen-
bach, 2005]. The RL algorithm must learn to send messages
when users will be receptive to activity suggestions and not
send messages when users will find messages bothersome.

In this simulation setting, several times a day the RL algo-
rithm must decide whether or not to send the user a message
encouraging them to take a walk. The algorithm must learn
in which contexts to send messages in order to maximize
the physical activity of the user. The contextual information
we include is detailed in Table 1. The reward is the log-step
count in a fixed time period following the decision time. Our
choice of features and reward is inspired by real world mo-
bile health implementations, particularly Liao et al. [2020],
who recently ran a mobile health study encouraging physical
activity among people with hypertension. Additionally, the
step count goal feature is inspired by the FitBit, which by
default includes hourly step goals for users.



Figure 3: Cumulative regret of BHT-RL compared with baselines. The cumulative regret of the different algorithms is
plotted vs. the number of episodes for the riverswim (top) and physical activity suggestions (bottom) environments. For
each environment we plot the performance of its CB (left), MDP (right) and intermediate (center) variants. For the posterior
sampling algorithms, the Dirichlet prior α vector is set to all 1s. In all cases, BHT-RL’s performance is comparable with the
best performing algorithm. Error bars denote standard errors over 100 repetitions.

Context Variable Values
Time of Day Morning, Afternoon, Evening

Weather Fair, Poor
Engagement Engaged, Disengaged

Reached Step Goal Goal Met, Goal Missed

Table 1: Values contextual variables can take (24 total
states).

In our simulation environment, the expected reward for
sending a message is generally greater than or equal to the
expected reward for not sending a message. However, while
sending a message generally increases the immediate re-
ward, it may increase the probability that the user transitions
to a low reward state. In particular, if messages are sent
when users are disengaged, this leads to a higher probability
of transitioning to a disengaged state. However, if messages
are sent when users are engaged, this leads to high reward
and a high probability of remaining engaged. We use this
model for the transition probabilities to reflect how users
can both become more engaged over time when messages
are sent at opportune times and how users can become more
annoyed with messages if sent at inconvenient times. We
construct two base environments—a CB and an MDP, and
adjust the environment by modifying how much actions can
affect state transition probabilities using the same method as
in Equation (1), e.g., how much previous actions can affect
users’ future probability of being engaged with the app and

Figure 4: Performance as a function of “banditness”. Cu-
mulative regret at H = 100 relative to BHT-RL in the river-
swim (left) and physical activity (right) environments vs.
the interpolation parameter λ with Dirichlet prior α = 1.
Error bars denote standard errors over 100 repetitions.

reaching their step goals; see Appendix B.

In this environment we make use of the exogenous vs. en-
dogenous decomposition of state describes in Section 3.3.
Specifically, we treat time of day and weather as exogenous
variables which are known to be unaffected by the agent’s
actions, and are therefore not included in the Bayesian hy-
pothesis testing component.

4.2 RESULTS

BHT-RL consistently outperforms CB and MDP algo-
rithms in their respective misspecified environments.
In Figure 9 we plot the cumulative regret over episodes
for both environments. For each environments three variants



Figure 5: Posterior probability of the null hypothesis.
The posterior probability of the null hypothesis in the
riverswim (left) and physical activity (right) environments
evolves with the number of episodes for different interpola-
tion parameters λ . We set H = 100 and Dirichlet prior α = 1.
Error bars denote standard errors over 100 repetitions.

Figure 6: Maximum action variation for different envi-
ronments over λ .

are used—the pure CB and pure MDP variants, as well as
an intermediate environment in which the impact of actions
on the transition probabilities is smaller than for the origi-
nal MDP variant of the environment (λ = 0.6). As noted in
Figure 1, the performance of the CB and MDP posterior sam-
pling (PS) algorithms is optimal when the algorithm is used
for the correct environment (lower regret is better). How-
ever, we see that in all cases BHT-RL outperforms the CB
and MDP posterior sampling algorithms in their respective
misspecified environments, i.e., λ close to 0 for MDP-PS
and λ close to 1 for CB-PS. Moreover, in many cases the
BHT-RL performs comparable to, if not better, than the al-
gorithm explicitly designed for the particular environment.
This demonstrates the ability of BHT-RL to perform well
without knowledge of the nature of the environment. Further-
more, comparison with the UBEV-S [Zanette and Brunskill,
2018] and EULER [Zanette and Brunskill, 2019] baselines,
which are also designed to operate when the nature of the
environment is unknown, shows that they under-perform
because of their reliance on confidence bounds which may
be very loose.

We note that while the distinction between a bandit environ-
ment and an MDP is well defined, we can blur the definition
and ask how “bandit-like” an MDP is by considering how
strong of an effect do actions have on transition probabili-
ties. In this sense, the λ parameter in equation (1) controls
how close to a bandit our environment is, where the ex-

amples shown in Figure 1 correspond to λ = 0 and 1. To
better quantify the performance of the different posterior
sampling methods as a function of the “banditness” of the
environment, in Figure 4 we plot the cumulative regret after
H = 100 episodes as a function of λ . For clarity of presen-
tation, we plot the ratio between the regret for the CB or
MDP algorithms over the regret of BHT-RL. BHT-RL con-
sistently performs better than CB-PS and MDP-PS in their
corresponding misspecified environments. For λ close to 1,
BHT-RL outperforms CB-PS because through the Bayesian
hypothesis testing procedure BHT-RL is able to learn that
the environment is an MDP environment, while CB-PS is
not able to ever learn the optimal policy. For λ close to
0, BHT-RL outperforms MDP-PS because the Bayesian
hypothesis testing procedure regularizes the BHT-RL algo-
rithm by reducing the planning horizon, which leads it to
incur lower regret. BHT-RL consistently outperforms the
worst performing algorithm (out of CB-PS and MDP-PS)
across all values of λ . Moreover, BHT-RL has better or
comparable performance to the best performing algorithm
for most values of λ , with the exception of intermediate
values of λ in the physical activity suggestion environment
which we will be better equipped to discuss following the
next section.

Using BHT-RL to learn about the nature of the environ-
ment. An additional benefit of BHT-RL is that it naturally
outputs a posterior estimate for the probability of the null
hypothesis that actions do not affect state transitions. In Fig-
ure 5 we plot the posterior probability of the null hypothesis
as a function of the number of episodes. This knowledge
can be useful in practice if we would like to consider what
additional algorithms or methods to apply to the domain,
and is obtained at no additional computational cost. This
is in line with the Bayesian hypothesis testing literature (in
contrast to frequentist hypothesis testing), which uses cut-
off values for the Bayes factor to reject the null hypothesis
[Quintana and Williams, 2018].

As a way to illustrate the relative difficulties of distinguish-
ing between CB and MDP in the two simulation environ-
ments, following the terminology used in Jiang et al., we
define the maximum action variation for an environment as
the following:

max
a,a′∈A;s,s′∈S

∣∣Pθ (s′|s,a)−Pθ (s′|s,a′)
∣∣

Note that for small non-zero values of λ , which correspond
to smaller maximum action variation values, the posterior
probability of H0 decays to zero very slowly, indicating that
a large amount of data is needed to rule out H0 if the effect
of actions on transition probabilities is small. As shown in
Figure 6, the physical activity suggestions environment has
a much smaller maximum action variation compared to river
swim. The difficulty of learning whether the environment is
a CB vs. MDP in the physical activity suggestions environ-
ment, is further demonstrated in the plots of the posterior



Figure 7: Sensitivity to algorithm hyper-parameters. We plot the cumulative regret at H = 100 as a function of the
Dirichlet hyper-parameter α for the riverswim (top) and physical activity suggestions (bottom) environments. For each
environment we plot the results for its CB (left), MDP (right) and intermediate (center) variants.

probability of null hypothesis in Figure 5. We believe that
the increased difficulty of learning whether the environment
is a CB vs. MDP is what leads MDP-PS to outperform
BHT-RL for intermediate values of λ in Figure 4.

Sensitivity to algorithm hyper-parameters. We demon-
strate the sensitivity of our algorithm to α . the parameter
determining the Dirichlet distribution of the prior over tran-
sitions for the MDP algorithm. In Figure 7 we plot the regret
of the different PS algorithms for the different environments.
As expected, the prior on transition probabilities does not
effect the performance in bandit settings, but may affect
performance in an MDP environment where being able to
model the transition probabilities well is important.

While the value of α affects the performance of both the
MDP-PS and BHT-RL algorithms, BHT-RL consistently
performs better than or comparable to (1) CB algorithms in
MDP environments and (2) MDP algorithms in CB environ-
ments for all values of α . BHT-RL also performs at least
as well as the best performing algorithm in each environ-
ment with the exception is for very small values of α , where
MDP-PS has lower cumulative regret. We believe this is due
to the fact that a very small value of α pushes the MDP-PS
and the MDP component of BHT-RL to learn very sparse
transition probabilities, which are inconsistent with the true
environment. This in turn leads the BHT-RL algorithm to
require more examples to learn whether the environment
is an MDP or CB, and therefore incurs greater regret; see
Figure 8 in the Appendix. Note that this can be mitigated by
choosing a larger value of α .

5 DISCUSSION

Our simulation results show that at least in finite state MDP
and contextual bandit environments, the BHT-RL algorithm
can perform well even when it is unknown whether the
environment is that of an MDP or contextual bandit. Addi-
tionally, the BHT-RL approach allows practitioners to easily
incorporate prior knowledge about the environment dynam-
ics into their algorithm. Finally, since BHT-RL stochasti-
cally reduces the planning horizon, it can also be used as a
regularization method for the full MDP based algorithm.

Some limitations of our work are that our method assumes
the stationarity of the dynamics of the RL environment.
Thus, our method is not robust to non-stationarity, which is
often encountered in real world sequential decision making
problems. To adapt the method to a continuous state setting
would additionally require a model of the transition probabil-
ities, which may be unrealistic to assume is known for real
world problems. Additional open questions are whether it is
possible to show additional theoretical guarantees regarding
the BHT-RL algorithm, like a frequentist regret bound or a
regret bound when the prior is misspecified.

Beyond just learning whether the environment is that of a
contextual bandit or an MDP, we conjecture that bayesian
hypothesis testing could also be used to address other as-
pects of reinforcement learning problems. One example
is learning better state representations [Ortner et al., 2019],
which is a major open problem in the reinforcement learning
field [Dulac-Arnold et al., 2019].
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A BAYESIAN HYPOTHESIS TESTING FOR DIRICHLET PRIORS ON TRANSITION
PROBABILITIES

We define the set of states as S and the set of actions as A. Suppose we have dataHT = {St ,At ,Rt}T
t=1.

• Null hypothesis H0: We model our data as follows

– For each s ∈ S we draw θ̃ s ∼ Dirichlet(α)

– For all t ∈ [1: T ] such that St = s, we have that St+1 ∼ Categorical(θ̃ s)

• Alternative hypothesis H1: We model our data as follows

– For each s ∈ S and each a ∈ A we draw θ̃ s,a ∼ Dirichlet(α)

– For all t ∈ [1: T ] such that St = s and At = a, we have that St+1 ∼ Categorical(θ̃ s,a)

We choose prior probabilities over the hypotheses P(H0) and P(H1) = 1−P(H0). Then we can calculate the posterior
probabilities P(H0|HT ) and P(H1|HT )

P(H0|HT ) =
P(H0,HT )

P(HT )
=

P(HT |H0)P(H0)

P(HT |H0)P(H0)+P(HT |H1)P(H1)
=

1
1+K

where K = P(HT |H1)P(H1)
P(HT |H0)P(H0)

is the Bayes factor.

Let us now derive the posterior distributions. Let θ represent all transition probability parameters, so θ = {θ s}s∈S ∪
{θ s,a}s∈S,a∈A.

P(θ |HT ) =
P(θ ,HT )

P(HT )
=

P(HT |θ)P(θ)∫
P(HT |θ)P(θ)dθ

=:
X
Y

First examining the numerator term X ,

X = P(HT |θ)
[
P(θ |H0)P(H0)+P(θ |H1)P(H1)

]

= P(H0)∏
s∈S

[
Dirichlet(θ s;α)

T

∏
t=1

Categorical(St+1;θ s)
1St=s

]
+P(H1)∏

s∈S
∏
a∈A

[
Dirichlet(θ s,a;α)

T

∏
t=1

Categorical(St+1;θ s,a)
1St=s,At=a

]
Below B(α) is the multivariate beta function.

=
P(H0)

B(α)|S|
∏
s∈S

[
∏
s′∈S

θs(s′)α(s′)−1
T

∏
t=1

θs(s′)
1St=s,St+1=s′

]
+

P(H1)

B(α)|S||A|
∏
s∈S

∏
a∈A

[
∏
s′∈S

θs,a(s′)α(s′)−1
T

∏
t=1

θs,a(s′)
1St=s,At=a,St+1=s′

]

=
P(H0)

B(α)|S|
∏
s∈S

[
∏
s′∈S

θs(s′)
α(s′)−1+∑

T
t=11St=s,St+1=s′

]
+

P(H1)

B(α)|S||A|
∏
s∈S

∏
a∈A

[
∏
s′∈S

θs,a(s′)
α(s′)−1+∑

T
t=11St=s,At=a,St+1=s′

]

=
P(H0)

B(α)|S|
∏
s∈S

[
∏
s′∈S

θs(s′)
α(s′)−1+∑

T
t=11St=s,St+1=s′

]
+

P(H1)

B(α)|S||A|
∏
s∈S

∏
a∈A

[
∏
s′∈S

θs,a(s′)
α(s′)−1+∑

T
t=11St=s,At=a,St+1=s′

]
We define Ns = [∑T

t=11St=s,St+1=1,∑
T
t=11St=s,St+1=2, ...,∑

T
t=11St=s,St+1=|S|] and

Ns,a = [∑T
t=11St=s,At=a,St+1=1,∑

T
t=11St=s,At=a,St+1=2, ...,∑

T
t=11St=s,At=a,St+1=|S|].

=
P(H0)

B(α)|S|
∏
s∈S

B
(
α +Ns

)
Dirichlet

(
θ s;α +Ns

)
+

P(H1)

B(α)|S||A|
∏
s∈S

∏
a∈A

B
(
α +Ns,a

)
Dirichlet

(
θ s,a;α +Ns,a

)



Thus,

X =
P(H0)B(α)|S|(|A|−1)

∏s∈S B
(
α +Ns

)
Dirichlet

(
θ s;α +Ns

)
B(α)|S||A|

+
P(H1)∏s∈S ∏a∈A B

(
α +Ns,a

)
Dirichlet

(
θ s,a;α +Ns,a

)
B(α)|S||A|

Since X = P(HT |θ)P(θ) and Y =
∫

P(HT |θ)P(θ)dθ , we have that

Y =
P(H0)

B(α)|S|
∏
s∈S

B
(
α +Ns

)
+

P(H1)

B(α)|S||A|
∏
s∈S

∏
a∈A

B
(
α +Ns,a

)

=
P(H0)B(α)|S|(|A|−1)

∏s∈S B
(
α +Ns

)
+P(H1)∏s∈S ∏a∈A B

(
α +Ns,a

)
B(α)|S||A|

=:
W0 +W1

B(α)|S||A|

Thus,

P(θ |HT ) =
X
Y

=
W0

W0 +W1
∏
s∈S

Dirichlet
(
θ s;α +Ns

)
+

W0

W0 +W1
∏
s∈S

∏
a∈A

Dirichlet
(
θ s,a;α +Ns,a

)
Note that

P(H0|HT ) =
P(H0|HT )P(HT )

P(HT )
=

P(HT |H0)P(H0)

P(HT )
=

W0

W0 +W1

P(H1|HT ) =
W1

W0 +W1



B SIMULATION DETAILS

B.1 RIVERSWIM ENVIRONMENTS

• We add N (0,0.01) noise to all rewards.

• PMDP transitions are those of the original river swim environment as in Figure 2.

• PCB transitions are uniform over all states, i.e, P(St+1 = s|St = s′,At = a) = 1
|S| for all s,s′ ∈ S and a ∈ A.

Algorithm Hyper-Parameters

• For Bandit and MDP posterior sampling we have independent N (1,1) priors on the rewards.

• For MDP posterior sampling we have Dirichlet (α ∈ RS) priors on the transition probabilities.

• For BHT-PSRL we set the probability of the null hypothesis to P(H0) = 0.5.

• UBEV-S and EULER we choose failure probability δ = 0.1.

B.2 PHYSICAL ACTIVITY SUGGESTIONS ENVIRONMENTS

• Reward is log step count

• Actions are binary: 0 means no message sent; 1 means message sent

• We add N (0,0.01) noise on rewards

Context Variable Values Variable Notation Endogenous vs. Exogenous
Time of Day Morning (0), Afternoon (1), Evening (2) Stime

t Exogenous
Weather Fair (0), Poor (1) Sweather

t Exogenous
Engagement Disengaged (0), Engaged (1) Sengagement

t Endogenous
Reached Step Goal Goal Missed (0), Goal Met (1) Sgoal

t Endogenous

Table 2: Values that contextual variables can take. There are 24 distinct states in total.

Endogenous vs. Exogenous State Variables

• In our simulation environment, state space S can be decomposed into two parts: S =X ×Z such that X state variables
are exogenous and Z state variables are potentially endogenous in the following sense:

P(St+1|St ,At) = P(Xt+1,Zt+1|Xt ,Zt ,At) = P(Xt+1|Xt)P(Zt+1|Zt ,At)

• For the purposes of Bayesian hypothesis PSRL approach, the bayesian hypothesis testing only has to occur for substates
Zt , rather than the full state St , which improves the performance and stability of our approach.

• For the model of the reward, we assume that E[Rt |St ,At ], the expected reward in a given state and action, is affected by
both Xt and Zt . For example, how much a user walks following a decision time can be affected by both endogenous and
exogenous variables.

State Transition Probabilities

Morning Afternoon Evening
Morning 0 1 0

Afternoon 0 0 1
Evening 1 0 0

Table 3: Time of Day Transition Probability Matrix



Fair Weather Poor Weather
Fair Weather 0.6 0.4
Poor Weather 0.3 0.7

Table 4: Weather Transition Probability Matrix

Disengaged, Disengaged, Engaged, Engaged,
Goal Missed Goal Met Goal Missed Goal Met

Disengaged, Goal Missed 0.35 0.35 0.15 0.15
Disengaged, Goal Met 0.4 0.25 0.2 0.15
Engaged, Goal Missed 0.2 0.25 0.3 0.25

Engaged, Goal Met 0.15 0.15 0.3 0.4

Table 5: Endogenous Variable Transition Probability Matrix under At = 1, i.e., P(Zt+1|Zt ,At = 1)

Disengaged, Disengaged, Engaged, Engaged,
Goal Missed Goal Met Goal Missed Goal Met

Disengaged, Goal Missed 0.45 0.35 0.1 0.1
Disengaged, Goal Met 0.5 0.3 0.15 0.05
Engaged, Goal Missed 0.05 0.3 0.3 0.35

Engaged, Goal Met 0.05 0.05 0.35 0.55

Table 6: Endogenous Variable Transition Probability Matrix under At = 0, i.e., P(Zt+1|Zt ,At = 0)

• Above we state the transition probabilities under PMDP

• For transition probabilities PCB, we simply set P(Zt+1|Zt ,At = 1) to the corresponding values of P(Zt+1|Zt ,At = 0)
under PMDP.

Expected Reward

E[Rt |St ,At = a] =
2

∑
i=0

θ
time
a,i 1i=Stime

t
+

1

∑
j=0

θ
weather
a, j 1 j=Sweather

t
+

1

∑
k=0

1

∑
l=0

θ
endogenous
a,k,l 1k=Sengagement

t
1

l=Sgoal
t

• Time of Day

– θ time
0,0 = 0.001; θ time

0,1 = 0.01; θ time
0,2 = 0.005

– θ time
1,0 = 0.001; θ time

1,1 = 0.02; θ time
1,2 = 0.01

• Weather

– θ weather
0,0 = 0.01; θ weather

0,1 = 0.015

– θ weather
1,0 = 0.01; θ weather

1,1 = 0.025

• Endogenous

– θ
endogenous
0,0,0 = 0.005; θ

endogenous
0,0,1 = 0.4; θ

endogenous
0,1,0 = 0.35; θ

endogenous
0,1,1 = 2.25

– θ
endogenous
1,0,0 = 0.01; θ

endogenous
1,0,1 = 0.405; θ

endogenous
1,1,0 = 1.75; θ

endogenous
1,1,1 = 2.5

Algorithm Hyper-Parameters

• For Bandit and MDP posterior sampling we have independent N (1,1) priors on the rewards.

• For MDP posterior sampling we have Dirichlet (α ∈ RS) priors on the transition probabilities.

• For BHT-PSRL we set the probability of the null hypothesis to P(H0) = 0.5.

• UBEV-S and EULER we choose failure probability δ = 0.1.



B.3 RANDOM MDP ENVIRONMENTS

• The following simulation environment is based on that in Jiang et al. [2015].

• For these experiments we randomly sampled 100 MDPs with 10 states and 2 actions from a distribution we refer to as
Random-MDP, defined as follows.

• PMDP transitions are constructed as follows. For each s ∈ S and each a ∈ A, the distribution P(s′|s,a) for all s′ ∈ S is
chosen by selecting 5 non-zero entries uniformly from all 10 states, filling these 5 entries with values sampled from
Uniform(0,1), and then by normalizing the values to sum to 1.

• PCB transitions are constructed by modifying the PMDP transition probabilities. In particular, for each s ∈ S, the
transition probabilities P(s′|s,a = 1) is set to P(s′|s,a = 0) from the PMDP transition probabilities.

• Start state is selected uniformly from all 10 states.

• Mean rewards were likewise sampled independently from Uniform(0,1).

• Rewards have noise N (0,0.01).

• Results averaged over 100 randomly sampled MDPs.

Algorithm Hyper-Parameters

• For Bandit and MDP posterior sampling we have independent N (1,1) priors on the rewards.

• For MDP posterior sampling we have Dirichlet (α ∈ RS) priors on the transition probabilities.

• For BHT-PSRL we set the probability of the null hypothesis to P(H0) = 0.5.

• UBEV-S and EULER we choose failure probability δ = 0.1.



B.4 ADDITIONAL SIMULATION RESULTS

Figure 8: Sensitivity to algorithm hyper-parameters. We plot how the posterior probability of the null hypothesis for
different values of the Dirichlet hyper-parameter α for the riverswim (Top), physical activity suggestions (Middle), and
random MDP (Bottom) environments. For each environment we plot the results for its CB (Left), MDP (Right) and
intermediate (Center) variants.



Figure 9: Cumulative regret of BHT-RL compared with baselines. The cumulative regret of the different algorithms
is plotted vs. the number of episodes for the riverswim (Top) and physical activity suggestions (Bottom) environments.
For each environment we plot the performance of its CB (Left), MDP (Right) and intermediate (Center) variants. For the
posterior sampling algorithms, the Dirichlet prior α vector is set to all 1s. In all cases, BHT-RL’s performance is comparable
with the best performing algorithm.

Figure 10: We plot regret relative to PSRL-HT in random MDP environments varying interpolation parameter λ with
H = 100. Error bars denote standard errors over 100 repetitions. Dirichlet prior hyperparameter α = 1.

Figure 11: We plot posterior probabilities for PSRL-HT in the random MDP environments for different interpolation
parameters λ with H = 100. Error bars denote standard errors over 100 repetitions. Dirichlet prior hyperparameter α = 1.



Figure 12: Left: Random CB environments. Middle: transition probabilities interpolated between Random MDP and
Random CB environments; Right: Random MDP environments. All environments have horizon H = 100. Error bars denote
standard errors over 100 repetitions. We vary dirichlet prior hyperparameter α , letting it take values 0.25,0.5,1,2,4,8.
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